[go: up one dir, main page]

JPH02115319A - Production of high magnetic flux density grain-oriented silicon steel sheet - Google Patents

Production of high magnetic flux density grain-oriented silicon steel sheet

Info

Publication number
JPH02115319A
JPH02115319A JP26421788A JP26421788A JPH02115319A JP H02115319 A JPH02115319 A JP H02115319A JP 26421788 A JP26421788 A JP 26421788A JP 26421788 A JP26421788 A JP 26421788A JP H02115319 A JPH02115319 A JP H02115319A
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
steel sheet
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26421788A
Other languages
Japanese (ja)
Other versions
JP2670108B2 (en
Inventor
Yasuyuki Hayakawa
康之 早川
Michiro Komatsubara
道郎 小松原
Hideo Yamagami
山上 日出雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63264217A priority Critical patent/JP2670108B2/en
Publication of JPH02115319A publication Critical patent/JPH02115319A/en
Application granted granted Critical
Publication of JP2670108B2 publication Critical patent/JP2670108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To stably produce the title high magnetic flux density grain-oriented silicon steel sheet by holding the steel sheet at a fixed temp. for a specified time in the finish annealing, and heating the sheet at a specified rate to apply purification annealing. CONSTITUTION:A silicon-steel slab contg., by weight, 0.02-0.12% C, 2.5-4.0% Si, 0.03-0.15% Mn, 0.01-0.05% Sol.Al, 0.01-0.20% Sb, 0.004-0.01% M, 0.01-0.05% (S+Se) where <0.01% S, at least one kind among 0.02-0.20% Cu, 0.02-0.20% Sn, and 0.005-0.05% Mo, and the balance Fe is hot-rolled. The hot-rolled sheet is annealed, and then quenched. One or two cold rollings including process annealing are applied at the final draft of >=80%. The sheet is then decarburization-annealed, held at 700-840 deg.C for 20-200hr, and purification-annealed at the temp. increasing rate of 5-50 deg.C/hr to stably produce a high magnetic flux density silicon steel sheet.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、(110) (0011方位を主方位とす
る方向性けい素鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing grain-oriented silicon steel sheets having (110) (0011) orientation as the main orientation.

(従来の技術) AINを主要インヒビターとし、最終冷間圧延を80%
以上の圧下率で行う方向性けい素鋼板の製造法について
は、特公昭40−15644号公報に代表される、多く
の技術が開示されている。このAINを主要インヒビタ
ーとする方向性けい素鋼板の特徴は高磁束密度が得られ
るところにあるが、一方で二次再結晶粒径が大きいため
渦電流損が高くなって低鉄損が得られず、また二次再結
晶が安定せず磁束密度のばらつきが大きいという欠点が
あった。
(Conventional technology) AIN is the main inhibitor, final cold rolling is 80%
Regarding the method of producing grain-oriented silicon steel sheets at the above rolling reduction ratio, many techniques, typified by Japanese Patent Publication No. 15644/1980, have been disclosed. The feature of grain-oriented silicon steel sheets with AIN as the main inhibitor is that they can obtain high magnetic flux density, but on the other hand, because the secondary recrystallized grain size is large, eddy current loss is high and low iron loss is obtained. Moreover, there was a drawback that secondary recrystallization was not stable and the magnetic flux density varied widely.

これらの欠点のうち渦電流損の低減方法については特公
昭57−2252号公報に開示された、レーザービーム
を鋼板に照射する方法、あるいは特公昭61−3939
5号公報に開示された、熱膨張係数の異なる領域を形成
する方法等の人工的に磁区を細分化する技術により解決
されつつある。
Among these drawbacks, methods for reducing eddy current loss include the method of irradiating a steel plate with a laser beam as disclosed in Japanese Patent Publication No. 57-2252, or the method disclosed in Japanese Patent Publication No. 61-3939.
This problem is being solved by techniques of artificially subdividing magnetic domains, such as the method of forming regions with different coefficients of thermal expansion, as disclosed in Japanese Patent No. 5.

これらの方法は磁区を細分化し渦電流損を低減するもの
で、ヒステリシス損の小さい高磁束密度の製品板はどレ
ーザー、プラズマジェット等を照射した場合の鉄損低減
効果は大きくなる。
These methods subdivide the magnetic domains to reduce eddy current loss, and the iron loss reduction effect becomes greater when a high magnetic flux density product plate with low hysteresis loss is irradiated with a laser, plasma jet, etc.

そこで、ヒステリシス損の小さい高磁束密度の製品を安
定して製造する技術が重要になってきている。
Therefore, technology for stably manufacturing products with high magnetic flux density and low hysteresis loss is becoming important.

ところで二次再結晶は同一条件で製造を行っても変動す
る、いわば確率現象であるためその制御は困難であり、
特に0.23 mm厚以下の薄板の場合では、AINな
どのインヒビターは仕上焼鈍中に分解しその抑制力が不
安定になりやすく、したがって二次再結晶は更に不安定
になる。
By the way, secondary recrystallization is difficult to control because it is a so-called stochastic phenomenon that varies even if it is manufactured under the same conditions.
Particularly in the case of a thin plate with a thickness of 0.23 mm or less, inhibitors such as AIN are likely to decompose during final annealing, making its suppressing power unstable, and therefore secondary recrystallization becomes even more unstable.

ここに、二次再結晶を安定化させる技術として、特公昭
57−9419号および特開昭58−217630号公
報にはSnおよび/またはCuを添加する方法が、また
特開昭61−157632号公報にはsbとCuを添加
する方法がそれぞれ開示されている。
Here, as a technique for stabilizing secondary recrystallization, Japanese Patent Publication No. 57-9419 and Japanese Patent Application Laid-open No. 58-217630 disclose a method of adding Sn and/or Cu, and Japanese Patent Publication No. 61-157632 discloses a method of adding Sn and/or Cu. The publication discloses methods for adding sb and Cu, respectively.

しかしこれらの方法はSn、 Cuおよびsbなどの補
助インヒビターを添加して二次再結晶粒を細粒化し二次
再結晶を安定化させるもので、低鉄損は得られるものの
二次再結晶粒径が小さくなるので磁束密度は低下する傾
向にあった。
However, these methods stabilize secondary recrystallization by adding auxiliary inhibitors such as Sn, Cu, and sb to refine the secondary recrystallized grains. As the diameter became smaller, the magnetic flux density tended to decrease.

(発明が解決しようとする課題) この発明は、高磁束密度の方向性けい素鋼板を二次再結
晶の安定化によって高収率で製造する方法について提案
することを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to propose a method for producing a grain-oriented silicon steel sheet with a high magnetic flux density at a high yield by stabilizing secondary recrystallization.

(課題を解決するための手段) 発明者らは、AINとMnSeおよび/又はMnSおよ
びsbをインヒビターとする方向性けい素鋼板の製造に
関し、二次再結晶粒の方位を理想的な(110)(00
1)方位に近づけるべく製造条件について種々の検討を
行ったところ、仕上焼鈍において一定温度に一定時間保
持した後、所定の昇温速度で加熱し純化焼鈍を施すこと
により、高磁束密度の方向性けい素鋼板を安定して得ら
れることを見い出した。
(Means for Solving the Problems) The inventors have determined that the orientation of secondary recrystallized grains is ideal (110) for producing grain-oriented silicon steel sheets using AIN and MnSe and/or MnS and sb as inhibitors. (00
1) We conducted various studies on the manufacturing conditions in order to get the direction closer to the direction of the high magnetic flux density. It was discovered that silicon steel sheets can be stably obtained.

この発明は上記の知見に由来するものである。This invention is derived from the above knowledge.

すなわちこの発明は、C: 0.02〜0.12wt%
、 Si: 2.5〜4.Owt%、 Mn : 0.
03〜0.15wt%、 sol。
That is, in this invention, C: 0.02 to 0.12 wt%
, Si: 2.5-4. Owt%, Mn: 0.
03-0.15 wt%, sol.

八I  :  0.01 〜0.05−t%、  Sb
  :  0.01 〜0.20阿t%およびN : 
0.004〜0.01wt%を含み、Sおよび/又はS
eを合計で0.01〜0.05wt%を含有し、残部が
鉄および不可避不純物からなるけい素鋼スラブを熱間圧
延し、熱延板焼鈍および急冷処理を施してから、1回あ
るいは中間焼鈍をはさむ2回の冷間圧延を最終圧延率8
0%以上で施し、その後脱炭焼鈍ついで仕上焼鈍を施す
一連の工程からなる方向性けい素鋼板の製造方法におい
て、仕上焼鈍は、700〜840℃の温度範囲で20時
間以上200時間以下にて保持した後、5〜50″c/
hの昇温速度で純化焼鈍の温度域まで加熱し、しかる後
純化焼鈍を施すことを特徴とする高磁束密度方向性けい
素鋼板の製造方法(第1発明)および C: 0.02〜0.12 wt%、St : 2.5
〜4.Owt%、Mn : 0.03〜0.15 wt
%、sol、 At : 0.01〜0.05−t%、
Sb : 0.01〜0.20wt%およびN : 0
.004〜0.01 wt%を含み、さらにSおよび/
又はSeを合計で0.01〜0.05 wt%かつ、C
u : 0.02〜0.20−t%、Sn : 0.0
2〜0.20wt%およびMo : 0.005〜0.
05wt%の少なくとも1種を含有し、残部が鉄および
不可避的不純物からなるけい素鋼スラブを用いる、第1
発明と同様の工程からなる高磁束密度方向性けい素鋼板
の製造方法 (第2発明)、である。
Eight I: 0.01 to 0.05-t%, Sb
: 0.01 to 0.20 at% and N:
Contains 0.004 to 0.01 wt%, S and/or S
A silicon steel slab containing a total of 0.01 to 0.05 wt% of e, with the balance consisting of iron and unavoidable impurities is hot rolled, hot rolled sheet annealed and rapidly cooled, and then once or intermediately Two times of cold rolling with annealing at a final rolling rate of 8
In a method for manufacturing a grain-oriented silicon steel sheet, which consists of a series of steps of applying 0% or more, followed by decarburization annealing and finish annealing, the finish annealing is performed at a temperature range of 700 to 840°C for 20 hours or more and 200 hours or less. After holding, 5-50″c/
A method for producing a high magnetic flux density grain-oriented silicon steel sheet (first invention), characterized by heating to the temperature range of purifying annealing at a heating rate of h, and then performing purifying annealing (first invention), and C: 0.02 to 0. .12 wt%, St: 2.5
~4. Owt%, Mn: 0.03-0.15 wt
%, sol, At: 0.01-0.05-t%,
Sb: 0.01-0.20wt% and N: 0
.. 004 to 0.01 wt%, and further contains S and/
or Se in a total of 0.01 to 0.05 wt% and C
u: 0.02-0.20-t%, Sn: 0.0
2-0.20wt% and Mo: 0.005-0.
The first method uses a silicon steel slab containing 0.05 wt% of at least one kind, with the remainder consisting of iron and unavoidable impurities.
This is a method for manufacturing a high magnetic flux density grain-oriented silicon steel sheet (second invention) comprising the same steps as the invention.

さて最終冷間圧延を80%以上の圧下率で行った方向性
けい素鋼板の1次再結晶組織においては、二次再結晶粒
の核となり得る(110) (001)方位粒は集合体
を形成せずに単独で存在することが多く、またその数も
少ないので二次再結晶は不安定である。
Now, in the primary recrystallized structure of a grain-oriented silicon steel sheet that has been subjected to the final cold rolling at a rolling reduction ratio of 80% or more, (110) (001) oriented grains form aggregates, which can become the nuclei of secondary recrystallized grains. They often exist alone without being formed, and their number is small, so secondary recrystallization is unstable.

ここに二次再結晶を安定させる手法として、特公昭50
−26493号公報には冷間圧延を材料温度50〜30
0℃の範囲で行うこと、また同54−29182号公報
には冷間圧延のバス間に300〜600″Cの温度範囲
に保持すること、等の圧延時に処理を必要とする技術が
開示されている。これら冷間圧延時に材料温度を高める
ことは、−次回結晶組織における(110) (001
)方位粒を増加させ、二次再結晶の核を増やし二次再結
晶粒を細粒化させることにより二次再結晶を安定させ磁
気特性の向上を狙ったものである。
Here, as a method to stabilize secondary recrystallization,
Publication No. 26493 describes cold rolling at a material temperature of 50 to 30.
0°C, and Japanese Patent Publication No. 54-29182 discloses a technology that requires treatment during rolling, such as maintaining the temperature in a range of 300 to 600"C between cold rolling baths. Increasing the temperature of the material during cold rolling improves (110) (001) in the -order crystal structure.
) The aim is to stabilize secondary recrystallization and improve magnetic properties by increasing the number of oriented grains, increasing the number of secondary recrystallization nuclei, and making the secondary recrystallization grains finer.

しかるにこの発明は一次再結晶組織中に孤立している(
110) (001)方位粒を優先的に二次再結晶核と
して生成させた後に二次再結晶させるため、−次回結晶
組織中の(110) C00L)方位粒の数が極めて少
ないにも拘らず安定して二次再結晶を起こし、かつ磁束
密度を高め得る新規な方法であり、前述のような高い材
料温度で冷間圧延することは、(110) (001)
方位からずれた粒も増加させることになり必ずしも磁束
密度は向上しない。
However, this invention is isolated in the primary recrystallized structure (
Because 110) (001) oriented grains are preferentially generated as secondary recrystallization nuclei and then subjected to secondary recrystallization, even though the number of (110) C00L) oriented grains in the -next crystal structure is extremely small, This is a new method that can stably cause secondary recrystallization and increase the magnetic flux density.
This also increases the number of grains that are deviated from the orientation, so the magnetic flux density does not necessarily improve.

この発明においてまず二次再結晶粒の核の生成のために
は700〜840℃の温度域で20時間以上の保持を要
する。保持温度が840℃を越える高温にナルトMnS
  またはMnSeおよびsbノ(1tO) (oot
)方位粒以外の粒成長の抑制力は低下し、その温度で゛
保持した場合には(110) (001)方位粒の優先
的核生成は起こらずに仕上焼鈍後の製品の磁気特性の向
上はわずかとなる。
In this invention, first, in order to generate nuclei of secondary recrystallized grains, it is necessary to maintain the temperature in a temperature range of 700 to 840°C for 20 hours or more. Naruto MnS at high temperature where the holding temperature exceeds 840℃
or MnSe and sbノ(1tO) (oot
) The ability to suppress the growth of grains other than oriented grains decreases, and when maintained at that temperature, preferential nucleation of (110) (001) oriented grains does not occur and the magnetic properties of the product after final annealing improve. is very small.

次に本発明のかかる熱処理が有効である素材成分として
は、sbを0.01〜0.20wt%含有させることが
必須である。sbを含有しない鋼では鋼板表面を介して
雰囲気の影響により、鋼中のインヒビターであるAIN
が分解されたり、粗大化したりする結果、抑制力を失い
、所望の結果が得られない。sbは表面に濃縮すること
が知られており、この表面に濃縮したsbによって雰囲
気のAINに及ぼす影響が消失したものと推定される。
Next, as a material component for which the heat treatment of the present invention is effective, it is essential that sb be contained in an amount of 0.01 to 0.20 wt%. In steel that does not contain sb, the inhibitor AIN in the steel is absorbed through the steel plate surface due to the influence of the atmosphere.
As a result of decomposition or coarsening, the suppressing power is lost and the desired result cannot be obtained. It is known that sb concentrates on the surface, and it is presumed that the influence of the atmosphere on AIN disappears due to the sb concentrated on the surface.

ここで従来の仕上焼鈍の技術として特開昭50−123
517号公報にはMnSeおよび/又はMnSを主要イ
ンヒビターとするけい素鋼素材の最終仕上焼鈍工程にお
いて、800〜900℃の温度で二次再結晶を十分発達
させ、さらに1000℃以上の温度において純化焼鈍を
施すことが開示されている。
Here, as a conventional finish annealing technique, JP-A-50-123
Publication No. 517 discloses that, in the final annealing process of a silicon steel material with MnSe and/or MnS as the main inhibitor, secondary recrystallization is sufficiently developed at a temperature of 800 to 900°C, and further purification is performed at a temperature of 1000°C or higher. It is disclosed that annealing is performed.

一方この発明はAINを主要インヒビターとする方向性
けい素鋼板の素材に施す仕上焼鈍の条件に関するもので
あり、AINをインヒビターとする素材においては、こ
の発明の保持温度域の700〜840℃の範囲では二次
再結晶は生じない。この点については次でさらに詳しく
説明する。
On the other hand, this invention relates to the conditions of finish annealing applied to grain-oriented silicon steel sheet material with AIN as the main inhibitor, and for the material with AIN as the inhibitor, the holding temperature range of 700 to 840°C of this invention is applied. In this case, secondary recrystallization does not occur. This point will be explained in more detail below.

第1図はAINを含む方向性けい素鋼の脱炭焼鈍板と、
MnSeおよびsbをインヒビターとする方向性けい素
鋼の脱炭焼鈍板をそれぞれ840℃50時間焼鈍した時
のマクロ組織の比較を示す。同図(イ)はAINをイン
ヒビターとする場合、同図(ロ)はMnSeおよびsb
をインヒビターとする場合であるが、同図(0)の場合
は完全に二次再結晶が完了しているが、同図(イ)の場
合は二次再結晶粒が全く認められない。同図に示したよ
うに、AINを主要インヒビターとする場合にはAIN
の分解温度が高く、高温まで粒成長抑制効果が働くため
、840 ’Cでの焼鈍によっては二次再結晶は開始せ
ず、AINを主要インヒビターとする場合は950″C
以上の焼鈍温度が必要となる。
Figure 1 shows a decarburized annealed plate of grain-oriented silicon steel containing AIN,
A comparison of the macrostructures of decarburized annealed plates of grain-oriented silicon steel with MnSe and sb as inhibitors is shown when each plate is annealed at 840°C for 50 hours. The same figure (a) shows when AIN is used as an inhibitor, and the same figure (b) shows MnSe and sb
In the case of (0) in the same figure, secondary recrystallization is completely completed, but in the case of (a) in the same figure, no secondary recrystallized grains are observed. As shown in the figure, when AIN is the main inhibitor, AIN
Since the decomposition temperature of AIN is high and the grain growth suppressing effect works up to high temperatures, secondary recrystallization does not start by annealing at 840'C, and when AIN is used as the main inhibitor, annealing at 950'C
An annealing temperature higher than that is required.

すなわちこの発明では700〜840″Cの二次再結晶
の起こらない温度域に保持することが肝要であって、二
次再結晶粒の発達を制御する特開昭50−123517
号公報に記載の技術とは異なるものである。
That is, in this invention, it is important to maintain the temperature in a temperature range of 700 to 840''C in which secondary recrystallization does not occur, and it is important to maintain the temperature in a temperature range of 700 to 840''C in which secondary recrystallization does not occur.
This technology is different from the technology described in the publication.

さらに発明者らはAINを主要インヒビターとする方向
性けい素鋼板のとくに仕上板厚が薄い製品に対する二次
再結晶の安定化の問題について、sbを添加する実験を
行った。
Furthermore, the inventors conducted an experiment in which sb was added to solve the problem of stabilizing secondary recrystallization of grain-oriented silicon steel sheets in which AIN is the main inhibitor, especially for products with a thin finished sheet thickness.

すなわち第1表で示した成分と残部が鉄からなるmA、
B、CおよびDを第2表に示す条件で製造し、磁性測定
試料として各20枚の製品板とした。
That is, mA consisting of the components shown in Table 1 and the balance being iron,
B, C, and D were manufactured under the conditions shown in Table 2, and 20 product plates were each used as magnetic measurement samples.

それらの磁気測定の結果を第3表に、代表的なマクロ組
織写真を第2図に、そして脱炭焼鈍板でのサンプルより
X線インバース法により(110) (222)(20
0)の各面の比強度を測定した結果を第4表に、それぞ
れ示す。
The results of those magnetic measurements are shown in Table 3, typical macrostructure photographs are shown in Figure 2, and (110) (222) (20
Table 4 shows the results of measuring the specific strength of each surface of 0).

第 第 表 表 第3表からMnSeにsbを含有させた鋼Cの成分では
安定して良好な磁気特性を得られたことがわかる。
From Table 3, it can be seen that the composition of steel C, in which sb was added to MnSe, provided stable and good magnetic properties.

またMnSにsbを含有させた鋼りの成分では二次再結
晶粒は細粒となり磁束密度は若干低下したが特性変動は
減少した。sbを含有しないA、Bの成分では安定して
良好な磁気特性は得られていない。
In addition, in the steel composition containing MnS and sb, the secondary recrystallized grains became fine and the magnetic flux density decreased slightly, but the fluctuation in characteristics decreased. Components A and B, which do not contain sb, do not provide stable and good magnetic properties.

第4表から、脱炭焼鈍板のX線インバース強度はSeに
sbを添加した鋼Cの成分ではsbを添加しないmAに
比べ(110)強度(222)強度が増加しく200)
強度は減少していることがわかる。脱炭焼鈍板の一次再
結晶集合組織として(110)強度は二次再結晶粒の核
となる(110) (001)方位粒の強度を表わし、
(222)強度は(110) (001)方位粒の成長
を促進する(111) (112)方位粒を表わし、(
200)強度は(110) (001)粒の成長を阻害
する(100) (011)方位粒を表わすと考えるこ
とができる。したがってMnSeにsbを添加すると(
222)強度が増え(200>強度が減少したこの実験
結果では、(110) (001)粒の成長性が極めて
良好になり 特性の向上と特性の安定化が実現されたと
解釈できる。
From Table 4, it can be seen that the X-ray inverse strength of the decarburized annealed plate is higher (110), (222), and 200) for steel C with sb added to Se, compared to mA without sb added.
It can be seen that the intensity is decreasing. As the primary recrystallization texture of the decarburized annealed plate, the (110) strength represents the strength of the (110) (001) oriented grains, which are the nuclei of the secondary recrystallized grains.
(222) strength represents (111) (112) oriented grains which promotes the growth of (110) (001) oriented grains;
The 200) strength can be considered to represent the (100) (011) oriented grains inhibiting the growth of the (110) (001) grains. Therefore, when sb is added to MnSe (
This experimental result in which the 222) strength increased (200>strength decreased) can be interpreted to mean that the growth of (110) (001) grains became extremely good, resulting in improved and stabilized properties.

さらにSにsbを添加したfiDでは、sbを添加しな
い鋼Bに比べ(222)がSe添加程顕著ではないが増
加している。sbが脱炭焼鈍板の集合組織を改善しく1
10) [001]方位粒の成長性を良好にし、特性を
安定して向上させる効果は、Seにsbを添加した場合
に特に顕著であることがわかった。
Furthermore, in fiD in which sb is added to S, (222) increases compared to steel B in which sb is not added, although it is not as remarkable as in the case of Se addition. sb improves the texture of decarburized annealed plates1
10) It was found that the effect of improving the growth properties of [001] oriented grains and stably improving properties is particularly remarkable when sb is added to Se.

(作 用) 次にこの発明の構成要件の限定理由を述べる。(for production) Next, the reasons for limiting the constituent elements of this invention will be described.

C: 0.02〜0.12 wt% Cは0.02 wt%未満では二次再結晶が不良となり
、一方0.12 wt%を越えると、脱炭性および磁気
特性を低下させるため、0.02〜0.12 wt%の
範囲とした。
C: 0.02 to 0.12 wt% If C is less than 0.02 wt%, secondary recrystallization will be poor, while if it exceeds 0.12 wt%, decarburization property and magnetic properties will be reduced. It was made into the range of .02-0.12 wt%.

Si : 2.5〜4.0讐t% Siが2.5 wt%未満では良好な鉄損が得られず、
一方4.0 wt%を越えると冷間圧延性が著しく劣化
するため2.5〜4.Owt%の範囲とした。
Si: 2.5 to 4.0 wt% If Si is less than 2.5 wt%, good iron loss cannot be obtained,
On the other hand, if it exceeds 4.0 wt%, the cold rolling property will be significantly deteriorated, so it should be 2.5 to 4. The range was Owt%.

MnとSおよび/又はSeはMnSおよび/又はMnS
eを形成させるための成分である。
Mn and S and/or Se are MnS and/or MnS
This is a component for forming e.

まずMnはインヒビターとしての作用を発揮させるため
に少なくとも0.03 wt%は必要で、一方0.1’
S wt%を越えるとMnS、 MnSeの固溶温度が
高くなり、通常のスラブ加熱温度では固溶せず磁性は劣
化するので0.03〜0.15 wt%の範囲とした。
First, Mn requires at least 0.03 wt% to exert its effect as an inhibitor, while 0.1'
If it exceeds S wt%, the solid solution temperature of MnS and MnSe becomes high, and the solid solution does not occur at normal slab heating temperatures, resulting in deterioration of magnetism.

Sおよび/又はSeは0.05 wt%を越えると純化
焼鈍での純化が困難となり、一方0.01 wt%未満
ではインヒビターの量が不足するため、合計で0.01
〜0.05 wt%とする。但し、Sを0.01 wt
%未満に規制することにより磁束密度はさらに向上する
If S and/or Se exceeds 0.05 wt%, it will be difficult to purify by purification annealing, while if it is less than 0.01 wt%, the amount of inhibitor will be insufficient, so the total amount of S and/or Se will be 0.01 wt%.
~0.05 wt%. However, S is 0.01 wt.
By regulating the magnetic flux density to less than %, the magnetic flux density is further improved.

AIおよびNはAINを形成するため必要であり、八1
の含有量は0.01〜0.05 wt%の範囲とする。
AI and N are necessary to form AIN, and 81
The content is in the range of 0.01 to 0.05 wt%.

すなわちAlが少なすぎると磁束密度は低くなり、多過
ぎると二次再結晶が不安定になる。さらにNは0.00
4 wt%未満では八INの量が不足し、0.012−
t%を越えると製品にブリスターが発生するので、0.
004〜0.012 wt%の範囲とする。
That is, if Al is too small, the magnetic flux density will be low, and if it is too large, secondary recrystallization will become unstable. Furthermore, N is 0.00
If it is less than 4 wt%, the amount of 8IN will be insufficient and 0.012-
If it exceeds t%, blistering will occur in the product, so 0.
The range is 0.004 to 0.012 wt%.

sbは0.01wt%未満では表面濃化の効果が無く、
また0、20wt%を越すと脱炭性および表面被膜の形
成に問題を生じるので0.01〜0.20 wt%とす
る。
If sb is less than 0.01 wt%, there is no surface concentration effect,
Moreover, if it exceeds 0.20 wt%, problems will occur in decarburization properties and the formation of a surface film, so the content is set at 0.01 to 0.20 wt%.

また磁束密度のさらなる向上をはかるために、Cuを添
加することができる。Cuの含有は、0.02wt%未
満では効果が無くまた0、20 wt%を越すと酸洗性
およびぜい性が悪化するので、0.02〜0.20wt
%とする。さらに鉄損の向上のためにSnを添加するこ
とが有利で、Snの含有は0.02 wt%未溝では効
果が無く、また0、20wt%を越えるとぜい性が劣化
するので0.02〜0.20 wt%に制限する。
Furthermore, Cu can be added to further improve the magnetic flux density. If the content of Cu is less than 0.02 wt%, there is no effect, and if it exceeds 0.20 wt%, the pickling properties and brittleness will deteriorate, so the content should be 0.02 to 0.20 wt%.
%. Furthermore, it is advantageous to add Sn to improve iron loss; if the content of Sn is 0.02 wt% without grooves, there is no effect, and if it exceeds 0.20 wt%, the brittleness deteriorates. 02-0.20 wt%.

また表面性状を改善するためにMOを含有することがで
きる。0.005wt%未満では効果が無< 、0.0
5wt%を超えると脱炭性が悪化するのでo、oos〜
0.05−1%とする。
Furthermore, MO can be contained in order to improve the surface properties. No effect below 0.005wt%, 0.0
If it exceeds 5 wt%, the decarburization performance will deteriorate, so o, oos~
0.05-1%.

ついで前述の鋼成分からなるけい素鋼スラブを加熱した
後、熱間圧延する。熱延板は例えば900〜1200℃
で焼鈍後急、冷し、引き続き1回あるいは中間焼鈍をは
さむ2回の冷間圧延を最終圧下率を80%以上で施す。
Next, the silicon steel slab made of the above-mentioned steel components is heated and then hot rolled. For example, hot-rolled sheets are heated at 900 to 1200°C.
After annealing, the material is rapidly cooled and then cold rolled once or twice with intermediate annealing at a final rolling reduction of 80% or more.

ここで最終冷延率を80%以上に制限する理由はAIN
の強い抑制力を発揮するための一次再結晶組織が圧下率
80%未満では得られないためである。
The reason for limiting the final cold rolling ratio to 80% or more is AIN
This is because the primary recrystallized structure for exerting a strong suppressive force cannot be obtained at a reduction rate of less than 80%.

冷間圧延の後は脱炭焼鈍し、焼鈍分離剤を塗布し仕上焼
鈍を行う。仕上焼鈍は700〜840 ’Cの温度範囲
で20時間以上200時間以下にて一定の温度に保持し
た後、5〜50℃/hの昇温速度で純化焼鈍の温度域例
えば1200℃まで加熱する。
After cold rolling, decarburization annealing is performed, an annealing separator is applied, and final annealing is performed. Finish annealing is carried out at a constant temperature in the temperature range of 700 to 840'C for 20 hours or more and 200 hours or less, and then heated at a temperature increase rate of 5 to 50 °C/h to the purification annealing temperature range, for example 1200 °C. .

ここで適正な保持温度はインヒビターおよび脱炭焼鈍板
の集合組織により上下するが、700″C以下では(1
10) (001)方位粒の二次再結晶核の生成がほと
んど起こらないため磁気特性は向上しない。
The appropriate holding temperature here varies depending on the inhibitor and the texture of the decarburized annealed plate, but below 700"C (1
10) Magnetic properties do not improve because secondary recrystallization nuclei of (001) oriented grains hardly occur.

840℃を越えるとMnSおよび/又はMnSeの抑制
力は失われ(110) (001)方位粒以外の粒も正
常粒成長を起こし二次再結晶は不良となる。そのため保
持温度は700〜840℃に制限する。
When the temperature exceeds 840° C., the suppressive power of MnS and/or MnSe is lost, grains other than (110) (001) oriented grains also undergo normal grain growth, and secondary recrystallization becomes defective. Therefore, the holding temperature is limited to 700 to 840°C.

また保持時間は20時間未満では(110) (001
)方位粒の二次再結晶核の生成時間が短く磁気特性は向
上しない。200時間以上ではMnS、 MnSe、 
AINの抑制力が低下するため二次再結晶が不良となる
In addition, the retention time is (110) (001
) The generation time of secondary recrystallization nuclei of oriented grains is short, and magnetic properties do not improve. Over 200 hours, MnS, MnSe,
Secondary recrystallization becomes defective because the suppressing power of AIN decreases.

したがって保持時間は20時間〜200時間に制限され
る。
Therefore, the holding time is limited to 20 to 200 hours.

一定温度保持後の昇温速度は5℃/h未満および50°
c/hを越えると磁束密度が低下するので5〜50℃/
hに制限される。純化焼鈍は水素中で例えば1200 
’C5時間で行われ、SおよびSe等が純化される。
Temperature increase rate after holding constant temperature is less than 5℃/h and 50℃
If the temperature exceeds c/h, the magnetic flux density decreases, so the temperature should be 5 to 50℃/
h. Purification annealing is performed in hydrogen for example at 1200
'C is carried out for 5 hours to purify S, Se, etc.

なおAINにsbを含有した成分において仕上焼鈍を7
00〜840℃の範囲の一定温度に20時間〜200時
間保持した後5〜50℃/hで昇温することにより磁気
特性が向上する理由は以下のように推定される。
In addition, for components containing sb in AIN, final annealing was performed at 7
The reason why the magnetic properties are improved by holding the temperature at a constant temperature in the range of 00 to 840°C for 20 to 200 hours and then increasing the temperature at 5 to 50°C/h is presumed as follows.

AINを主要インヒビターとし最終冷間圧延を80%以
上の圧下率で行う方向性けい素鋼板の製造における、M
nSあるいはMnSeあるいはsbのような補助インヒ
ビターの役割は未だ明確ではない。AIN、MnS又は
MnSeの仕上焼鈍中で抑制効果を失う温度は、AIN
が950−1000℃,MnS又はMnSeが800〜
950℃であり、したがってMnS又はMnSeは仕上
焼鈍の前半で抑制力を失う。AINを主要インヒビター
とし、最終冷間圧延を80%以上の圧下率で行う方向性
けい素鋼板の製造における二次再結晶温度は950〜1
000℃であり、この温度域ではMnS又はMnSeは
抑制力が失われているため、MnSe又はMnSは二次
再結晶時にAINの抑制力補強には寄与しない。700
〜840℃の温度域で20〜200時間保持することに
より、通常^INは鋼板表面を介して雰囲気の窒素ポテ
ンシャルに応じて分解もしくは、粗大化して抑制力を失
う。しかしながら鋼中にsbを含有させた場合、表面に
濃縮したsbによって雰囲気の影響を排除した形で抑制
力を保持しつつ(110) (001)方位の粒を優先
的に核生成させ、AINが抑制力を発揮する温度域に至
るまでに二次再結晶核となり得るサイズに成長させるこ
とで、方位の優れた(110) [001:1方位の二
次再結晶が促進されると考えられる。すなわちこのよう
な仕上焼鈍で高磁束密度が得られることは、AINを主
要インヒビターとして、補助インヒビターにMnSeま
たはMnSを使用した成分系に、さらにsbを含有させ
た鋼における特有な現象である。
M in the production of grain-oriented silicon steel sheets in which AIN is the main inhibitor and the final cold rolling is performed at a reduction rate of 80% or more.
The role of nS or auxiliary inhibitors such as MnSe or sb is still unclear. The temperature at which the suppressing effect is lost during final annealing of AIN, MnS or MnSe is AIN
is 950-1000℃, MnS or MnSe is 800~
950° C., and therefore MnS or MnSe loses its suppressive power in the first half of final annealing. The secondary recrystallization temperature in the production of grain-oriented silicon steel sheets in which AIN is the main inhibitor and the final cold rolling is performed at a reduction rate of 80% or more is 950-1
000° C., and since MnS or MnSe loses its suppressive force in this temperature range, MnSe or MnS does not contribute to reinforcing the suppressive force of AIN during secondary recrystallization. 700
By holding the steel plate in the temperature range of ~840°C for 20 to 200 hours, ^IN usually decomposes or becomes coarse depending on the nitrogen potential of the atmosphere via the steel plate surface, and loses its suppressive power. However, when sb is contained in steel, the sb concentrated on the surface maintains a suppressive force while eliminating the influence of the atmosphere, and nucleates grains in the (110) (001) orientation preferentially, resulting in AIN. It is thought that secondary recrystallization in the (110) [001:1 orientation with excellent orientation is promoted by growing the crystals to a size that can become secondary recrystallization nuclei before reaching the temperature range where the suppressing power is exerted. That is, the fact that such a high magnetic flux density can be obtained through final annealing is a unique phenomenon in steels containing sb in a composition system in which AIN is used as a main inhibitor, MnSe or MnS is used as an auxiliary inhibitor.

(実施例) 夫搭桝よ C: 0.062 wt%、 Si : 3.10 w
t%、 Mn : 0.075wt%、  Se : 
0.024 wt%、  sol、AI : 0.02
5 wt% N: 0.0086 wt%、 Sb :
 0.029wt%残部Feよりなるけい素鋼スラブを
1420 ’C20分間加熱後熱間圧延により2.3m
m厚の熱延板とした。この熱延板を1050℃で2分間
加熱した後ミスト噴射により急冷し、ついで冷間圧延し
0.30 mm厚に仕上げた。
(Example) C: 0.062 wt%, Si: 3.10 w
t%, Mn: 0.075wt%, Se:
0.024 wt%, sol, AI: 0.02
5 wt% N: 0.0086 wt%, Sb:
A silicon steel slab consisting of 0.029wt% balance Fe was heated to 1420'C for 20 minutes and then hot rolled to 2.3m.
It was made into a hot-rolled plate with a thickness of m. This hot-rolled sheet was heated at 1050° C. for 2 minutes, then rapidly cooled by mist injection, and then cold-rolled to a thickness of 0.30 mm.

冷間圧延後840℃で4分間の再結晶を兼ねた脱炭焼鈍
を行い、その後MgOを塗布し仕上焼鈍を行った。かく
して得られた製品板の磁気特性を、第5表に示す。なお
冷間圧延および仕上焼鈍の条件は、下記の通りである。
After cold rolling, decarburization annealing was performed at 840° C. for 4 minutes, which also served as recrystallization, and then MgO was applied and finish annealing was performed. The magnetic properties of the product board thus obtained are shown in Table 5. The conditions for cold rolling and final annealing are as follows.

記 (i)冷間圧延条件 A:常温で圧延 B : 200 ’Cで圧延 C:パス間に、260℃130秒間保持後圧延(ii)
仕上焼鈍条件 a:800℃で50時間保持後10℃/hで1200℃
まで昇温 bニア50℃で10000時間保持後10/hで120
0℃まで昇温 c:650℃で10000時間保持後10/hで120
0℃まで昇温 d:900℃で50時間保持後10℃/hで1200℃
まで昇温 e:800℃で5時間保持後10℃/hで1200℃ま
で昇温 f : 800 ’Cで24040時間保持後10/h
で1200℃まで昇温 g:800℃50時間保持後100’c/hで1200
℃まで昇温 h:800℃で50時間保持後2.5℃/hで1200
℃まで昇温 i:800℃から10℃/hで1200℃まで昇温同表
から明らかなように、仕上焼鈍時に850℃で50時間
保持後10℃/hで昇温した、この発明に適合する例に
おいては、高磁束密度の製品を安定して得られた。
(i) Cold rolling conditions A: Rolling at room temperature B: Rolling at 200'C C: Rolling after holding at 260°C for 130 seconds between passes (ii)
Final annealing condition a: 1200°C at 10°C/h after holding at 800°C for 50 hours
After holding at 50℃ for 10,000 hours, increase the temperature to 120℃ at 10/h.
Temperature raised to 0°C: 120 at 10/h after holding at 650°C for 10,000 hours
Temperature increase to 0℃: 1200℃ at 10℃/h after holding at 900℃ for 50 hours
Temperature raised to 1200°C at 10°C/h after holding at 800°C for 5 hours f: 10/h after holding at 800'C for 24040 hours
Temperature raised to 1200℃ at 1200℃ at 100'c/h after holding at 800℃ for 50 hours
Temperature increase to °C: 1200 at 2.5 °C/h after holding at 800 °C for 50 hours
Temperature increase to °C i: Temperature increase from 800 °C to 1200 °C at 10 °C/h As is clear from the same table, an example conforming to this invention in which the temperature was raised at 10 °C/h after holding at 850 °C for 50 hours during final annealing. In this method, products with high magnetic flux density were stably obtained.

実施拠l 第6表に示す成分組成になるけい素鋼スラブを実施例1
と同様の条件に従って、0.30 mn+厚の製品に仕
上げた。ただし冷間圧延は常温で、また仕上焼鈍は80
0℃で50時間保保持後0”C/hで1200℃まで昇
温しで行った。
Example 1 A silicon steel slab having the composition shown in Table 6 was prepared.
A product with a thickness of 0.30 mm+ was produced according to the same conditions as above. However, cold rolling is performed at room temperature, and final annealing is performed at 80°C.
After holding at 0°C for 50 hours, the temperature was raised to 1200°C at 0''C/h.

裏書il 第7表に示した成分組成になるけい素鋼スラブを142
0 ’Cで20分間加熱後、熱間圧延により2.01厚
の熱延板とした。この熱延板を1050℃で2分間加熱
した後、ミスト噴射により急冷し、ついで0.23 m
m厚に冷間圧延した。冷間圧延後840℃で4分間の再
結晶を兼ねた脱炭焼鈍を行い、その後Mgoを塗布し7
50℃で100時間保持した後、10℃/hの昇温速度
で1200℃まで加熱して仕上焼鈍を行った。こうして
得られた製品板の磁気特性は同表に併記する通りであり
、板厚の薄い0.23mmWの製品でも良好な磁気特性
が得られている。
Endorsement 142 Silicon steel slabs with the composition shown in Table 7
After heating at 0'C for 20 minutes, it was hot rolled into a hot rolled sheet with a thickness of 2.01. This hot-rolled sheet was heated at 1050°C for 2 minutes, then rapidly cooled by mist injection, and then heated to 0.23 m
It was cold rolled to a thickness of m. After cold rolling, decarburization annealing was performed at 840°C for 4 minutes, which also served as recrystallization, and then Mgo was applied.
After holding at 50°C for 100 hours, final annealing was performed by heating to 1200°C at a temperature increase rate of 10°C/h. The magnetic properties of the product plate thus obtained are shown in the same table, and good magnetic properties were obtained even with a thin plate thickness of 0.23 mmW.

(発明の効果) この発明によれば、高磁束密度の方向性けい素鋼板を二
次再結晶の安定化する手法によって製造でき、磁気特性
の優れたけい素鋼板を高収率で製造し得る。
(Effects of the Invention) According to the present invention, grain-oriented silicon steel sheets with high magnetic flux density can be manufactured by a method of stabilizing secondary recrystallization, and silicon steel sheets with excellent magnetic properties can be manufactured with high yield. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(0)および第2図(八)〜(D)は金
属組織を示す写真である。 特 許 出 願 人 川 崎 製 鉄 株 代金 社
Figures 1 (a) and (0) and Figures 2 (8) to (D) are photographs showing the metal structure. Patent applicant: Kawasaki Steel Co., Ltd.

Claims (1)

【特許請求の範囲】 1、C:0.02〜0.12wt%、 Si:2.5〜4.0wt%、 Mn:0.03〜0.15wt% sol.Al:0.01〜0.05wt% Sb:0.01〜0.20wt%および N:0.004〜0.01wt%を含み、さらにSおよ
び/又はSeを合計で0.01〜0.05wt%含有し
、残部が鉄および不可避的不純物からなるけい素鋼スラ
ブを熱間圧延し、熱延板焼鈍および急冷処理を施してか
ら、1回あるいは中間焼鈍をはさむ2回の冷間圧延を最
終圧延率80%以上で施し、その後脱炭焼鈍ついで仕上
焼鈍を施す一連の工程からなる方向性けい素鋼板の製造
方法において、 仕上焼鈍は、700〜840℃の温度範囲で20時間以
上200時間以下にて保持した後、5〜50℃/hの昇
温速度で純化焼鈍の温度域まで加熱し、しかる後、純化
焼鈍を施すことを特徴とする高磁束密度方向性けい素鋼
板の製造方法。 2、C:0.02〜0.12wt%、 Si:2.5〜4.0wt%、 Mn:0.03〜0.15wt% sol.Al:0.01〜0.05wt% Sb:0.01〜0.20wt%および N:0.004〜0.01wt%を含み、さらにSおよ
び/又はSeを合計で0.01〜0.05wt%かつ、
Cu:0.02〜0.20wt%、Sn:0.02〜0
.20wt%およびMo:0.005〜0.05wt%
の少なくとも一種を含有し、残部が鉄および不可避的不
純物からなるけい素鋼スラブを熱間圧延し、熱延板焼鈍
および急冷処理を施してから、1回あるいは中間焼鈍を
はさむ2回の冷間圧延を最終圧延率80%以上で施し、
その後脱炭焼鈍ついで仕上焼鈍を施す一連の工程からな
る方向性けい素鋼板の製造方法において、 仕上焼鈍は、700〜840℃の温度範囲で20時間以
上200時間以下にて保持した後、5〜50℃/hの昇
温速度で純化焼鈍の温度域まで加熱し、しかる後純化焼
鈍を施すことを特徴とする高磁束密度方向性けい素鋼板
の製造方法。 3、Sの含有量を0.01wt%以下とした請求項1ま
たは2項に記載の製造方法。
[Claims] 1. C: 0.02 to 0.12 wt%, Si: 2.5 to 4.0 wt%, Mn: 0.03 to 0.15 wt% sol. Contains Al: 0.01 to 0.05 wt%, Sb: 0.01 to 0.20 wt%, and N: 0.004 to 0.01 wt%, and further contains S and/or Se in a total of 0.01 to 0.05 wt%. %, with the balance consisting of iron and unavoidable impurities, is hot-rolled, subjected to hot-rolled plate annealing and rapid cooling, and then cold-rolled once or twice with intermediate annealing in between. In a method for manufacturing a grain-oriented silicon steel sheet, which consists of a series of steps of rolling at a rolling rate of 80% or more, followed by decarburization annealing and finish annealing, the finish annealing is carried out at a temperature range of 700 to 840°C for 20 hours or more and 20 hours or less. 1. A method for manufacturing a grain-oriented silicon steel sheet with high magnetic flux density, characterized in that the steel sheet is held at a temperature of 5°C to 50°C/h, then heated to a temperature range for purification annealing at a temperature increase rate of 5 to 50°C/h, and then subjected to purification annealing. 2, C: 0.02-0.12 wt%, Si: 2.5-4.0 wt%, Mn: 0.03-0.15 wt% sol. Contains Al: 0.01 to 0.05 wt%, Sb: 0.01 to 0.20 wt%, and N: 0.004 to 0.01 wt%, and further contains S and/or Se in a total of 0.01 to 0.05 wt%. %and,
Cu: 0.02-0.20wt%, Sn: 0.02-0
.. 20wt% and Mo: 0.005-0.05wt%
A silicon steel slab containing at least one of Rolling is performed at a final rolling ratio of 80% or more,
In a method for producing a grain-oriented silicon steel sheet, which comprises a series of steps of decarburization annealing and finish annealing, the finish annealing is held at a temperature range of 700 to 840°C for 20 hours or more and 200 hours or less, and then A method for producing a high magnetic flux density grain-oriented silicon steel sheet, which comprises heating to a purifying annealing temperature range at a heating rate of 50° C./h, and then performing purifying annealing. 3. The manufacturing method according to claim 1 or 2, wherein the S content is 0.01 wt% or less.
JP63264217A 1988-10-21 1988-10-21 Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet Expired - Fee Related JP2670108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63264217A JP2670108B2 (en) 1988-10-21 1988-10-21 Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63264217A JP2670108B2 (en) 1988-10-21 1988-10-21 Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH02115319A true JPH02115319A (en) 1990-04-27
JP2670108B2 JP2670108B2 (en) 1997-10-29

Family

ID=17400122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63264217A Expired - Fee Related JP2670108B2 (en) 1988-10-21 1988-10-21 Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JP2670108B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225153A (en) * 2003-01-27 2004-08-12 Jfe Steel Kk Manufacturing method of grain-oriented electrical steel sheet
JP2013047382A (en) * 2011-07-28 2013-03-07 Jfe Steel Corp Method of producing grain-oriented electromagnetic steel sheet
WO2014132354A1 (en) * 2013-02-27 2014-09-04 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheets

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277817A (en) * 1975-12-24 1977-06-30 Kawasaki Steel Co Production of mono anisotropic magnetic steel sheets
JPS5547324A (en) * 1978-10-02 1980-04-03 Nippon Steel Corp Manufacture of al containing monodirectional silicon steel sheet with extremely high magnetic flux density
JPS5935625A (en) * 1982-08-18 1984-02-27 Kawasaki Steel Corp Manufacture of anisotropic silicon steel plate with high magnetic flux density and small iron loss
JPS62180015A (en) * 1986-02-01 1987-08-07 Nippon Steel Corp Manufacture of grain oriented thin electrical sheet having low iron loss and high magnetic flux density
JPS62202024A (en) * 1986-02-14 1987-09-05 Nippon Steel Corp Manufacture of grain-oriented silicon steel sheet excellent in magnetic properties
JPS6372825A (en) * 1987-07-28 1988-04-02 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet having superior surface property and small iron loss

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277817A (en) * 1975-12-24 1977-06-30 Kawasaki Steel Co Production of mono anisotropic magnetic steel sheets
JPS5547324A (en) * 1978-10-02 1980-04-03 Nippon Steel Corp Manufacture of al containing monodirectional silicon steel sheet with extremely high magnetic flux density
JPS5935625A (en) * 1982-08-18 1984-02-27 Kawasaki Steel Corp Manufacture of anisotropic silicon steel plate with high magnetic flux density and small iron loss
JPS62180015A (en) * 1986-02-01 1987-08-07 Nippon Steel Corp Manufacture of grain oriented thin electrical sheet having low iron loss and high magnetic flux density
JPS62202024A (en) * 1986-02-14 1987-09-05 Nippon Steel Corp Manufacture of grain-oriented silicon steel sheet excellent in magnetic properties
JPS6372825A (en) * 1987-07-28 1988-04-02 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet having superior surface property and small iron loss

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225153A (en) * 2003-01-27 2004-08-12 Jfe Steel Kk Manufacturing method of grain-oriented electrical steel sheet
JP2013047382A (en) * 2011-07-28 2013-03-07 Jfe Steel Corp Method of producing grain-oriented electromagnetic steel sheet
WO2014132354A1 (en) * 2013-02-27 2014-09-04 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheets
KR20150109486A (en) * 2013-02-27 2015-10-01 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheets
US20160012948A1 (en) * 2013-02-27 2016-01-14 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet (as amended)
RU2610204C1 (en) * 2013-02-27 2017-02-08 ДжФЕ СТИЛ КОРПОРЕЙШН Method of making plate of textured electrical steel
US10431359B2 (en) 2013-02-27 2019-10-01 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2670108B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
JP5988026B2 (en) Method for producing grain-oriented electrical steel sheet
WO2014132354A1 (en) Production method for grain-oriented electrical steel sheets
JP7507157B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
KR20240035911A (en) Method for producing grain-oriented electrical steel sheet
JP3357578B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JPH10324959A (en) Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP7465975B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
EP0468819B1 (en) Method for manufacturing an oriented silicon steel sheet having improved magnetic flux density
JPH02115319A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH11335736A (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
KR101263795B1 (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, Method for manufacturing the same, and a slab using therefor
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH10226819A (en) Manufacturing method of grain-oriented electrical steel sheet with excellent iron loss properties
JP7623636B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS6242968B2 (en)
JP7221480B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
KR101459730B1 (en) Oriented electrical steel sheets and method for manufacturing the same
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet
KR20250093716A (en) Grain oriented electrical steel sheet and manufacturing method of the same
KR20120008189A (en) Manufacturing method of low iron loss high magnetic flux density oriented electrical steel sheet
JPS6250528B2 (en)
JPH03104823A (en) Production of grain-oriented silicon steel sheet with superlow iron loss

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees