JPH02116543A - Dyeable anti-reflective coating - Google Patents
Dyeable anti-reflective coatingInfo
- Publication number
- JPH02116543A JPH02116543A JP63270199A JP27019988A JPH02116543A JP H02116543 A JPH02116543 A JP H02116543A JP 63270199 A JP63270199 A JP 63270199A JP 27019988 A JP27019988 A JP 27019988A JP H02116543 A JPH02116543 A JP H02116543A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- coating layer
- compound
- high refractive
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/001—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
- C22C32/0015—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
- C22C32/0021—Matrix based on noble metals, Cu or alloys thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L3/00—Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
- F01L3/08—Valves guides; Sealing of valve stem, e.g. sealing by lubricant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F7/00—Casings, e.g. crankcases
- F02F7/0085—Materials for constructing engines or their parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F7/00—Casings, e.g. crankcases
- F02F7/0085—Materials for constructing engines or their parts
- F02F7/0087—Ceramic materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0469—Other heavy metals
- F05C2201/0475—Copper or alloys thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0469—Other heavy metals
- F05C2201/0496—Zinc
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Ceramic Engineering (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Laminated Bodies (AREA)
- Mechanical Operated Clutches (AREA)
Abstract
Description
【発明の詳細な説明】
「利用分野」
本発明は、レンズの表面に形成される染色可能な反射防
止膜に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to a dyeable antireflection coating formed on the surface of a lens.
「従来技術及びその問題点」
レンズの反射防止膜の形成方法としては、従来真空蒸着
法あるいはスパッタリング法によって無機化合物の膜を
形成する方法が一般的である。"Prior Art and its Problems" Conventionally, as a method for forming an antireflection film for a lens, a method of forming an inorganic compound film by a vacuum evaporation method or a sputtering method is generally used.
真空蒸着法やスパッタリング法で反射防止膜を形成する
場合には、これらの方法で形成された反射防止膜は染料
を通さないので、予めハードコートを付け、注文に応じ
てレンズを染色した後に反射防止膜を形成して出荷され
る。すなわち、これらの方法で反射防止膜を設ける場合
には、店頭での染色ができなかったという問題点がある
。When forming an anti-reflective film using vacuum evaporation or sputtering, the anti-reflective film formed by these methods is impermeable to dyes, so a hard coat is applied in advance and the lens is dyed according to the order before the anti-reflective coating is applied. It is shipped with a protective film formed. That is, when providing an antireflection film using these methods, there is a problem in that dyeing cannot be carried out at a store.
「発明の目的」
本発明は、真空蒸着法によらず、コーティング法によっ
て金属化合物を主成分とする高屈折率層と低屈折率層と
を組み合わせて形成した染色可能な反射防止膜を提供す
ることを目的とする。"Objective of the Invention" The present invention provides a dyeable antireflection film formed by combining a high refractive index layer and a low refractive index layer mainly composed of a metal compound by a coating method instead of a vacuum deposition method. The purpose is to
「発明の構成j
本発明による染色可能な反射防止膜は、高屈折率の金属
化合物を主成分とする1層以上の高屈折率コーティング
層と低屈折率の金属化合物の超微粒子と有機シリコーン
化合物を主成分とする1層の低屈折率コーティング層と
から成ることを特徴とする。``Structure of the invention j The dyeable antireflection film according to the present invention comprises one or more high refractive index coating layers mainly composed of a metal compound with a high refractive index, ultrafine particles of a metal compound with a low refractive index, and an organic silicone compound. It is characterized by consisting of one low refractive index coating layer containing as a main component.
本発明による反射防止膜において、高屈折率コーティン
グ層に用いる高屈折率の金属化合物としては、チタン化
合物、ジルコニウム化合物、アルミニウム化合物あるい
はセリウム化合物があり、さらに具体的には、このよう
な金属の酸化物、アルコキシド、アルコキシドのポリマ
ー トリエタノールアミンキレート、アセチルアセトネ
ートキレートなどが挙げられる。これらの化合物の具体
例をチタンについて挙げると、例えばチタニア、チタン
アルコキシド(例えばチタニウムメトキシド、チタニウ
ムエトキシド、チタニウムテトライソプロポキシド、チ
タニウムテトラ−n−ブトキシド等)、チタンアルコキ
シドのポリマー トリエタノールアミンキレ−ト、チタ
ニウムアセチルアセトネートなどがある。In the antireflection film according to the present invention, examples of the high refractive index metal compound used in the high refractive index coating layer include titanium compounds, zirconium compounds, aluminum compounds, and cerium compounds, and more specifically, oxidation of such metals. compounds, alkoxides, polymers of alkoxides, triethanolamine chelate, acetylacetonate chelate, etc. Specific examples of these compounds are titanium, such as titania, titanium alkoxides (e.g. titanium methoxide, titanium ethoxide, titanium tetraisopropoxide, titanium tetra-n-butoxide, etc.), titanium alkoxide polymers, triethanolamine crystals, etc. - and titanium acetylacetonate.
これらの金属化合物は、溶剤に溶解又は分散することに
よりコート液とする。溶剤としては、ケトン類、セロソ
ルブ類、エーテル類、エステル類、ホルムアミド類ある
いは水などが挙げられる。These metal compounds are dissolved or dispersed in a solvent to form a coating liquid. Examples of the solvent include ketones, cellosolves, ethers, esters, formamides, and water.
このコート液には、さらに染色性、密着性、硬度向上な
どの目的でエポキシ樹脂、アクリル樹脂などの高分子化
合物、シランカップリング剤、レヘリング剤(界面活性
剤)などを添加してもよい。A polymer compound such as an epoxy resin or an acrylic resin, a silane coupling agent, a lehering agent (surfactant), etc. may be added to this coating liquid for the purpose of improving dyeability, adhesion, hardness, etc.
本発明の反射防止膜においては、高屈折率の金属化合物
を主成分とする高屈折率コーティング層は、単層であっ
てもよいが、屈折率の異なる複数の層として設けること
もできる。これらの層は、λ/2の光学膜厚となるよう
にコーティングされるのが好ましい。In the antireflection film of the present invention, the high refractive index coating layer containing a high refractive index metal compound as a main component may be a single layer, or may be provided as a plurality of layers having different refractive indexes. These layers are preferably coated to have an optical thickness of λ/2.
上記のコート液は、フローコート、デイツプコート、ス
ピンコード、ロールコート、スプレーコートなど、公知
の各種の方法で塗布することができる。The above-mentioned coating liquid can be applied by various known methods such as flow coating, dip coating, spin cord, roll coating, and spray coating.
塗膜の乾燥及び硬化は、用いた成分及び溶剤などの条件
によって適宜選定するが、プラスチックレンズの場合4
0〜130°C1ガラスレンズの場合40〜600°C
で、10分〜10時間の加熱によって行うのが好ましい
。The drying and curing of the coating film is selected depending on the conditions such as the components and solvent used, but in the case of plastic lenses, 4.
0~130°C 40~600°C for glass lens
It is preferable to carry out heating for 10 minutes to 10 hours.
本発明の反射防止膜は、上記のような高屈折率コーティ
ング層の上にさらに低屈折率の金属化合物の超微粒子と
有機シリコーン化合物を主成分とする低屈折率コーティ
ング層を有する。この低屈折率の金属化合物としては、
例えばM g F 2、S i Ozなどを用いるのが
好ましい。その超微粒子としては50人〜100μmの
粒径を有するものを使用することが、分散性や所望の硬
さを得る上で好ましい。The antireflection film of the present invention further has a low refractive index coating layer containing ultrafine particles of a metal compound having a low refractive index and an organic silicone compound as main components on the high refractive index coating layer as described above. This low refractive index metal compound is
For example, it is preferable to use M g F 2 , S i Oz, and the like. It is preferable to use ultrafine particles having a particle size of 50 to 100 μm in order to obtain dispersibility and desired hardness.
本発明において、低屈折率コーティング層に用いる有機
シリコーン化合物としては、例えば下記のものが挙げら
れる。すなわち、1,3−ジメトキシテトラメチルジシ
ロキサン、1.3−ジェトキシテトラメチルジシロキサ
ン、
[CzHsO(C6Hs)zsi)zo、(CH2=C
H(CHz)zSi)to等の有機ポリシロキサン、さ
らに
(MeO):+5iCzH4Ci、F+zCzHaSi
(OMe):+、(MeO)zMeSiCzH4C6F
、zCzH4SiMe(OMe)i、CF3(CFz
)zczH4si(OMe):+、CF3(CFzhC
2H4SiCEx
〔上記式中、MeはCHyを示す〕などの有機シリコー
ン化合物が挙げられる。これらの有機シリコーン化合物
は、その加水分解物であってもよい。In the present invention, examples of the organic silicone compound used in the low refractive index coating layer include the following. That is, 1,3-dimethoxytetramethyldisiloxane, 1,3-dimethoxytetramethyldisiloxane, [CzHsO(C6Hs)zsi)zo, (CH2=C
Organic polysiloxanes such as H(CHz)zSi)to, and (MeO):+5iCzH4Ci, F+zCzHaSi
(OMe):+, (MeO)zMeSiCzH4C6F
,zCzH4SiMe(OMe)i,CF3(CFz
)zczH4si(OMe):+, CF3(CFzhC
Examples include organic silicone compounds such as 2H4SiCEx [in the above formula, Me represents CHy]. These organic silicone compounds may be hydrolysates thereof.
金属化合物と有機シリコーン化合物との配合割合は、所
望の硬度、屈折率及び染色性の調和を考慮してその都度
適宜選定することができる。The blending ratio of the metal compound and the organic silicone compound can be appropriately selected each time, taking into consideration the desired harmony of hardness, refractive index, and dyeability.
低屈折率コーティング層は、上記のように金属化合物と
有機シリコーン化合物とを主成分とするものであるが、
必要に応じて界面活性剤、紫外線吸収剤、酸化防止剤、
チキソトロピー剤、顔料、染料、帯電防止剤、導電性粒
子などを含んでいてもよい。さらに、硬度などの性質を
向上させるため、エポキシ樹脂、アクリル樹脂などの:
fa高分子化合物を添加することもできる。The low refractive index coating layer is mainly composed of a metal compound and an organic silicone compound as described above.
Surfactants, ultraviolet absorbers, antioxidants, as necessary.
It may also contain thixotropic agents, pigments, dyes, antistatic agents, conductive particles, and the like. In addition, to improve properties such as hardness, epoxy resin, acrylic resin, etc.:
It is also possible to add an fa polymer compound.
さらに、塗布作業性を考慮して、適切な溶剤を加えるこ
とができる。溶剤としては、アルコール類、ケトン類、
セロソルブ類、エーテル類、エスチル類、ホルムアミド
類あるいは水などが挙げられる。Furthermore, an appropriate solvent can be added in consideration of coating workability. As solvents, alcohols, ketones,
Examples include cellosolves, ethers, esters, formamides, and water.
塗布方法としては、高屈折率コーティング層について記
載したように、公知の各種の方法を採用することができ
る。膜厚は溶剤や塗布方法により適宜調節することがで
き、低屈折率コーティング層は、通常、λ/4の光学膜
厚で設けられる。As the coating method, various known methods can be employed, as described for the high refractive index coating layer. The film thickness can be adjusted appropriately by the solvent and coating method, and the low refractive index coating layer is usually provided with an optical film thickness of λ/4.
塗膜の乾燥及び硬化は、用いた成分などの条件によって
適宜選定するが、プラスチックレンズの場合40〜13
0”C,ガラスレンズの場合40〜600°Cで、10
分〜10時間の加熱によって行うのが好ましい。The drying and curing of the coating film is appropriately selected depending on the conditions such as the components used, but in the case of plastic lenses, it is 40 to 13
0"C, 40-600°C for glass lenses, 10
Preferably, heating is carried out for a period of minutes to 10 hours.
上記のように1層以上の高屈折率コーティング層と1層
の低屈折率コーティング層を適切に組み合わせることに
よって、グリーンの優れた反射防止膜が得られる。As described above, by appropriately combining one or more high refractive index coating layers and one low refractive index coating layer, an excellent green antireflection film can be obtained.
本発明による反射防止膜は、プラスチックレンズあるい
はガラスレンズの表面に形成することができるものであ
り、プラスチックレンズに形成する場合には、必要に応
じてレンズ表面に有機ハードコート膜を形成した後に、
形成することもできる。The antireflection film according to the present invention can be formed on the surface of a plastic lens or a glass lens. When forming it on a plastic lens, after forming an organic hard coat film on the lens surface as necessary,
It can also be formed.
本発明による反射防止膜を形成する対象となるプラスチ
ックレンズとしては、例え・ばポリ(ジエチレングリコ
ールビスアリルカーボネート)、ポリメチルメタクリレ
ート、ポリカーボネート、ポリスチレン、ポリ塩化ビニ
ル、ポリウレタン、含硫ウレタン樹脂などから成るレン
ズが挙げられる。Examples of plastic lenses on which the antireflection film of the present invention is formed include lenses made of poly(diethylene glycol bisallyl carbonate), polymethyl methacrylate, polycarbonate, polystyrene, polyvinyl chloride, polyurethane, sulfur-containing urethane resin, etc. can be mentioned.
本発明の反射防止膜においては、膜厚は溶剤や塗布方法
により適宜調節することができ、通常、高屈、折率層を
λ/2の光学膜厚で、低屈折率層をλ/4の光学膜厚で
設けることによって、イ■れた反射防止効果が得られる
。また、この反射防止膜に含まれる有機シリコーン化合
物は、大きい分子であり、分子の隙間などを通って染料
や顔料がプラスチックレンズ表面に至り、プラスチック
レンズを容易に染色しうるので、レンズに反射防止膜を
形成した状態で貯蔵し、注文に応じて店頭で染色するこ
とができる。In the antireflection film of the present invention, the film thickness can be adjusted appropriately by using the solvent and coating method. Usually, the high refractive index layer has an optical thickness of λ/2, and the low refractive index layer has an optical thickness of λ/4. An excellent antireflection effect can be obtained by providing the optical film with an optical thickness of . In addition, the organic silicone compound contained in this anti-reflection film is a large molecule, and dyes and pigments can pass through the gaps between molecules and reach the surface of the plastic lens, easily staining the plastic lens. It can be stored in a membrane-formed state and dyed in-store according to orders.
「発明の実施例」
次に、実施例に基づいて本発明をさらに詳しく説明する
が、本発明はこれに限定されるものではない。"Examples of the Invention" Next, the present invention will be described in more detail based on Examples, but the present invention is not limited thereto.
実施例1
(1)高屈折率コーティング層の形成
500 mflのビーカーに2−プロパツール400g
とチタンブトキシダイマー(三菱瓦斯化学■製、商品名
DBT)20gを加え、密封してマグネチックスクーラ
ーで24時間攪拌してコート液とした。このコート液を
ウレタン樹脂系高屈折率レンズに引き上げ速度20On
+n+/分でデイツプコートし、乾燥させて、屈折率2
.00のコーティング層を光学膜厚λ/2で形成した。Example 1 (1) Formation of high refractive index coating layer 400 g of 2-propertool in a 500 mfl beaker
and 20 g of titanium butoxy dimer (manufactured by Mitsubishi Gas Chemical Company, trade name: DBT) were added, the mixture was sealed, and stirred for 24 hours using a magnetic cooler to obtain a coating liquid. This coating liquid is pulled onto a urethane resin-based high refractive index lens at a speed of 20 On.
Dip coat at +n+/min and dry to a refractive index of 2.
.. A coating layer of No. 00 was formed with an optical thickness of λ/2.
(2)低屈折率コーティング層の形成
式:
%式%)
の含フツ素シリコーン化合物10g、エタノールLog
及び0.01規定塩酸2gを混合して加水分解をした。(2) Formation formula of low refractive index coating layer: 10 g of fluorine-containing silicone compound, ethanol Log
and 2 g of 0.01N hydrochloric acid were mixed to perform hydrolysis.
この加水分解物にむ−ブチルアルコール400gを加え
、さらにM g F 2の超微粒子(住友セメント社製
)Logを加えて混合し、コーティング組成物を得た。400 g of butyl alcohol was added to this hydrolyzate, and further, ultrafine particles of MgF2 (manufactured by Sumitomo Cement Co., Ltd.) Log were added and mixed to obtain a coating composition.
上記の(1)で調製した高屈折率コーティング層を有す
るレンズを上記コーティング組成物中に浸漬し、引き上
げ速度100mm/分の速度で引き上げ、120°Cで
4時間硬化して、屈折率1.41のコーティング層を光
学膜厚λ/4で形成した。The lens having the high refractive index coating layer prepared in (1) above was immersed in the above coating composition, pulled up at a pulling speed of 100 mm/min, and cured at 120°C for 4 hours, with a refractive index of 1. 41 coating layers were formed with an optical thickness of λ/4.
こうして高屈折率コーティング層と低屈折率コーティン
グ層から成る反射防止膜を有するレンズが得られた。In this way, a lens having an antireflection film consisting of a high refractive index coating layer and a low refractive index coating layer was obtained.
実施1例2
(1)高屈折率コーティング層の形成
2−プロパツール400重量部、チタンブトキシダイマ
ー(三菱瓦斯化学Q(1)製、商品名DBT)20重量
部及びエポキシ化合物(長瀬産業(l(1)製、商品名
ブナコールEX146)4.2重量部を加え、密封して
マグネチックスクーラーで24時間攪拌してコート液と
した。このコート液をウレタン樹脂系高屈折率レンズに
実施例1と同様にしてデイツプコートし、乾燥させて屈
折率1.80のコーティング層を光学膜厚λ/2で形成
した。Example 2 (1) Formation of a high refractive index coating layer 2 - 400 parts by weight of propatool, 20 parts by weight of titanium butoxy dimer (manufactured by Mitsubishi Gas Chemical Q(1), trade name: DBT) and an epoxy compound (manufactured by Nagase Sangyo Co., Ltd. (1), product name Bunacol EX146) was added, sealed and stirred for 24 hours using a magnetic cooler to obtain a coating solution.This coating solution was applied to a urethane resin-based high refractive index lens in Example 1. It was dip coated in the same manner as above and dried to form a coating layer with a refractive index of 1.80 and an optical thickness of λ/2.
(2)低屈折率コーティング層の形成
1.3−ジェトキシテトラメチルジシロキサン5重量部
をエタノール10部に溶解させ、0.01規定塩酸1重
量部を加えて加水分解を行った。得られた加水分解物に
N、N−ジメチルホルムアミド100重量部及びも−ブ
チルアルコール200重量部を加え、さらにMgF、超
微粒子(住友セメント社製)10重量部、アルミニウム
アセチルアセトネート0.25重量部及びゾニールF
S N 1゜25重量部を加えて混合し、コーティング
組成物を得た。(2) Formation of low refractive index coating layer 1.5 parts by weight of 3-jethoxytetramethyldisiloxane was dissolved in 10 parts by weight of ethanol, and 1 part by weight of 0.01N hydrochloric acid was added to perform hydrolysis. 100 parts by weight of N,N-dimethylformamide and 200 parts by weight of butyl alcohol were added to the obtained hydrolyzate, and further 10 parts by weight of MgF, ultrafine particles (manufactured by Sumitomo Cement Co., Ltd.), and 0.25 parts by weight of aluminum acetylacetonate were added. Department and Zonyl F
1.25 parts by weight of S N was added and mixed to obtain a coating composition.
上記の(1)で調製した高屈折率コーティング層を有す
るレンズに上記コーティング組成物を用いて屈折率1.
42の低屈折率層を光学膜厚λ/4で形成した。The above coating composition was used on the lens having the high refractive index coating layer prepared in (1) above, and the refractive index was 1.
42 low refractive index layers were formed with an optical thickness of λ/4.
こうして高屈折率コーティング層と低屈折率コーティン
グ層から成る反射防止膜を有するレンズが得られた。In this way, a lens having an antireflection film consisting of a high refractive index coating layer and a low refractive index coating layer was obtained.
実施例3
(1)高屈折率コーティング層の形成
チタニアゾル(4,5%エタノール溶液)450重量部
をビーカーに入れ、密封してマグネチンクスクーラーで
24時間撹拌してコート液とした。Example 3 (1) Formation of high refractive index coating layer 450 parts by weight of titania sol (4.5% ethanol solution) was placed in a beaker, sealed and stirred for 24 hours using a magnetic cooler to obtain a coating liquid.
このコート液をウレタン樹脂系高屈折率レンズに引き上
げ速度200mm/分でデイツプコートし、乾燥させて
、屈折率2.06の高屈折率コーティング層を光学膜厚
λ/2で形成した。This coating liquid was dip-coated onto a urethane resin-based high refractive index lens at a lifting speed of 200 mm/min and dried to form a high refractive index coating layer with a refractive index of 2.06 and an optical thickness of λ/2.
(2)低屈折率コーティング層の形成
式
%式%)
の含フツ素シリコーン化合物5重量部、エタノール5重
量部及び0.01規定塩酸1重量部を混合して加水分解
を行った。この加水分解物、テトラエトキシシラン5重
量部をエタノール5重量部及び0.01規定塩酸2.5
重量部と混合して加水分解した加水分解物、M g F
z超微粒子5型景部、アルミニウムアセチルアセトネ
ート1.0重量部及びゾニールF S N 1.25重
量部を混合し、実施例2と同様の溶媒中に分散してコー
ティング組成物を得た。(2) Formation formula of low refractive index coating layer (%) 5 parts by weight of a fluorine-containing silicone compound, 5 parts by weight of ethanol, and 1 part by weight of 0.01N hydrochloric acid were mixed and hydrolyzed. This hydrolyzate, 5 parts by weight of tetraethoxysilane, 5 parts by weight of ethanol and 2.5 parts by weight of 0.01N hydrochloric acid.
Hydrolyzate mixed with parts by weight and hydrolyzed, M g F
A coating composition was obtained by mixing Z ultrafine particles 5 types, 1.0 parts by weight of aluminum acetylacetonate, and 1.25 parts by weight of Zonyl F S N and dispersing the mixture in the same solvent as in Example 2.
上記の(1)で調製した高屈折率コーティング層を有す
るレンズに上記コーティング組成物を用いて屈折率1.
41の低屈折率層を光学膜厚λ/4で形成した。The above coating composition was used on the lens having the high refractive index coating layer prepared in (1) above, and the refractive index was 1.
41 low refractive index layers were formed with an optical thickness of λ/4.
こうして高屈折率コーティング層と低屈折率コーティン
グ層から成る反射防止膜を存するレンズが得られた。In this way, a lens having an antireflection film consisting of a high refractive index coating layer and a low refractive index coating layer was obtained.
実施例4
(1)高屈折率コーティング層の形成
テトラブトキシチタン30重量部を0.01規定塩酸6
重量部及びエタノール100重量部と混合して加水分解
し、さらにエポキシ化合物(長瀬産業■製、商品名ブナ
コールEX920)10重量部、0.01規定塩酸2重
量部、L−ブチルアルコール100重量部及びN、N−
ジメチルホルムアミド100重量部を加えてコート液と
した。このコート液を実施例1と同様にウレタン樹脂系
高屈折率レンズにデイツプコートし、乾燥して屈折率1
.9のコーティング層を光学膜厚λ/2で形成した。Example 4 (1) Formation of high refractive index coating layer 30 parts by weight of tetrabutoxy titanium was mixed with 6 parts by weight of 0.01N hydrochloric acid.
parts by weight and 100 parts by weight of ethanol for hydrolysis, and further mixed with 10 parts by weight of an epoxy compound (manufactured by Nagase Sangyo ■, trade name Bunacol EX920), 2 parts by weight of 0.01N hydrochloric acid, 100 parts by weight of L-butyl alcohol, and 100 parts by weight of L-butyl alcohol. N, N-
100 parts by weight of dimethylformamide was added to prepare a coating liquid. This coating liquid was dip coated on a urethane resin-based high refractive index lens in the same manner as in Example 1, and dried to give a refractive index of 1.
.. A coating layer No. 9 was formed with an optical thickness of λ/2.
(2)低屈折率コーティング層の形成
式
%式%):
の含フツ素シリコーン化合物5重量部、エタノール5重
量部及び0.01規定塩酸1重量部を混合して加水分解
を行った。(2) Formation formula of low refractive index coating layer (%): 5 parts by weight of the fluorine-containing silicone compound, 5 parts by weight of ethanol, and 1 part by weight of 0.01N hydrochloric acid were mixed and hydrolyzed.
別に、式
%式%)
をエタノール5重量部及び0.01規定塩酸0.5重量
部、を混合して加水分解を行った。これらの加水分解物
にシリカゲル10重量部及びゾニール界面活性剤1.2
5重量部を加え、実施例2と同様の溶媒中に分散してコ
ーティング組成物を得た。Separately, 5 parts by weight of ethanol and 0.5 parts by weight of 0.01N hydrochloric acid were mixed to perform hydrolysis. 10 parts by weight of silica gel and 1.2 parts of Zonyl surfactant were added to these hydrolysates.
5 parts by weight were added and dispersed in the same solvent as in Example 2 to obtain a coating composition.
上記の(1)で調製した高屈折率コーティング層を有す
るレンズに上記コーティング組成物を用いて屈折率1.
42の低屈折率層を光学膜厚λ/4で形成した。The above coating composition was used on the lens having the high refractive index coating layer prepared in (1) above, and the refractive index was 1.
42 low refractive index layers were formed with an optical thickness of λ/4.
こうして高屈折率コーティング層と低屈折率コーティン
グ層から成る反射防止膜を有するレンズが得られた。In this way, a lens having an antireflection film consisting of a high refractive index coating layer and a low refractive index coating layer was obtained.
実施例5
(1)高屈折率コーティング層の形成
アルミニウムブトキシド30重量部をエタノール100
重量部中で0.01規定塩酸9重量部を用いて加水分解
した。また、γ−グリシドキシプロピルメチルジメトキ
シシラン10重量部を0.01規定塩酸2重量部で加水
分解した。両方の加水分解物をも一ブチルアルコール1
00重量部及びN。Example 5 (1) Formation of high refractive index coating layer 30 parts by weight of aluminum butoxide was mixed with 100 parts by weight of ethanol.
Hydrolysis was carried out using 9 parts by weight of 0.01N hydrochloric acid. Further, 10 parts by weight of γ-glycidoxypropylmethyldimethoxysilane was hydrolyzed with 2 parts by weight of 0.01N hydrochloric acid. Both hydrolysates are also monobutyl alcohol 1
00 parts by weight and N.
N−ジメチルホルムアミド100重量部で希釈してコー
ト液とした。このコート液を実施例1と同様にウレタン
樹脂系高屈折率レンズにデイツプコートし、乾燥して屈
折率1.65のコーティング層を光学膜厚λ/2で形成
した。This was diluted with 100 parts by weight of N-dimethylformamide to obtain a coating solution. This coating solution was dip coated onto a urethane resin-based high refractive index lens in the same manner as in Example 1, and dried to form a coating layer with a refractive index of 1.65 and an optical thickness of λ/2.
(2)低屈折率コーティング層の形成
1.3−ジェトキシテトラメチルジシロキサン5重量部
をエタノール10重量部に溶解させ、0.01規定塩酸
1重量部を加えて加水分解を行った。得られた加水分解
物にN、N−ジメチルホルムアミド100重量部及びも
−ブチルアルコール200重量部を加え、さらにMgF
2超微粒子(住友セメント社製)10重量部、アルミニ
ウムアセチルアセトネート0.25重量部及びゾニール
FSN 1.25重量部を加えて混合し、コーティング
組成物を得た。(2) Formation of low refractive index coating layer 1.5 parts by weight of 3-jethoxytetramethyldisiloxane was dissolved in 10 parts by weight of ethanol, and 1 part by weight of 0.01N hydrochloric acid was added to perform hydrolysis. 100 parts by weight of N,N-dimethylformamide and 200 parts by weight of butyl alcohol were added to the obtained hydrolyzate, and further MgF
10 parts by weight of ultrafine particles (manufactured by Sumitomo Cement Co., Ltd.), 0.25 parts by weight of aluminum acetylacetonate, and 1.25 parts by weight of Zonyl FSN were added and mixed to obtain a coating composition.
上記の(1)で調製した高屈折率コーティング層を有す
るレンズに上記コーティング組成物を用いて屈折率1.
42の低屈折率層を光学膜厚λ/4で形成した。The above coating composition was used on the lens having the high refractive index coating layer prepared in (1) above, and the refractive index was 1.
42 low refractive index layers were formed with an optical thickness of λ/4.
こうして高屈折率コーティング層と低屈折率コーティン
グ層から成る反射防止膜を有するレンズが得られた。In this way, a lens having an antireflection film consisting of a high refractive index coating layer and a low refractive index coating layer was obtained.
実施例6
テトラn−ブトキシジルコニウム30重量部をエタノー
ル100重量部中で0.01規定塩酸9重量部を用いて
加水分解した。また、T−グリシドキシプロビルトリメ
トキシシラン20重量部を0.01規定塩酸4重量部で
加水分解した。両方の加水分解物をも一ブチルアルコー
ル100重Ft部及びN、 N−ジメチルホルムアミド
100重量部で希釈し、さらにゾニールFSN1.25
部を加えてコート液とした。このコート液を実施例1と
同様にウレタン樹脂系高屈折率レンズにデイツプコート
し、乾燥して屈折率1.9の高屈折率コーティング層を
光学膜厚λ/2で形成した。Example 6 30 parts by weight of tetra n-butoxyzirconium was hydrolyzed in 100 parts by weight of ethanol using 9 parts by weight of 0.01N hydrochloric acid. Further, 20 parts by weight of T-glycidoxypropyltrimethoxysilane was hydrolyzed with 4 parts by weight of 0.01N hydrochloric acid. Both hydrolysates were also diluted with 100 parts by weight of monobutyl alcohol and 100 parts by weight of N,N-dimethylformamide and further diluted with Zonyl FSN 1.25 parts by weight.
A coating solution was prepared by adding 50% of the solution. This coating liquid was dip-coated onto a urethane resin-based high refractive index lens in the same manner as in Example 1, and dried to form a high refractive index coating layer with a refractive index of 1.9 and an optical thickness of λ/2.
得られた高屈折率コーティング層を有するレンズに上記
の実施例1の(2)で調整したコーティング組成物を用
いて屈折率1.42の低屈折率層を光学膜厚λ/4で形
成した。A low refractive index layer with a refractive index of 1.42 and an optical thickness of λ/4 was formed on the obtained lens having a high refractive index coating layer using the coating composition prepared in (2) of Example 1 above. .
こうして高屈折率コーティング層と低屈折率コーティン
グ層から成る反射防止膜を有するレンズが得られた。In this way, a lens having an antireflection film consisting of a high refractive index coating layer and a low refractive index coating layer was obtained.
実施例7
テトラn−ブトキシセリウム30重量部をエタノール1
00重量部中で0.01規定塩酸6重量部を用いて加水
分解した。また、γ−グリシドキシプロビルメチルジメ
トキシシラン20重量部を0、O11規定塩酸4量部で
加水分解した。両方の加水分解物をt−ブチルアルコー
ル100重量部及びN、N−ジメチルホルムアミド10
0重量部で希釈し、さらにゾニールF S N 1.2
5重量部を加えてコート液とした。このコート液を実施
例1と同様にウレタン樹脂系高屈折率レンズにデイツプ
コートし、乾燥して屈折率1.9の高屈折率コーティン
グ層を光学膜厚λ/2で形成した。Example 7 30 parts by weight of tetra n-butoxycerium was added to 1 part by weight of ethanol.
Hydrolysis was carried out using 6 parts by weight of 0.01N hydrochloric acid in 0.00 parts by weight. Further, 20 parts by weight of γ-glycidoxypropylmethyldimethoxysilane was hydrolyzed with 4 parts by weight of 0,011 normal hydrochloric acid. Both hydrolysates were mixed with 100 parts by weight of t-butyl alcohol and 10 parts by weight of N,N-dimethylformamide.
0 parts by weight and further diluted with Zonyl F S N 1.2
5 parts by weight was added to prepare a coating liquid. This coating liquid was dip-coated onto a urethane resin-based high refractive index lens in the same manner as in Example 1, and dried to form a high refractive index coating layer with a refractive index of 1.9 and an optical thickness of λ/2.
得られた高屈折率コーティング層を有するレンズに上記
の実施例4の(2)で調整したコーティング組成物を用
いて屈折率1.41の低屈折率層を光学膜厚λ/4で形
成した。A low refractive index layer with a refractive index of 1.41 and an optical thickness of λ/4 was formed on the obtained lens having a high refractive index coating layer using the coating composition prepared in (2) of Example 4 above. .
こうして高屈折率コーティング層と低屈折率コーティン
グ層から成る反射防止膜を有するレンズが得られた。In this way, a lens having an antireflection film consisting of a high refractive index coating layer and a low refractive index coating layer was obtained.
「発明の効果」
本発明による反射防止膜は、レンズ等の透明基板上に施
すと、グリーンで優れた反射防止効果を達成することが
できる。また、本発明による反射防止膜は、有機シリコ
ーン化合物を含むものであるため、反射防止膜を付けた
後にレンズを染色することができ、店頭染色を行うこと
も可能である。"Effects of the Invention" When the antireflection film according to the invention is applied on a transparent substrate such as a lens, it can achieve a green and excellent antireflection effect. Further, since the antireflection film according to the present invention contains an organic silicone compound, the lens can be dyed after the antireflection film has been applied, and it is also possible to perform over-the-counter dyeing.
さらに、有機シリコーン化合物として、含フッ素シリコ
ーン化合物を用いたものは、撥水性及び防汚性において
も優れている。Furthermore, those using a fluorine-containing silicone compound as the organic silicone compound are also excellent in water repellency and stain resistance.
特許出願人 旭光学工業株式会社Patent applicant: Asahi Optical Industry Co., Ltd.
Claims (1)
屈折率コーティング層と低屈折率の金属化合物の超微粒
子と有機シリコーン化合物を主成分とする1層の低屈折
率コーティング層とから成ることを特徴とする染色可能
な反射防止膜。 2、高屈折率の金属化合物がチタン化合物、ジルコニウ
ム化合物、アルミニウム化合物あるいはセリウム化合物
である請求項1記載の染色可能な反射防止膜。 3、高屈折率の金属化合物が酸化物、アルコキシド、ア
ルコキシドのポリマー、トリエタノールアミンキレート
、アセチルアセトネートキレート等である請求項2記載
の染色可能な反射防止膜。[Claims] 1. One or more high refractive index coating layers mainly composed of a metal compound with a high refractive index, and one layer mainly composed of ultrafine particles of a metal compound with a low refractive index and an organic silicone compound. A dyeable antireflection film comprising a low refractive index coating layer. 2. The dyeable antireflection film according to claim 1, wherein the metal compound having a high refractive index is a titanium compound, a zirconium compound, an aluminum compound or a cerium compound. 3. The dyeable antireflection film according to claim 2, wherein the high refractive index metal compound is an oxide, an alkoxide, an alkoxide polymer, triethanolamine chelate, acetylacetonate chelate, or the like.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63270199A JPH02116543A (en) | 1988-10-26 | 1988-10-26 | Dyeable anti-reflective coating |
KR1019890015447A KR940002686B1 (en) | 1988-10-26 | 1989-10-26 | High strength, high toughness Cu base sintered alloy with excellent wear resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63270199A JPH02116543A (en) | 1988-10-26 | 1988-10-26 | Dyeable anti-reflective coating |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02116543A true JPH02116543A (en) | 1990-05-01 |
Family
ID=17482911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63270199A Pending JPH02116543A (en) | 1988-10-26 | 1988-10-26 | Dyeable anti-reflective coating |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH02116543A (en) |
KR (1) | KR940002686B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5770306A (en) * | 1995-03-09 | 1998-06-23 | Dai Nippon Printing Co., Ltd. | Antireflection film containing ultrafine particles, polarizing plate and liquid crystal display device |
US5851674A (en) * | 1997-07-30 | 1998-12-22 | Minnesota Mining And Manufacturing Company | Antisoiling coatings for antireflective surfaces and methods of preparation |
US6277485B1 (en) | 1998-01-27 | 2001-08-21 | 3M Innovative Properties Company | Antisoiling coatings for antireflective surfaces and methods of preparation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101849650B1 (en) * | 2017-01-26 | 2018-04-18 | 충남대학교산학협력단 | Method of manufacturing a bi-layered friction machine parts made of selective internal oxidation copper alloy |
-
1988
- 1988-10-26 JP JP63270199A patent/JPH02116543A/en active Pending
-
1989
- 1989-10-26 KR KR1019890015447A patent/KR940002686B1/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5770306A (en) * | 1995-03-09 | 1998-06-23 | Dai Nippon Printing Co., Ltd. | Antireflection film containing ultrafine particles, polarizing plate and liquid crystal display device |
US6033743A (en) * | 1995-03-09 | 2000-03-07 | Dai Nippon Printing Co., Ltd. | Antireflection film containing ultrafine particles, polarizing plate and liquid crystal display device |
US5851674A (en) * | 1997-07-30 | 1998-12-22 | Minnesota Mining And Manufacturing Company | Antisoiling coatings for antireflective surfaces and methods of preparation |
US6277485B1 (en) | 1998-01-27 | 2001-08-21 | 3M Innovative Properties Company | Antisoiling coatings for antireflective surfaces and methods of preparation |
Also Published As
Publication number | Publication date |
---|---|
KR940002686B1 (en) | 1994-03-30 |
KR900006547A (en) | 1990-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5096626A (en) | Process of molding a coated plastic lens | |
JP3133357B2 (en) | Coating composition for forming high-refractive-index abrasion-resistant film and molded article using the composition | |
KR100914766B1 (en) | Low-Refractive Coating Composition and Low-Refractive Coating Film Using The Sames | |
JPH11310755A (en) | Coating composition and laminate | |
EP0119331A1 (en) | Transparent material having antireflective coating | |
JPH05264805A (en) | Coating composition and plastic lens using the same | |
JPH049281B2 (en) | ||
JPH052102A (en) | Hard coat film and base material with hard coat film | |
JPH02116543A (en) | Dyeable anti-reflective coating | |
JPS6321601A (en) | Antireflection article and its production | |
JPH0625600A (en) | Hard-coat composition applicable by spin-coating | |
JP2001163906A (en) | Low refractive index composition, low refractive index film, optical multilayer film and antireflection film | |
JPH0625599A (en) | Antireflection composition capable of spin coating | |
JPH11211901A (en) | Antireflection article | |
JP2684364B2 (en) | High refractive index coating film | |
JPH10168389A (en) | Hard coating composition | |
TWI301847B (en) | Composition comprising a hydrolyzable organosilicon compound and coating obtained from the same | |
JPS5852601A (en) | Synthetic resin lens | |
JP2696829B2 (en) | High refractive index coating film and method of manufacturing the same | |
JPH01275130A (en) | Low reflection transparent molded piece | |
JP2002069426A (en) | Low refractive index composition and optical multilayer film comprising the composition | |
JP3220906B2 (en) | Composition for coating | |
JPS6221030B2 (en) | ||
JP2003292896A (en) | Coating composition and laminate | |
JPS60203679A (en) | Preparation of transparent material preventing reflection |