JPH021155A - semiconductor equipment - Google Patents
semiconductor equipmentInfo
- Publication number
- JPH021155A JPH021155A JP1038758A JP3875889A JPH021155A JP H021155 A JPH021155 A JP H021155A JP 1038758 A JP1038758 A JP 1038758A JP 3875889 A JP3875889 A JP 3875889A JP H021155 A JPH021155 A JP H021155A
- Authority
- JP
- Japan
- Prior art keywords
- poly
- film
- wiring
- electrode
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 32
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 85
- 239000012535 impurity Substances 0.000 claims description 61
- 230000015654 memory Effects 0.000 claims description 24
- 238000003860 storage Methods 0.000 claims description 11
- 238000009792 diffusion process Methods 0.000 description 20
- 239000003990 capacitor Substances 0.000 description 17
- 239000000758 substrate Substances 0.000 description 14
- 230000006866 deterioration Effects 0.000 description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 229910052698 phosphorus Inorganic materials 0.000 description 9
- 239000011574 phosphorus Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 230000002950 deficient Effects 0.000 description 7
- 229910052785 arsenic Inorganic materials 0.000 description 6
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 108010075750 P-Type Calcium Channels Proteins 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- NEPLKJAINOWIJL-DHNNRRLOSA-N dnc014884 Polymers C1C2=CC3=CC=CC=C3N2[C@@]2(C)[C@@H]1[C@@]1(C)CCC(=O)C(C)(C)[C@@H]1CC2 NEPLKJAINOWIJL-DHNNRRLOSA-N 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- OZJHCMYAXLCFKU-UHFFFAOYSA-N Polyavolensinone Natural products CC1(C)C2CCC3n4c(CC3(C)C2(C)CCC1=O)cc5ccccc45 OZJHCMYAXLCFKU-UHFFFAOYSA-N 0.000 description 1
- 229910005091 Si3N Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔概 要〕
多結晶シリコンの電極又は配線が極めて薄い絶縁膜に接
した構造を有する半導体装置に関し、高集積化する際に
、闇値の変動やゲート耐圧の劣化等の不良の発生を防ぐ
ことを防ぐことを目的とし、
複数種類の厚さを有する絶縁膜と、該絶縁膜上に延在す
る多結晶シリコン膜の電極又は配線を有し、前記絶縁膜
のうち少なくとも最小の膜厚を有する絶縁膜に接する部
分の多結晶シリコン膜が他の部分の多結晶シリコン膜に
比べて低濃度の不純物を含んだ半導体装置を構成し、或
いは蓄積電極上に誘電体膜、対向電極が積層されてなる
メモリセル容量を有するダイナミックメモリセルを具備
し、前記対向電極は多結晶シリコン膜よりなり、その不
純物濃度が他の電極又は配線を構成する多結晶シリコン
膜の不純物濃度よりも低い半導体装置を構成する。[Detailed Description of the Invention] [Summary] Regarding a semiconductor device having a structure in which a polycrystalline silicon electrode or wiring is in contact with an extremely thin insulating film, when increasing the degree of integration, fluctuations in dark value, deterioration of gate breakdown voltage, etc. In order to prevent the occurrence of defects in The polycrystalline silicon film in the part of the polycrystalline silicon film in contact with the insulating film having at least the minimum film thickness contains a lower concentration of impurities than the other parts of the polycrystalline silicon film, or a dielectric film is formed on the storage electrode. , a dynamic memory cell having a memory cell capacity formed by stacking opposing electrodes, wherein the opposing electrode is made of a polycrystalline silicon film, and the impurity concentration thereof is equal to the impurity concentration of the polycrystalline silicon film constituting another electrode or wiring. Construct a semiconductor device with a lower cost than the above.
本発明は半導体装置、特に多結晶シリコンの電極又は配
線が極めて薄い絶縁膜に接した構造を有する半導体装置
の改良に関する。The present invention relates to improvements in semiconductor devices, particularly semiconductor devices having a structure in which polycrystalline silicon electrodes or wiring are in contact with an extremely thin insulating film.
LSI等のMIS型半導体装置においては、素子の微細
化と共に二酸化シリコン(Si02)膜等のゲート絶縁
膜も薄膜化の一途をたどっている。In MIS type semiconductor devices such as LSIs, gate insulating films such as silicon dioxide (Si02) films are becoming thinner and thinner as elements become smaller.
このゲート絶縁膜の薄膜化が100人を下回り例えば5
0人程度になると、該MIS半導体装置に、闇値の変動
、ゲート耐圧の劣化等の特性の変動及び劣化を生ずるよ
うになるので、その改善が要望されている。The thinning of this gate insulating film is less than 100 people, for example, 5
When the number of MIS semiconductor devices decreases to about 0, the characteristics of the MIS semiconductor device begin to fluctuate and deteriorate, such as fluctuations in dark values and deterioration in gate withstand voltage, so improvements are desired.
〔従来の技術]
MIS型半導体装置のゲート電極を含む下層の電極又は
配線の材料には、多結晶シリコン(ポリSi)が多く用
いられるが、従来酸ポリSiよりなる電極配線は、配線
抵抗を減少させるために全体が均一な高不純物濃度に形
成されていた。これは、スタックド型のダイナミックメ
モリセルに於いても同様であり、メモリセル容量の対向
電極を構成する多結晶シリコン膜には、他の電極又は配
線を構成する多結晶シリコン膜と同様に抵抗を極力下げ
る為にその不純物濃度は高濃度とされていた。[Prior Art] Polycrystalline silicon (poly-Si) is often used as the material for lower-layer electrodes or wiring including gate electrodes in MIS semiconductor devices, but conventional electrode wiring made of acid poly-Si has low wiring resistance. In order to reduce the impurity concentration, the entire structure was formed to have a uniform high impurity concentration. This also applies to stacked dynamic memory cells, and the polycrystalline silicon film that forms the counter electrode of the memory cell capacitor has a resistance similar to the polycrystalline silicon film that forms the other electrodes or wiring. The impurity concentration was set to be high in order to reduce it as much as possible.
かかるポリSi電極又は配線を有する従来のMIS型半
導体装置において、闇値の変動及びゲート耐圧の劣化を
生ずる原因として、前述したゲート電極内の不純物のゲ
ート絶縁膜例えばゲートSin。In conventional MIS type semiconductor devices having such poly-Si electrodes or interconnections, the above-mentioned impurities in the gate insulating film, such as gate Sin, in the gate electrode cause fluctuations in the dark value and deterioration of the gate breakdown voltage.
膜内或いはゲートSiO□膜を通して基板内への拡散が
考えられる。Diffusion into the substrate through the film or the gate SiO□ film is considered.
5iOz中には不純物が拡散しにくいとはいってもゲー
ト電極形成後の熱処理によってゲー) 5iOz膜中に
多少なりとも拡散して行くことは避けられない事実であ
る。Even though it is difficult for impurities to diffuse into the 5iOz film, it is an unavoidable fact that they will diffuse to some extent into the 5iOz film due to heat treatment after forming the gate electrode.
この拡散不純物は第5図の不純物濃度プロファイルのよ
うに、ゲート5iOz膜中に指数関数的に減少する濃度
分布をとって拡散し、この拡散領域は熱処理の温度、時
間、雰囲気等に依存し一義的には決まらないものの、何
れにしても有限の値で存在する。This diffused impurity diffuses into the gate 5iOz film with a concentration distribution that decreases exponentially, as shown in the impurity concentration profile in Figure 5, and this diffusion region depends on the temperature, time, atmosphere, etc. of the heat treatment, and has a unique Although it is not determined exactly, it exists with a finite value in any case.
なお第5図において縦軸1ogCは対数で示した不純物
濃度、横軸tは深さ、ポリSiはポリSiゲート電極内
部、SiO□はゲートSin、膜内部、SはポリSiゲ
ート電極とゲー) SiO□膜との界面、Ct 、Cz
は不純物の濃度分布を示す。In Fig. 5, the vertical axis 1ogC is the impurity concentration expressed in logarithms, the horizontal axis t is the depth, poly-Si is inside the poly-Si gate electrode, SiO□ is the gate Sin, inside the film, and S is the poly-Si gate electrode and gate). Interface with SiO□ film, Ct, Cz
indicates the concentration distribution of impurities.
例えば上記拡散領域の深さが20人程度であったとすれ
ば、従来用いられていた200〜300人程度のゲー程
度5iOz膜厚ではその10%以下であってそれ捏持性
に悪影響を及ぼさなかったものが、素子の微細化が進ん
でゲートSiO2膜厚が50人程度にまで薄膜化されて
くると、上記拡散法さがゲートSi0g膜厚の40%程
度の高い比率を占めるために、闇値電圧の変動、ゲート
耐圧の低下等、トランジスタ特性に重大な影響を与える
ようになる。For example, if the depth of the diffusion region is about 20, the thickness of the conventionally used 5 iOz film, which is about 200 to 300, is less than 10% of that and does not have a negative effect on the kneading properties. However, as device miniaturization progresses and the gate SiO2 film thickness is reduced to about 50%, the diffusion method described above accounts for a high proportion of about 40% of the gate Si0g film thickness, and the This has a serious effect on transistor characteristics, such as fluctuations in value voltage and reduction in gate breakdown voltage.
一方該半導体装置においては高集積度になる程配線の長
さが大きくなり且つ配線幅も縮小されて配線抵抗が増大
し、動作の遅延が問題になってくる。On the other hand, in the semiconductor device, as the degree of integration increases, the length of the wiring becomes longer and the width of the wiring becomes smaller, increasing the wiring resistance and causing a problem of operation delay.
そのためポリSiを電極、配線、例えばゲート電極にポ
リSiを用いる時には、その不純物濃度を増大させるこ
とによって配線抵抗の減少が図られるが、この場合ゲー
ト電極を含むポリSi電極配線全体が均一な不純物濃度
に形成されていた従来のMIS型半導体装置においては
、前記ポリSi層からの不純物の拡散によってゲート5
iOz膜中に形成される不純物拡散領域の深さが増して
、より一層前記特性の変動及び劣化を招くことが避けら
れなくなることが考えられる。更に本発明者等の実験に
よると、メモリセル容量の対向電極をポリSiで構成し
たスタックド型ダイナミックメモリセルに於いては、微
細化の為に容量形成用絶縁膜を薄くしていくと電極間の
短絡等の不良の発生率が上昇することが確認された。Therefore, when poly-Si is used for electrodes and wiring, such as gate electrodes, the wiring resistance can be reduced by increasing its impurity concentration, but in this case, the entire poly-Si electrode wiring including the gate electrode is uniformly impurity In the conventional MIS type semiconductor device, which is formed with a high concentration, the gate 5 is formed by diffusion of impurities from the poly-Si layer.
It is conceivable that as the depth of the impurity diffusion region formed in the iOz film increases, further fluctuations and deterioration of the characteristics will inevitably occur. Furthermore, according to experiments conducted by the present inventors, in a stacked dynamic memory cell in which the opposing electrode of the memory cell capacitor is made of poly-Si, as the insulating film for forming the capacitor is made thinner for miniaturization, the gap between the electrodes becomes smaller. It was confirmed that the incidence of defects such as short circuits increased.
そこで本発明は、ポリSi電極/配線下に薄い絶縁膜を
有する構造のMIS型半導体装置を高集積化する際に、
闇値の変動やゲート耐圧の劣化等の不良の発生を防ぐこ
とを防ぐことを目的とする。Therefore, the present invention aims to achieve high integration of a MIS type semiconductor device having a thin insulating film under a poly-Si electrode/wiring.
The purpose is to prevent the occurrence of defects such as fluctuations in dark values and deterioration of gate breakdown voltage.
上記課題は、複数種類の厚さを有する絶縁膜と、該絶縁
膜上に延在する多結晶シリコン膜の電極又は配線を有し
、前記絶縁膜のうち少なくとも最小の膜厚を有する絶縁
膜に接する部分の多結晶シリコン膜が他の部分の多結晶
シリコン膜に比べて低濃度の不純物を含んでなることを
特徴とする半導体装置、
蓄積電極上に誘電体膜、対向電極が積層されてなるメモ
リセル容量を有するダイナミックメモリセルを具備し、
前記対向電極は多結晶シリコン膜よりなり、その不純物
濃度が他の電極又は配線を構成する多結晶シリコン膜の
不純物濃度よりも低いことを特徴とする半導体装置によ
って解決される。The above problem has an insulating film having a plurality of thicknesses, an electrode or wiring of a polycrystalline silicon film extending on the insulating film, and an insulating film having at least the minimum thickness among the insulating films. A semiconductor device characterized in that a polycrystalline silicon film in a contacting part contains a lower concentration of impurities than the polycrystalline silicon film in other parts, and a dielectric film and a counter electrode are laminated on a storage electrode. comprising a dynamic memory cell having a memory cell capacity;
The problem is solved by a semiconductor device characterized in that the counter electrode is made of a polycrystalline silicon film, and its impurity concentration is lower than the impurity concentration of the polycrystalline silicon film constituting other electrodes or wiring.
即ち本発明は素子を微細化すると、ポリSi中の不純物
濃度とその下の絶縁膜の厚さとの関係が素子の不良発生
率に大きく影響することを見出し、半導体装置に配設さ
れるポリSi電極又は配線からの不純物の拡散によって
素子特性が劣化するような極端に薄い絶縁膜上に配設さ
れて、例えばゲート電極等として機能する部分は、導入
する不純物の濃度を減少させ不純物の絶縁膜内への拡散
深さを浅くして咳薄い絶縁膜の変質による素子特性の変
動劣化を防止し、且つ不純物の拡散による性能劣化が顕
著に現れないような厚い絶縁膜上延在せしめられて配線
として機能する部分は、不純物を高濃度に導入して低抵
抗化し、これによって配線抵抗の減少を図る。更にダイ
ナミックメモリセルのスタットクキャパシタに於いて極
めて薄い絶縁膜に接する対向電極を構成するポリSi中
の不純物濃度を他の配線部分のポ’JSi注の不純物濃
度よりも低くすることで絶縁膜に加わる゛メカニカルス
トレスを減少させてメモリセル容量の不良発生率を下げ
る。That is, the present invention has found that when devices are miniaturized, the relationship between the impurity concentration in poly-Si and the thickness of the underlying insulating film has a large effect on the failure rate of the device. In areas that are disposed on an extremely thin insulating film where device characteristics may deteriorate due to the diffusion of impurities from electrodes or wiring, and which function as, for example, gate electrodes, the concentration of introduced impurities is reduced and the impurity-containing insulating film is The depth of the inward diffusion is made shallow to prevent fluctuations and deterioration of element characteristics due to deterioration of the thin insulating film, and the wiring is extended over a thick insulating film so that performance deterioration due to impurity diffusion does not appear noticeably. Impurities are introduced at a high concentration into the portions that function as a wire to lower the resistance, thereby reducing the wiring resistance. Furthermore, in the static capacitor of the dynamic memory cell, the impurity concentration in the poly-Si, which constitutes the counter electrode in contact with the extremely thin insulating film, is lower than the impurity concentration in the poly-Si in other wiring parts. Reduces the mechanical stress applied and lowers the failure rate of memory cell capacity.
かくて安定したトランジスタ特性を有し、且つ高動作速
度を有する信頼性の高い高集積度のMIS型半導体装置
が形成される。In this way, a highly reliable and highly integrated MIS type semiconductor device having stable transistor characteristics and high operating speed is formed.
以下本発明を、図示実施例により具体的に説明する。 The present invention will be specifically explained below with reference to illustrated embodiments.
第1図は本発明の第1の実施例の模式平面図(a)及び
A−A矢視模式断面図(b)、第2図(a)〜(d)は
同第1の実施例の形成方法の一例を示す工程断面図、第
3図は本発明の第2の実施例の模式平面図(a)及びA
−A矢視模式断面図(ト))、第4図(a)〜(C)は
同第2の実施例の形成方法の一例を示す工程断面図であ
る。FIG. 1 is a schematic plan view (a) and a schematic cross-sectional view taken along the line A-A of the first embodiment of the present invention (b), and FIGS. A process sectional view showing an example of the forming method, FIG. 3 is a schematic plan view (a) and A of the second embodiment of the present invention.
-A schematic cross-sectional view (g)) and FIGS. 4(a) to (C) are process cross-sectional views showing an example of the forming method of the second embodiment.
全図を通じ同一対象物は同一符合で示す。Identical objects are indicated by the same reference numerals throughout the figures.
第1図に示される第1の実施例は、本発明に係るポリS
i電極配線を1層のポリ5iJiから作り分ける例であ
る。A first embodiment shown in FIG.
This is an example in which i-electrode wiring is made separately from one layer of poly 5iJi.
第1図において、■はp−型Si基板、2はフィールド
SiO□膜、3はp型チャネルストッパ、4A、4Bは
第1、第2のトランジスタ(Tr)形成領域、5はゲー
)SiOx膜、6はコンタクト窓、7は同一層のポリS
iパターン、7A+ 、7A2は前記ポリSiパターン
7から形成した例えば600Ω/ロ程度の高シート抵抗
を有する低不純物(燐または砒素)濃度のn−型ゲート
電極部、7B、7B+ 、78z 、7B3は前記ポリ
Siパターン7よりなる例えば25Ω/口程度の低シー
ト抵抗を有する高不純物(燐または砒素)濃度のn゛型
型線線部8A、8B、8C18Dは第1、第2、第3、
第4のn2型ソース/ドレイン(S/D) ?fI域を
示す。In FIG. 1, ■ is a p-type Si substrate, 2 is a field SiO□ film, 3 is a p-type channel stopper, 4A and 4B are first and second transistor (Tr) formation regions, and 5 is a silicon dioxide film. , 6 is a contact window, 7 is a poly-S in the same layer.
The i pattern, 7A+, 7A2 is an n-type gate electrode portion with a low impurity (phosphorus or arsenic) concentration and has a high sheet resistance of, for example, about 600 Ω/R formed from the poly-Si pattern 7, and 7B, 7B+, 78z, 7B3 are The n-type wire portions 8A, 8B, 8C18D of high impurity (phosphorus or arsenic) concentration and having a low sheet resistance of, for example, about 25 Ω/hole and made of the poly-Si pattern 7 are first, second, third,
Fourth n2 type source/drain (S/D)? The fI region is shown.
この実施例に示されるMIS型半導体装置においては、
ポリSi層よりなり、低不純物濃度を有してゲートSi
O□膜5中への不純物の拡散が制限されるゲート電極部
?AI 、7^2等と、高不純物濃度で低抵抗を有する
配線部7B、7B、 、78z 、7B、等とが一体の
ポリSi電極配線内に作り分けられる。In the MIS type semiconductor device shown in this example,
Consisting of a poly-Si layer with a low impurity concentration, the gate Si
Gate electrode portion where diffusion of impurities into the O□ film 5 is restricted? AI, 7^2, etc., and wiring portions 7B, 7B, 78z, 7B, etc. having high impurity concentration and low resistance are separately formed in an integrated poly-Si electrode wiring.
この実施例の構造は、以下に第2図(a)〜(d)及び
第1図を参照し一例について説明する製造方法によって
容易に形成される。The structure of this embodiment is easily formed by the manufacturing method described below by way of example with reference to FIGS. 2(a)-(d) and FIG.
第2図(a)参照
先ず通常の方法により第1、第2のトランジスタ形成領
域4A及び4Bを表出し、下部にp型チャネルストッパ
3を有するフィールドSiO□膜2をp型St基板1面
に形成し、次いで第1、第2のトランジスタ形成領域4
A及び4B上に熱酸化により50人程度の厚さのゲー)
SiO□膜5を形成する。Refer to FIG. 2(a). First, the first and second transistor formation regions 4A and 4B are exposed by a conventional method, and a field SiO□ film 2 having a p-type channel stopper 3 at the bottom is formed on the p-type St substrate 1. Then, first and second transistor formation regions 4 are formed.
A thickness of about 50 layers is formed by thermal oxidation on A and 4B)
A SiO□ film 5 is formed.
第2図[有])参照
次いでS/Dコンタクトをとる9A、 9B等の領域上
のゲートSin、膜5を通常のフォトリソグラフィ手段
により選択的に除去しコンタクト窓6を形成した後、C
VD法により該基板上に厚さ5000人程度0ポリSi
層107を形成し、該ポリSi層107の全面に通常の
ガス拡散手段等により例えば燐(P)を低濃度に導入し
、該ポリSi層107をP濃度10”cln−’程度、
シート抵抗が600Ω/ロ程度のn−型に制御する。Referring to FIG. 2, the gate Sin and film 5 on regions 9A, 9B, etc. where S/D contact is to be made are selectively removed by ordinary photolithography to form a contact window 6, and then the contact window 6 is formed.
A layer of 0-poly Si with a thickness of about 5000 is deposited on the substrate using the VD method.
A layer 107 is formed, and phosphorus (P), for example, is introduced at a low concentration onto the entire surface of the poly-Si layer 107 by a normal gas diffusion means, and the poly-Si layer 107 has a P concentration of about 10''cln-'.
The sheet resistance is controlled to be n-type with a sheet resistance of about 600Ω/R.
第2図(C)参照
次いで熱酸化等により、該ポリSi層107上に厚さ5
00人程0のマスク用SiO□膜lOを形成し、次いで
通常のフォトリソグラフィ手段によりパターニングを行
い、マスク用SiO□膜10を上部に有する連続したn
−型のポリSiパターン37を形成する。Refer to FIG. 2(C). Then, by thermal oxidation or the like, a thickness of 5 mm is formed on the poly-Si layer 107.
A SiO□ film 10 for a mask of about 0000 is formed, and then patterned by ordinary photolithography to form a continuous n film having a SiO□ film 10 for a mask on top.
- type poly-Si pattern 37 is formed.
第2図(d)参照
次いで通常のフォトリソグラフィ手段により上記マスク
用5iOz膜10をパターニングし、上記n−型ポリS
4層パターン37上に、ゲート電極部7A、、7へ2等
上を覆う5i(hマスクパターン10^、10B等を形
成し、次いでこのSiO□マスクパターンIOA、10
B等をマスクにし通常のガス拡散法により、該n−型ボ
リSiパターン37のSiO,マスクパターン10A
、IOB等に覆われない配線として機能する部分、及び
基板面の表出される領域に選択的に砒素(ΔS)若しく
は燐(P)を高濃度に導入して、10′9〜10”°程
度の高P濃度を有し25Ω/口程度の低シート抵抗を有
するn゛型の配線形成部7B+ 、78z、7B3等、
及び第1、第2、第3のn゛型S/D jI域8A、8
B、80等を形成する。ここで配線形成部7n、、7B
z 、7Bz等の下部の基板面には該配線形成部からの
固相拡散によって上記第1、第2、第3、第4の型S/
D領域8A、 8B、 8C,80等と一体のn°型領
領域形成される。Referring to FIG. 2(d), the masking 5iOz film 10 is then patterned by ordinary photolithography, and the n-type polyS
On the four-layer pattern 37, 5i (h mask patterns 10^, 10B, etc.) covering the gate electrode parts 7A, 7, etc. are formed, and then this SiO□ mask pattern IOA, 10
Using B as a mask, the SiO of the n-type wavy Si pattern 37 and the mask pattern 10A are removed by a normal gas diffusion method.
, arsenic (ΔS) or phosphorus (P) is selectively introduced at a high concentration into the portions that function as wiring that are not covered by IOBs, etc., and the exposed areas of the substrate surface, to form a coating of approximately 10'9 to 10''°. n-type wiring forming portions 7B+, 78z, 7B3, etc., which have a high P concentration of
and first, second, and third n-type S/D jI areas 8A, 8
B, 80 etc. are formed. Here, wiring forming portions 7n, 7B
The first, second, third, and fourth type S/s are deposited on the lower substrate surface of z, 7Bz, etc. by solid phase diffusion from the wiring forming portion.
An n° type region integral with D regions 8A, 8B, 8C, 80, etc. is formed.
第1図参照
次いで通常のフォトリソグラフィ手段により上記ポリS
iパターン37を所望の形状に切り離し、1層のポリS
i電極配線7中に低不純物濃度のn−型ゲート電極部7
A+ 、7Az等と高不純物濃度で低抵抗を有するn゛
型型線線部7B7B+ 、78z 、7Bs等を有する
ポリSi電極配線を具備した本発明に係るMIS型半導
体装置が形成される。Referring to FIG. 1, the above-mentioned polyS
Cut the i-pattern 37 into a desired shape and apply one layer of polyS.
N-type gate electrode portion 7 with low impurity concentration in i-electrode wiring 7
A MIS type semiconductor device according to the present invention is formed which includes a poly-Si electrode wiring having n-type wire portions 7B+, 78z, 7Bs, etc. having a high impurity concentration such as A+, 7Az, etc. and low resistance.
また第2の実施例は本発明に係るポリSi電極配線を2
層のポリSi層を用いて形成した例である。In addition, the second embodiment uses two poly-Si electrode wirings according to the present invention.
This is an example formed using a poly-Si layer.
この場合第3図に示すように、第1の実施例のゲート電
極部7A+ 、7A2に相当するn−型ポリSiゲート
電極11A 、IIBは第1(下層)のポリSi層(P
A)で形成され、第1の実施例の配線部7B、 7B+
、71h 、7B3等に相当するn0型ポリSi配線1
4.14A 、14B 、 14C等は第2(上層)の
ポリSi層(PB)によって形成され、例えば該n−型
ポリSiゲート電極11Aに示されるようにn−型ポリ
Siゲート電極の両端部にn゛゛ポリSi配線14A
、 14B等が、該ゲート電極11Aの表面に形成され
た絶縁膜例えば5i02絶縁膜12のコンタクト窓13
A 、13B等を介してそれぞれ接続され、且つまたポ
リSt配線14Bの他端部と4Bの領域に形成されるM
OS)ランジスタの一方のn゛型S/D領域8Aとが、
S/DmJt域の上面に形成されたSiO□絶縁膜12
のコンタクト窓13Cを介して接続されて、本発明に係
るポリSi電極配線が構成される。In this case, as shown in FIG. 3, the n-type poly-Si gate electrodes 11A and IIB, which correspond to the gate electrode parts 7A+ and 7A2 of the first embodiment,
A), and the wiring portions 7B and 7B+ of the first embodiment
, 71h, n0 type poly-Si wiring 1 corresponding to 7B3, etc.
4.14A, 14B, 14C, etc. are formed by the second (upper layer) poly-Si layer (PB), and for example, as shown in the n-type poly-Si gate electrode 11A, both ends of the n-type poly-Si gate electrode N゛゛Poly Si wiring 14A
, 14B, etc. are the contact windows 13 of the insulating film, for example, the 5i02 insulating film 12, formed on the surface of the gate electrode 11A.
A, 13B, etc. are connected to each other, and the other end of the polySt wiring 14B is formed in the region 4B.
OS) One n-type S/D region 8A of the transistor is
SiO□ insulation film 12 formed on the top surface of the S/DmJt region
are connected through the contact window 13C to form a poly-Si electrode wiring according to the present invention.
第4図(a)参照
この構造を形成するに際しては、前記実施例同様に、フ
ィールド5in2膜2及びp型チャネルストッパ3によ
って分離画定された第1、第2のトランジスタ形成領域
4A及び4B上に熱酸化により50人程度の厚さのゲー
)SiO□膜5を形成した後、該基板上に第1のポリS
i層(PA)を形成し、次いで該第1のポリSi層(P
A)に前記実施例同様の低濃度に*(P)を導入した後
、該ポリSi層(PA)をレジストパターン15A 、
15B等をマスクにパターニングしてPAよりなるn−
ポリSiゲート電極11A及びIIB等を形成し、次い
で上記レジストパターン15A、15B等をマスクにし
ゲートSin、膜5を通してトランジスタ形成領域4A
、 4B等に高濃度に砒素(As”)をイオン注入し、
S/D領域となる高濃度As”注大領域108A、 1
08B、 (108C)等を形成する。Refer to FIG. 4(a) When forming this structure, as in the previous embodiment, the first and second transistor formation regions 4A and 4B separated and defined by the field 5in2 film 2 and the p-type channel stopper 3 are formed. After forming a SiO□ film 5 with a thickness of about 50 nm by thermal oxidation, a first polyS layer is formed on the substrate.
Form an i-layer (PA), then form the first poly-Si layer (P
After introducing *(P) into A) at a low concentration similar to the above example, the poly-Si layer (PA) is formed into a resist pattern 15A,
N- made of PA by patterning 15B etc. as a mask
Poly-Si gate electrodes 11A, IIB, etc. are formed, and then, using the resist patterns 15A, 15B, etc. as masks, the transistor formation region 4A is formed through the gate Sin and the film 5.
, Arsenic (As”) is ion-implanted at a high concentration into 4B etc.,
High concentration As” large injection region 108A, 1 which becomes S/D region
08B, (108C), etc. are formed.
第4図(b)参照
次いで上記レジストパターン15A 、15B等及び表
出するゲー)SiO□膜5を除去した後、熱酸化等によ
りゲート電極11A 、 IIB等の表面及びトランジ
スタ形成領域4A、4B等に表出する基板面に厚さ10
00人程度0Si02絶縁膜12を形成し、次いで該S
i0g絶縁膜12に上記ゲート電極11A 、 IIB
等及びS/D領域に対するコンタクト窓13A 、13
B 、13C113D等を形成し、次いで該基板上に厚
さ5000人程度0第2のポリSi (PB)層214
を形成し、次いで該第2のポリSi (PB)層214
に燐(Po)を高濃度にイオン注入する。Referring to FIG. 4(b), after removing the resist patterns 15A, 15B, etc. and the exposed SiO□ film 5, the surfaces of the gate electrodes 11A, IIB, etc. and the transistor forming regions 4A, 4B, etc. are removed by thermal oxidation or the like. The thickness of the substrate surface exposed to 10
00000 Si02 insulating film 12 is formed, and then the S
The gate electrodes 11A and IIB are formed on the i0g insulating film 12.
etc. and contact windows 13A, 13 for S/D regions.
B, 13C, 113D, etc., and then a second poly-Si (PB) layer 214 with a thickness of about 5000 mm is formed on the substrate.
and then the second poly-Si (PB) layer 214
Phosphorus (Po) is ion-implanted at a high concentration.
16はPo高濃度注入領域を示す。16 indicates a Po high concentration implantation region.
第4図(C)参照
次いで熱処理を行って、前記高濃度に注入されたPoを
活性化再分布させて低シート抵抗を有するn+型の第2
のポリSi層(PB)114を形成すると同時に、前記
高濃度に注入された^S゛を活性化再分布させてn゛型
S/D領域8A、8B、(8C)等を形成する。Referring to FIG. 4(C), a heat treatment is then performed to activate and redistribute the highly implanted Po to form an n+ type second layer with low sheet resistance.
At the same time as the poly-Si layer (PB) 114 is formed, the heavily implanted ^S' is activated and redistributed to form n' type S/D regions 8A, 8B, (8C), etc.
第3図参照
次いで、通常のフォトリソグラフィ手段により上記n′
″型の第2のポリ5i(PB)層114をパターニング
して、コンタクト窓13^を介してゲート電極11Aの
一端部に接続するn4型ポリSi配線14A 。Refer to FIG. 3. Next, the above n' is formed by ordinary photolithography means.
An n4 type poly-Si wiring 14A is connected to one end of the gate electrode 11A through a contact window 13^ by patterning the second poly-Si type 5i (PB) layer 114.
コンタクト窓13B及び13Cを介してゲート電極11
Aの他端部と第2のS/D ’1iJt域8Bを接続す
るn1型ポリSi配線14B、コンタクト窓130を介
して第1のS/D領域8Aに接続するn゛型ポリSt配
線14C等を形成し、これによって第2の実施例に係る
MIS型半導体装置が完成する。Gate electrode 11 via contact windows 13B and 13C
n1 type poly-Si wiring 14B connecting the other end of A and the second S/D '1iJt area 8B, and n' type poly St wiring 14C connecting to the first S/D area 8A via the contact window 130. etc., thereby completing the MIS type semiconductor device according to the second embodiment.
なおこの構造は、2層のポリ5iiiPAとPBを用い
るので工程が複雑になるようであるが、該MIS型半導
体装置の主たる用途である半導体メモリ等においてはポ
リSiNの積層構造は多く用いられるので、それらの工
程を兼用すれば特に工程が複雑化することはない。Note that this structure seems to require a complicated process because it uses two layers of poly-5III PA and PB, but poly-SiN stacked structures are often used in semiconductor memories, etc., which are the main application of MIS type semiconductor devices. , if these steps are used together, the process will not be particularly complicated.
以上実施例に示したように本発明によれば、半導体装置
に配設されるポリSi電極配線の中の、ゲート絶縁膜等
電極配線からの不純物の拡散によって素子特性が劣化す
るような極端に薄い絶縁膜上に配設される例えばゲート
電極等として機能する部分は低不純物濃度を有して絶縁
膜中への不純物の拡散深さを抑制し、これによって該薄
い絶縁膜の変質による素子特性の変動劣化が防止され、
且つ不純物の拡散による性能劣化が顕著に現れないよう
なフィールドSin、膜等の厚い絶縁膜上に延在して配
線として機能する部分は、高不純物濃度にし低抵抗化さ
れ、これによって配線抵抗の減少が図られる。As shown in the embodiments above, according to the present invention, the poly-Si electrode wiring disposed in a semiconductor device is exposed to extreme conditions where element characteristics are deteriorated due to diffusion of impurities from the electrode wiring such as the gate insulating film. A portion disposed on a thin insulating film that functions as, for example, a gate electrode has a low impurity concentration to suppress the depth of impurity diffusion into the insulating film, thereby reducing device characteristics due to alteration of the thin insulating film. fluctuation deterioration is prevented,
In addition, the portions that extend over thick insulating films such as field sin and film where performance deterioration due to impurity diffusion does not appear significantly and function as interconnects are made to have a high impurity concentration and are made to have low resistance, thereby reducing the interconnect resistance. This will be reduced.
か(て安定したトランジスタ特性を有し、且つ高動作速
度を有する高集積度のMIS型半導体装置が形成される
。In this way, a highly integrated MIS type semiconductor device having stable transistor characteristics and high operating speed is formed.
なお本発明は、ポリSi層上にメタルシリサイド層を積
層して低抵抗化を図るポリサイド構造の電極配線の、下
層に用いられるポリSi層にも勿論適用される。Note that the present invention is of course applied to a poly-Si layer used as a lower layer of an electrode wiring having a polycide structure in which a metal silicide layer is laminated on a poly-Si layer to reduce resistance.
更に本発明は、スタックとキャパシタを採用したダイナ
ミックメモリセルに於いても極めて太きな効果を奏し、
その信頼性を大きく向上させることができる。Furthermore, the present invention has extremely significant effects on dynamic memory cells that employ stacks and capacitors.
Its reliability can be greatly improved.
第6図はダイナミックメモリセルの構造を示す断面図で
ある。図中、20はp型半導体基板、21はトランスフ
ァゲートの拡散領域、22はフィールド絶縁膜、23は
トランスファゲートのゲート電極、24はワード線、2
5は5i(h等の絶縁膜、26はスタックドキャパシタ
の蓄積電極、27はスタックドキャパシタの誘導体膜(
Sin2等の絶縁膜であり、デバイス内で最も膜厚が小
さい)、28はスタックドキャパシタの対向電極(ポリ
Si膜)である。尚、図示はしていないがポリSi膜は
周辺回路のトランジスタ、配線形成、フユーズ形成にも
使用されており、複数層のポリSiを使用する場合もあ
る。FIG. 6 is a cross-sectional view showing the structure of a dynamic memory cell. In the figure, 20 is a p-type semiconductor substrate, 21 is a diffusion region of a transfer gate, 22 is a field insulating film, 23 is a gate electrode of a transfer gate, 24 is a word line, 2
5 is an insulating film such as 5i (h), 26 is a storage electrode of a stacked capacitor, and 27 is a dielectric film of a stacked capacitor (
28 is an insulating film such as Sin2 (which has the smallest film thickness in the device) and a counter electrode (poly-Si film) of the stacked capacitor. Although not shown, the poly-Si film is also used to form transistors, wiring, and fuses in peripheral circuits, and multiple layers of poly-Si may be used in some cases.
この様なスタックドキャパシタの電極には段差が多く、
誘電体膜27に加わる局所的メカニカルストレスにより
蓄積電極26と対向電極28との間で短絡を生ずること
ある。本発明者等はその原因が蓄積電極26の形状、段
差のみにあるのではなく、誘電体膜27の膜厚と、対向
電極28を構成するポリSi膜中の不純物濃度が不良発
生に大きく影響することを見出した。第7図は対向電極
28を構成するポリSi中の不純物濃度を変えたときの
誘電体膜厚とメモリセルの良品率との関係を示す図であ
る。図中、縦軸は良品率、横軸はスタックドキャパシタ
を構成する誘電体膜厚を示し、ポ’JSi中の不純物濃
度はaが最も高(、d最も低((a>b>c>d)の関
係にある。第8図は対向電極28を構成するポリSi膜
中8中の不純物濃度とメモリセルの良品率との関係を示
す図(誘電体膜27の膜厚は約60人)である。図中、
縦軸は良品率、横軸は不純物濃度を示す。第7図から判
る様に、誘電体膜27の膜厚が約200Å以上の場合に
はポリSi中の不純物濃度を通常のポリSi配線と同様
に燐或いは砒素等の不純物濃度を1022/c4以上と
してもスタックドキャパシタの良品率には殆ど影響しな
い。ところが誘電体膜27の膜厚を200Å以下、例え
ば約130Å以下とすると不純物濃度の影響が現れ始め
、約60Å以下になると更に影響は顕著となって、通常
のポリSi配線と同程度の不純物濃度とすると良品率が
非常に低下してしまう。これは、ポリSi中の不純物濃
度が高い程、ポリSi中のダレイン下にある誘電体膜2
7に加わる局所的ストレスが増加する為と考えられる。The electrodes of such stacked capacitors have many steps,
A short circuit may occur between the storage electrode 26 and the counter electrode 28 due to local mechanical stress applied to the dielectric film 27. The inventors believe that the cause of this is not only the shape and step difference of the storage electrode 26, but also the thickness of the dielectric film 27 and the impurity concentration in the poly-Si film that constitutes the counter electrode 28, which have a large influence on the occurrence of defects. I found out what to do. FIG. 7 is a diagram showing the relationship between the dielectric film thickness and the non-defective rate of memory cells when the impurity concentration in the poly-Si constituting the counter electrode 28 is changed. In the figure, the vertical axis shows the non-defective product rate, and the horizontal axis shows the dielectric film thickness constituting the stacked capacitor. d). Figure 8 is a diagram showing the relationship between the impurity concentration in the poly-Si film 8 constituting the counter electrode 28 and the non-defective rate of memory cells (the thickness of the dielectric film 27 is approximately 60%). ).In the figure,
The vertical axis shows the non-defective product rate, and the horizontal axis shows the impurity concentration. As can be seen from FIG. 7, when the thickness of the dielectric film 27 is approximately 200 Å or more, the impurity concentration in the poly-Si is set to 1022/c4 or more, such as phosphorus or arsenic, as in the case of normal poly-Si wiring. Even so, it has almost no effect on the yield rate of stacked capacitors. However, when the film thickness of the dielectric film 27 is set to 200 Å or less, for example, about 130 Å or less, the influence of impurity concentration begins to appear, and when it becomes about 60 Å or less, the effect becomes even more pronounced, and the impurity concentration becomes about the same as that of ordinary poly-Si wiring. In this case, the rate of non-defective products will drop significantly. This is because the higher the impurity concentration in poly-Si, the higher the dielectric film 2 under the dalein in poly-Si.
This is thought to be due to the increase in local stress applied to 7.
従って、誘電体膜27を200Å以下、特に100Å以
下とする場合には対向電極28中の不純物濃度を他の部
分(誘電体膜27よりも厚い絶縁膜上にあるポリSi配
線、ポリSi電極等)よりも相対的に下げて、例えば1
0”〜1021/CT11とするのが好ましい。この様
にすると第8図に示されている様にスタックドキャパシ
タの良品率が大幅に向上し、例えば誘電体膜27の膜厚
約60人の場合に対向電極28中の不純物濃度を102
0〜10”/craとすると顕著な効果が得られること
が確認された。尚、誘電体膜27へのメカニカルストレ
スを緩和するのには蓄積電極26の角部の形状を丸くす
ることも考えられるが、これはプロセス上の特別な処理
が必要であり実用的ではない。Therefore, when the dielectric film 27 is made to have a thickness of 200 Å or less, especially 100 Å or less, the impurity concentration in the counter electrode 28 may be reduced in other parts (poly-Si wiring, poly-Si electrodes, etc. on an insulating film thicker than the dielectric film 27). ), for example, 1
0" to 1021/CT11. In this way, as shown in FIG. 8, the yield rate of stacked capacitors is greatly improved. In this case, the impurity concentration in the counter electrode 28 is 102
It has been confirmed that a remarkable effect can be obtained when the ratio is set to 0 to 10"/cra. In addition, in order to alleviate the mechanical stress on the dielectric film 27, rounding the shape of the corners of the storage electrode 26 may be considered. However, this requires special processing and is not practical.
一方、本発明は不純物濃度の調整だけでする為、容易に
実施することができ、その効果も大きい。On the other hand, since the present invention only requires adjustment of the impurity concentration, it can be easily implemented and has great effects.
本発明は第9図に示すスタックドキャパシタを有するダ
イナミックメモリセルにも実施することができる。第9
図はダイナミックメモリセルの断面図である。図中、3
0はp型半導体基板、31及び32はソース/ドレイン
拡散領域、33.34は絶縁膜、35はビット線、36
は蓄積電極、37はフィールド絶縁膜、38は対向電極
(ポリSi)、39は誘電体膜(Sin、、 Si3N
4等)、WLlはゲート電極(ワード線)、WL2はワ
ード線である。係るダイナミックメモリセルは、蓄積電
極に凹凸があるので単位千面積当たりの容量値をふやせ
るが、誘電体膜39へ加わるメカニカルストレスも増加
し、従来の様にポリSi膜中の不純物濃度を通常の配線
と同様にしていると不良が発生し易くなる。そこで、本
実施例では約1000人の絶縁膜34上のビット線35
(ポリSt)中の不純物(砒素)濃度は抵抗を下げる為
に10”/c+f1以上、例えば10”/c++tとし
、約150人のゲート絶縁膜上のゲート電極(ポ’JS
i)中の不純物(燐)濃度は1020〜10”ctJと
し、約60人の誘電体膜36(ポリSi)中の不純物(
燐)濃度は1OI9〜10”/c++tとした。この様
に最も薄い絶縁膜に接するポリSi中の不純物濃度を他
の部分よりも相対的に低くすることで、第9図に示すス
タックドキャパシタも高い歩留りで製造することが可能
となった。The present invention can also be implemented in a dynamic memory cell having a stacked capacitor as shown in FIG. 9th
The figure is a cross-sectional view of a dynamic memory cell. In the diagram, 3
0 is a p-type semiconductor substrate, 31 and 32 are source/drain diffusion regions, 33.34 is an insulating film, 35 is a bit line, 36
37 is a storage electrode, 37 is a field insulating film, 38 is a counter electrode (poly-Si), and 39 is a dielectric film (Sin, Si3N).
4, etc.), WLl is a gate electrode (word line), and WL2 is a word line. In such a dynamic memory cell, since the storage electrode has irregularities, the capacitance value per unit of 1,000 area can be increased, but the mechanical stress applied to the dielectric film 39 also increases, and the impurity concentration in the poly-Si film is lowered than usual. If the wiring is the same as in the above, defects are likely to occur. Therefore, in this embodiment, the bit line 35 on the insulating film 34 of about 1000 people
The impurity (arsenic) concentration in (polySt) is set to 10"/c+f1 or more, for example 10"/c++t, to lower the resistance, and the gate electrode (po'JS) on the gate insulating film of about 150 people is
i) The impurity (phosphorus) concentration in the dielectric film 36 (poly-Si) of approximately 60 people is set to 1020 to 10" ctJ, and the impurity (phosphorus) concentration in the dielectric film 36 (poly-Si)
The phosphorus concentration was set to 1OI9-10"/c++t. By making the impurity concentration in the poly-Si, which is in contact with the thinnest insulating film, relatively lower than in other parts, the stacked capacitor shown in FIG. It has also become possible to manufacture with high yield.
以上説明のように本発明によればゲート絶縁膜が極度に
薄く形成され、且つポリSiをゲート電極に用いるMI
S型半導体装置のトランジスタ特性を安定し、且つポリ
Si電極配線の抵抗を減少せしめることができる。且つ
極めて薄い誘電体膜上にポリStの対向電極を積層する
スタックドキャパシタも高い歩留りで形成することがで
きる。As explained above, according to the present invention, the gate insulating film is formed extremely thin, and the gate electrode is made of poly-Si.
The transistor characteristics of the S-type semiconductor device can be stabilized, and the resistance of the poly-Si electrode wiring can be reduced. In addition, a stacked capacitor in which a polySt counter electrode is laminated on an extremely thin dielectric film can also be formed with a high yield.
従って、本発明はLSI等高集積化されるMIS半導体
装置の、製造歩留りの向上及び高速化に極めて有効であ
る。Therefore, the present invention is extremely effective in improving the manufacturing yield and increasing the speed of MIS semiconductor devices that are highly integrated such as LSIs.
第1図は本発明の第1の実施例の模式平面図(a)及び
A−A矢視模式断面図[有])、
第2図(a)〜(d)は同第1の実施例の製造方法の一
例を示す工程断面図、
第3図は本発明の第2の実施例の模式平面図(a)及び
A−A矢視模式断面図(b)、
第4図(a)〜(d)は同第2の実施例の製造方法の一
例を示す工程断面図、
第5図は不純物濃度プロファイル図である。
第6図はダイナミックメモリセルの構造を示す断面図、
第7図は対向電極28を構成するポリSt中の不純物濃
度を変えたときの誘電体膜厚とメモリセルの良品率との
関係を示す図、
第8図は対向電極28を構成するポリSt膜28中の不
純物濃度とメモリセルの良品率との関係を示す図、
第9図はダイナミックメモリセルの構造を示す断面図で
ある。
図において、
1はp−型Si基板、
2はフィール、ドSiO□膜、
3はp型チャネルストッパ、
4A、4Bはトランジスタ形成領域、
5はゲートSiO□膜、
6はコンタクト窓、
7はポリSi電極配線、
7^1.7^2はゲート電極部、
7B、 7B+ 、 78z 、7B+は配線部、8A
、8B、 8C,8Dはn1型S/D領域20はp型半
導体基板、
21はトランスファゲートの拡散領域、22はフィール
ド絶縁膜、
23はトランスファゲートのゲート電極、24はワード
線、25はSin、等の絶縁膜、26ばスタックドキャ
パシタの蓄積電極、27はスタックドキャパシタの誘導
体膜、30はp型半導体基板、
31及び32はソース/ドレイン拡散領域、33.34
は絶縁膜、
35はビット線、
36は蓄積電極、
37はフィールド絶縁膜、
38は対向電極(ポリSi)、
39は誘電体膜(Si02. Si3N4等)、WLI
はゲート電極(ワード線)、
WL2はワード線を示す。
(α)平面図
(t))A−A大獄U雷面酊
木介5gパリ第1の買方を已イグ・■のイ3tデ(し1
¥1 訂
ト4A−@l
1−48六
↓
↓
I〜P
木型5日月′の蓄ξ2f)、実ミ1自己イダIf)’!
1ム叛ラテう太のニオYuイi貞)匹]票4図
(α)
平
面
図
(b)
A −A ′fc、&#fr 阿
本茫σイの第2の友杭!イ列Φ不疼べ区菓 3 図
4廖秒ヒ芽カシ宸ルのプロ7フイル
剃ζ 5 G口Fig. 1 is a schematic plan view (a) and a schematic cross-sectional view taken along the line A-A of the first embodiment of the present invention, and Fig. 2 (a) to (d) are the same first embodiment. 3 is a schematic plan view (a) and a schematic sectional view taken along the line A-A (b) of the second embodiment of the present invention; FIG. 4 (a) - (d) is a process sectional view showing an example of the manufacturing method of the second embodiment, and FIG. 5 is an impurity concentration profile diagram. FIG. 6 is a cross-sectional view showing the structure of a dynamic memory cell, and FIG. 7 shows the relationship between the dielectric film thickness and the non-defective yield rate of memory cells when the impurity concentration in the polySt constituting the counter electrode 28 is changed. 8 is a diagram showing the relationship between the impurity concentration in the polySt film 28 constituting the counter electrode 28 and the non-defective rate of memory cells, and FIG. 9 is a sectional view showing the structure of the dynamic memory cell. In the figure, 1 is a p-type Si substrate, 2 is a field and doped SiO□ film, 3 is a p-type channel stopper, 4A and 4B are transistor formation regions, 5 is a gate SiO□ film, 6 is a contact window, and 7 is a polyamide Si electrode wiring, 7^1.7^2 is the gate electrode part, 7B, 7B+, 78z, 7B+ is the wiring part, 8A
, 8B, 8C, and 8D, the n1 type S/D region 20 is the p-type semiconductor substrate, 21 is the diffusion region of the transfer gate, 22 is the field insulating film, 23 is the gate electrode of the transfer gate, 24 is the word line, and 25 is the SIN , etc., 26 is a storage electrode of a stacked capacitor, 27 is a dielectric film of a stacked capacitor, 30 is a p-type semiconductor substrate, 31 and 32 are source/drain diffusion regions, 33.34
35 is an insulating film, 35 is a bit line, 36 is a storage electrode, 37 is a field insulating film, 38 is a counter electrode (poly-Si), 39 is a dielectric film (Si02, Si3N4, etc.), WLI
indicates a gate electrode (word line), and WL2 indicates a word line. (α) Plan view (t)) A-A Daigoku U Raimen Kokusuke 5g Paris first purchase
¥1 Correction 4A-@l 1-486 ↓ ↓ I~P Wooden pattern 5 days/month' accumulation ξ2f), real Mi 1 self Ida If)'!
1 Mutou Latte Uta's Nio Yui Isada) Vote 4 Figure (α) Floor Plan (b) A -A 'fc, &#fr Amoto So σi's second friend pile! Figure 4. Professional 7 file shaving ζ 5 G mouth
Claims (2)
延在する多結晶シリコン膜の電極又は配線を有し、 前記絶縁膜のうち少なくとも最小の膜厚を有する絶縁膜
に接する部分の多結晶シリコン膜が他の部分の多結晶シ
リコン膜に比べて低濃度の不純物を含んでなることを特
徴とする半導体装置。(1) It has an insulating film having a plurality of thicknesses, and an electrode or wiring of a polycrystalline silicon film extending over the insulating film, and is in contact with an insulating film having at least the minimum thickness among the insulating films. A semiconductor device characterized in that a portion of the polycrystalline silicon film contains impurities at a lower concentration than that of the other portion of the polycrystalline silicon film.
るメモリセル容量を有するダイナミックメモリセルを具
備し、 前記対向電極は多結晶シリコン膜よりなり、その不純物
濃度が他の電極又は配線を構成する多結晶シリコン膜の
不純物濃度よりも低いことを特徴とする半導体装置。(2) A dynamic memory cell having a memory cell capacity in which a dielectric film and a counter electrode are stacked on a storage electrode, the counter electrode is made of a polycrystalline silicon film, and its impurity concentration is higher than that of other electrodes or wiring. 1. A semiconductor device characterized in that the impurity concentration is lower than that of a polycrystalline silicon film constituting the semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1038758A JP2737984B2 (en) | 1988-02-17 | 1989-02-17 | Semiconductor device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-34346 | 1988-02-17 | ||
JP3434688 | 1988-02-17 | ||
JP1038758A JP2737984B2 (en) | 1988-02-17 | 1989-02-17 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH021155A true JPH021155A (en) | 1990-01-05 |
JP2737984B2 JP2737984B2 (en) | 1998-04-08 |
Family
ID=26373142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1038758A Expired - Fee Related JP2737984B2 (en) | 1988-02-17 | 1989-02-17 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2737984B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0425169A (en) * | 1990-05-18 | 1992-01-28 | Toshiba Corp | Semiconductor storage device and its manufacturing method |
US5282162A (en) * | 1990-05-24 | 1994-01-25 | Kabushiki Kaisha Toshiba | Semiconductor memory device having capacitor of thin film transistor structure |
US5563434A (en) * | 1990-05-24 | 1996-10-08 | Kabushiki Kaisha Toshiba | Semiconductor memory device having capacitor of thin film transistor structure |
-
1989
- 1989-02-17 JP JP1038758A patent/JP2737984B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0425169A (en) * | 1990-05-18 | 1992-01-28 | Toshiba Corp | Semiconductor storage device and its manufacturing method |
US5282162A (en) * | 1990-05-24 | 1994-01-25 | Kabushiki Kaisha Toshiba | Semiconductor memory device having capacitor of thin film transistor structure |
US5563434A (en) * | 1990-05-24 | 1996-10-08 | Kabushiki Kaisha Toshiba | Semiconductor memory device having capacitor of thin film transistor structure |
US5796137A (en) * | 1990-05-24 | 1998-08-18 | Kabushiki Kaisha Toshiba | Semiconductor memory device having capacitor of thin film transistor structure |
Also Published As
Publication number | Publication date |
---|---|
JP2737984B2 (en) | 1998-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6420227B1 (en) | Semiconductor integrated circuit device and process for manufacture of the same | |
US6492672B1 (en) | Semiconductor device | |
US5397729A (en) | Method for fabrication of semiconductor device having polycrystalline silicon and metal silicides | |
US20110309433A1 (en) | Semiconductor Device With Resistor Pattern And Method Of Fabricating The Same | |
US4922312A (en) | DRAM process with improved polysilicon-to-polysilicon capacitor and the capacitor | |
US20020053739A1 (en) | Semiconductor device and method of fabricating the same | |
US20040104485A1 (en) | Semiconductor device having interconnection layer with multiply layered sidewall insulation film | |
US5244825A (en) | DRAM process with improved poly-to-poly capacitor | |
US7253465B2 (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
JPH04317358A (en) | Manufacture of semiconductor device | |
US5416352A (en) | Gate electrode formed on a region ranging from a gate insulating film to a field insulating film | |
JPH021155A (en) | semiconductor equipment | |
US6096600A (en) | Method of forming a capacitative section of a semiconductor device and method of forming a capacitative section and gate section of a semiconductor device | |
US5214304A (en) | Semiconductor device | |
KR0161379B1 (en) | Multi layer routing and manufacturing of semiconductor device | |
US20080116498A1 (en) | Method of forming a semiconductor device having a capacitor and a resistor | |
EP0329569B1 (en) | Semiconductor device with a thin insulating film | |
US5943583A (en) | Method for manufacturing semiconductor device | |
US5359216A (en) | DRAM process with improved polysilicon-to-polysilicon capacitor and the capacitor | |
US5521418A (en) | Semiconductor device and a method of manufacturing same | |
JPH03259566A (en) | Manufacture of memory device | |
KR940007070B1 (en) | Planarization Method of Semiconductor Device and Semiconductor Device | |
JPH04170066A (en) | Method for manufacturing semiconductor integrated circuit device | |
JPH10107220A (en) | Manufacture of semiconductor device | |
JP2000349261A (en) | Method for manufacturing capacitor structure using tantalum oxide film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |