JPH0211247A - Twin directional drawing type horizontal continuous casting method - Google Patents
Twin directional drawing type horizontal continuous casting methodInfo
- Publication number
- JPH0211247A JPH0211247A JP15961088A JP15961088A JPH0211247A JP H0211247 A JPH0211247 A JP H0211247A JP 15961088 A JP15961088 A JP 15961088A JP 15961088 A JP15961088 A JP 15961088A JP H0211247 A JPH0211247 A JP H0211247A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- continuous casting
- solidified shell
- feed nozzle
- horizontal continuous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000009749 continuous casting Methods 0.000 title claims abstract description 22
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 11
- 239000010959 steel Substances 0.000 claims abstract description 11
- 230000002457 bidirectional effect Effects 0.000 claims description 7
- 230000010355 oscillation Effects 0.000 abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 238000000926 separation method Methods 0.000 description 8
- 238000005266 casting Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000011819 refractory material Substances 0.000 description 5
- 238000010583 slow cooling Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 241001483078 Phyto Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/045—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting
- B22D11/0455—Bidirectional horizontal casting
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は双方向引抜式水平連続鋳造方法に係り、特に左
右側凝固殻の分離点位置を安定し鋳造の安定性を向上で
きる鋳造方法に関し、鋼の連続鋳造分野に広く利用され
る。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a bidirectional drawing type horizontal continuous casting method, and particularly to a casting method that can stabilize the separation point position of left and right solidified shells and improve casting stability. , widely used in steel continuous casting field.
連続鋳造分野において、従来の垂直もしくは弯曲型の連
続鋳造法に代って、水平配置された連続鋳造鋳型を用い
鋳片を水平に引抜いて鋳造する水平連続鋳造法が提案さ
れ、矩形もしくは正方形断面の鋳片を鋳造することが行
われている。このような水平連続鋳造法も、初期の鋳型
−右端からの鋳片の引抜きを行う形式から、特開昭58
−138544号に開示されている如く鋳型の両端部か
らそれぞれ反対方向に引抜く方法が提案され生産能力の
向上が達成されている。In the field of continuous casting, instead of the conventional vertical or curved continuous casting method, a horizontal continuous casting method has been proposed in which a horizontally arranged continuous casting mold is used to pull out and cast slabs horizontally. Casting of slabs is carried out. This type of horizontal continuous casting method also evolved from the initial method in which slabs were pulled out from the right end of the mold, to the method developed in JP-A-58
As disclosed in Japanese Patent No. 138,544, a method of pulling out molds from both ends in opposite directions has been proposed, and an improvement in production capacity has been achieved.
この方法を第2図により説明する。すなわち、タンディ
ツシュ2に溜められた溶鋼4はフィードノズル6を経て
鋳型8に注入される。フィードノズル6の鋳型8に接続
する部分にはブレークリング10がセットされ、鋳型8
は内部に水冷銅板12が設けられている。鋳型8はオシ
レーション装置14によって水平方向左右に振動しなが
らピンチロール16によりそれぞれ相反する水平2方向
へ凝固殻すなわち鋳片18を引抜く方式である。This method will be explained with reference to FIG. That is, the molten steel 4 stored in the tundish 2 is injected into the mold 8 through the feed nozzle 6. A break ring 10 is set in the part of the feed nozzle 6 that connects to the mold 8.
A water-cooled copper plate 12 is provided inside. The mold 8 is vibrated from side to side in the horizontal direction by an oscillation device 14, while pinch rolls 16 pull out the solidified shell, that is, the slab 18, in two opposite horizontal directions.
鋳型の両端部から鋳片を水平に引抜く水平連続鋳造にお
いては強固な凝固殻を形成し、なおかつ凝固殻を安定し
て定位値で破断させるという相反する要求を満足させる
必要がある。In horizontal continuous casting, in which a slab is pulled out horizontally from both ends of a mold, it is necessary to satisfy the contradictory demands of forming a strong solidified shell and stably breaking the solidified shell at a fixed position.
水平連続鋳造における鋳型内の凝固殻の形成の状況を第
3図により説明する。第3図に示す如く凝固殻18の形
成開始位置が鋳型8の中央でフィードノズル6の直下に
あり、ここで破断するのが理想である。しかしながら実
際操業においては、第4図の如くなんらかの原因で中央
を外れた部分に不健全な薄い凝固殻18が形成されそこ
から破断し、これが繰返されると第5図に示す如く中央
を外れて大きな幅の凝固殻18の薄い部分が形成され、
そこから破断し、最後には破断位置が鋳型8から外れて
ブレークアウトが発生し大きな事故となる。また、凝固
殻の厚い部分で左右の凝固殻の分離が行われると、分離
点の跡がオシレーションマークとして残るが、凝固殻の
厚さが厚いほどオシレーションマークの深さが深く鋳片
の圧延後の鋼板に疵として残り、鋼板の品質を低下する
問題がある。The formation of a solidified shell in a mold in horizontal continuous casting will be explained with reference to FIG. As shown in FIG. 3, the formation start position of the solidified shell 18 is at the center of the mold 8, directly below the feed nozzle 6, and ideally the solidified shell 18 is broken at this point. However, in actual operation, as shown in Fig. 4, for some reason an unhealthy thin solidified shell 18 is formed in the off-center part and breaks, and if this is repeated, it becomes off-center and large as shown in Fig. 5. A thin part of the solidified shell 18 of width is formed;
From there, it breaks, and eventually the break position moves away from the mold 8, causing a breakout and a major accident. In addition, when the left and right solidified shells are separated in the thick part of the solidified shell, traces of the separation point remain as oscillation marks, and the thicker the solidified shell, the deeper the oscillation marks. There is a problem that flaws remain on the steel plate after rolling, degrading the quality of the steel plate.
上記の如き破断位置の移動を防止し凝固殻を安定して定
位値で破断させるため、従来種々の検討がなされている
が1例えば特開昭61−85719号では次の如き方法
が提案されている。In order to prevent the above-mentioned movement of the fracture position and to stably fracture the solidified shell at a fixed position, various studies have been made. There is.
(イ)断熱性の高い耐火物を使用して凝固殻の形成開始
位置を制御する方法。(a) A method of controlling the starting position of solidified shell formation using a highly insulating refractory.
(ロ)鋳型内においてヒーター、あるいは耐火物、もし
くはそれらの併用により局部的な緩冷却を施して凝固殻
の形成開始位置を制御する方法。(b) A method in which localized slow cooling is performed in the mold using a heater, a refractory, or a combination thereof to control the starting position of solidified shell formation.
しかし、これらの方法は次の如き問題点がある。However, these methods have the following problems.
(A) 耐火物を用いる場合、耐火物と銅板製鋳型の
面を合わせるのが難しいうえに、使用しているうちに溶
損して段差が発生し、ブレークアウトの原因となる。ま
た、耐火物を交換する必要があるためにランニングコス
ト増につながる。(A) When using refractories, it is difficult to match the surfaces of the refractories and the copper plate mold, and the refractories and copper plate molds are not only eroded during use, but also become uneven, causing breakouts. Additionally, the need to replace refractories increases running costs.
(B) ヒーターを用いる場合、銅板の温度の上昇を
招くために、鋳型の変形、摩耗を助長する結果となる。(B) When using a heater, the temperature of the copper plate increases, resulting in accelerated deformation and wear of the mold.
その他の従来技術として次の如きものもある。Other conventional techniques include the following.
(ハ)左右の鋳片の引抜速度を制御して、破断位置がフ
ィードノズル6の直下に来るようにする方法。(c) A method of controlling the drawing speed of the left and right slabs so that the fracture position is directly below the feed nozzle 6.
(ニ) フィードノズル6の近傍の鋳型8を緩冷却する
ために、水冷銅板12に熱伝導率の低い材料をめっきす
るか、もしくは溶射する方法。(d) A method of plating or spraying a material with low thermal conductivity on the water-cooled copper plate 12 in order to slowly cool the mold 8 near the feed nozzle 6.
しかし、これらの方法にも次の如き問題点がある。However, these methods also have the following problems.
(C) (ハ)の方法は、左右鋳片の引抜速度が一定と
ならないために鋳片内部品質が不安定である。(C) In method (c), the internal quality of the slab is unstable because the drawing speed of the left and right slabs is not constant.
(D) (ニ)の方法は、緩冷却効果が小さく、コスト
も高い。(D) The method (d) has a small slow cooling effect and is expensive.
本発明の目的は、上記従来技術の問題点を解決し、鋳型
への特殊耐火物あるいはヒーター等を使用することなく
、凝固殻を安定した定位置で分離しオシレーションマー
クの発生を軽減できる双方向引抜式水平連続鋳造方法を
提供するにある。The purpose of the present invention is to solve the above-mentioned problems of the prior art, and to separate the solidified shell in a stable position without using special refractories or heaters for the mold, thereby reducing the occurrence of oscillation marks. The object of the present invention is to provide a horizontal continuous casting method using horizontal drawing.
本発明の要旨とするところは次の如くである。 The gist of the present invention is as follows.
すなわち、タンディツシュ等の容器からフィードノズル
を介し水平に配置された振動する鋳型に溶鋼を注入し該
鋳型の両端部からそれぞれ反対方向にピンチロールによ
って凝固した鋳片を引抜く双方向引抜式水平連続鋳造方
法において、前記フィードノズル近傍の鋳型に超音波振
動を印加することを特徴とする双方向引抜式水平連続鋳
造方法である。In other words, it is a two-way horizontal continuous drawing type in which molten steel is injected from a container such as a tundish into a horizontally placed vibrating mold through a feed nozzle, and the solidified slab is pulled out from both ends of the mold by pinch rolls in opposite directions. The casting method is a bidirectional drawing type horizontal continuous casting method characterized by applying ultrasonic vibration to the mold near the feed nozzle.
しかして、前記超音波振動は振動数が1〜50kHz、
強さが1ホーン当り1〜50 kw/aJと限定すべき
である。Therefore, the frequency of the ultrasonic vibration is 1 to 50 kHz,
The strength should be limited to 1 to 50 kW/aJ per horn.
本発明の詳細を第1図に示した実施例によって説明する
。第1図はフィードノズル6の中心を通る横断面の鋳型
8の外周の側面にA、Hの2個所および上面にC,Dの
2個所の4個の超音波印加ホーン20A、20B、20
C120Dを設け、フィードノズル6の近傍に超音波振
動を印加した例である。The details of the present invention will be explained by referring to the embodiment shown in FIG. FIG. 1 shows four ultrasonic application horns 20A, 20B, 20 at two locations A and H on the outer periphery side of the mold 8 passing through the center of the feed nozzle 6 and at two locations C and D on the top surface.
This is an example in which a C120D is provided and ultrasonic vibration is applied near the feed nozzle 6.
超音波振動の印加方向は、鋳型8の各面にそれぞれ垂直
方向とし、その振動数は1〜50kHzの範囲とし、強
さは印加ホーン当り1〜60kw/aJとする必要があ
る。その理由は、振動数が1kHzもしくは強さがlk
w/aJ未滴の場合は、鋳型8と凝固殻18との接触性
を低下せしめて緩冷却させる本発明の目的が達成されず
、反対に超音波の振動数が50kHzを超すか、強さが
50kw/aJを越すと緩冷却の効果が過大となって鋳
造速度を低下せざるを得なくなるほか、超音波振動装置
の設備費が過大となりコスト高となるからである。それ
数本発明では振動数を1〜50kl(z、強さを1ホー
ン当り1〜50kw/aJの範囲に限定した。この限定
範囲内の超音波をフィードノズル6の中心線を通る横断
面内の鋳型8に印加することにより、印加位置近傍10
01平方で、凝固シェル18からの抜熱量が20%以上
減少し、緩冷却の目的を達成することができる。The direction in which the ultrasonic vibrations are applied is perpendicular to each surface of the mold 8, the frequency is in the range of 1 to 50 kHz, and the intensity is required to be in the range of 1 to 60 kw/aJ per application horn. The reason is that the frequency is 1kHz or the strength is lk.
If w/aJ does not drop, the purpose of the present invention of slow cooling by reducing the contact between the mold 8 and the solidified shell 18 will not be achieved, and on the contrary, if the frequency of the ultrasonic wave exceeds 50 kHz or the intensity If it exceeds 50 kw/aJ, the effect of slow cooling becomes excessive, forcing the casting speed to be reduced, and the equipment cost of the ultrasonic vibration device becomes excessive, resulting in high costs. In the present invention, the frequency is limited to 1 to 50 kl (z), and the intensity is limited to 1 to 50 kw/aJ per horn. By applying a voltage to the mold 8, the area 10 near the application position is
01 square, the amount of heat removed from the solidified shell 18 is reduced by more than 20%, and the purpose of slow cooling can be achieved.
上記の如く、フィードノズル6の中心線を通る横断面内
の鋳型8の外周に複数個の超音波印加ホーンを取付け1
本発明による限定範囲の超音波振動を印加することによ
り、鋳型8と凝固殻18との間に空気層が形成され、水
冷銅板12による凝固殻18からの抜熱量が低下し、凝
固殻18の成長がこの部分で阻害される。先に第3図に
て説明した如く、双方向引抜式連続鋳造においては、フ
ィードノズル6の直下の鋳型6の水冷銅板12に接触す
る溶鋼4が緩冷却されることにより、双方へ引抜かれる
鋳片の破断位置、すなわち分離点22となるのが理想的
であるが、本発明においてはフィードノズル6の中心線
を通る横断面内の鋳型8の外周に、超音波振動を印加す
ることにより、水冷銅板12と、凝固殻18との間に空
気層が生成され、緩冷却されるので、この部分が分離点
22となるので破断位置が安定して存在することとなる
。その結果、第4図、第5図にて説明した如き欠陥がな
くなり、左右の鋳片18をほぼ同一速度で引抜くことが
できるので、鋳片の内部品質を著しく向上することがで
きる。As mentioned above, a plurality of ultrasonic application horns are attached to the outer periphery of the mold 8 within the cross section passing through the center line of the feed nozzle 6.
By applying ultrasonic vibration in a limited range according to the present invention, an air layer is formed between the mold 8 and the solidified shell 18, and the amount of heat removed from the solidified shell 18 by the water-cooled copper plate 12 is reduced. Growth is inhibited in this area. As previously explained with reference to FIG. 3, in bidirectional drawing type continuous casting, the molten steel 4 in contact with the water-cooled copper plate 12 of the mold 6 directly below the feed nozzle 6 is slowly cooled, so that the cast material drawn in both directions is cooled. Ideally, the break point of the piece is the separation point 22, but in the present invention, by applying ultrasonic vibration to the outer periphery of the mold 8 in a cross section passing through the center line of the feed nozzle 6, Since an air layer is generated between the water-cooled copper plate 12 and the solidified shell 18, and the plate is slowly cooled, this portion becomes the separation point 22, so that the fracture position exists stably. As a result, the defects as explained in FIGS. 4 and 5 are eliminated, and the left and right slabs 18 can be pulled out at approximately the same speed, so that the internal quality of the slabs can be significantly improved.
なお、超音波振動の振動数ならびに振動の強さが、本発
明の限定範囲内で増加すれば、前記空気層の厚さがそれ
だけ増加するので緩冷却効果が増加する。従って溶鋼温
度、鋳造速度等によって最も適当な振動数および強さを
選択することができる。It should be noted that if the frequency and intensity of the ultrasonic vibrations are increased within the limited range of the present invention, the thickness of the air layer will increase accordingly, and the gradual cooling effect will increase. Therefore, the most appropriate vibration frequency and strength can be selected depending on the molten steel temperature, casting speed, etc.
第1図に示す如く、フィードノズル6の中心線を通る横
断面内の鋳型8の外周の側面にA、Bの2個所、上面に
C,Dの2個所に超音波印加ホーンを取り付け、振動数
を20kHz、強さを各ホーン当り10kv/a#とし
て150mX150mのビレットを水平連続鋳造した。As shown in FIG. 1, ultrasonic application horns are attached at two locations A and B on the side surface of the outer periphery of the mold 8 in a cross section passing through the center line of the feed nozzle 6, and at two locations C and D on the top surface to vibrate. A billet measuring 150 m x 150 m was horizontally continuously cast at a frequency of 20 kHz and an intensity of 10 kv/a# for each horn.
その結果、印加位置A、B、C,D部の凝固殻18から
の抜熱量がいずれも25%低減し、左右引抜鋳片の分離
点22がA、B、C,D面上近傍に安定して生成してい
ることを確認した。その結果、左右鋳片18の引抜速度
をほぼ同一にすることが可能となり、引抜き中はブレー
クアウト等の事故もなく、製造された鋳片の表面性状な
らびに内部品質は共にすぐれたものであることを確認し
た。As a result, the amount of heat extracted from the solidified shell 18 at the application positions A, B, C, and D is reduced by 25%, and the separation point 22 of the left and right drawn slabs is stabilized near the top of the A, B, C, and D surfaces. I confirmed that it was generated. As a result, it is possible to make the drawing speed of the left and right slabs 18 almost the same, and there are no accidents such as breakouts during drawing, and the surface and internal quality of the manufactured slabs are both excellent. It was confirmed.
従来、垂直もしくは弯曲型の連続鋳造において、鋳型の
外周に鋳型外壁に対して直角に超音波振動子を取付け、
鋳型全体を振動させることにより鋳型内面への溶鋼の焼
付きを防止することは従来から行われて来た技術である
が、水平連鋳機のフィトノズル6の近傍の鋳型の局部に
、超音波を印加して鋳型の局部的緩冷却を行って左右引
抜き鋳片の破断位置となる分離点22を安定させる技術
は、従来は存在しなかった。Conventionally, in vertical or curved continuous casting, an ultrasonic transducer was attached to the outer periphery of the mold at right angles to the outer wall of the mold.
Preventing molten steel from seizing on the inside of the mold by vibrating the entire mold is a conventional technology, but ultrasonic waves are applied to a local part of the mold near the phyto nozzle 6 of a horizontal continuous casting machine. Conventionally, there has been no technology for stabilizing the separation point 22, which is the fracture position of the left and right drawn slabs, by applying pressure to locally cool the mold.
本発明は限定振動数、限定強さの超音波をフィードノズ
ル6の近傍の鋳型外周に均一に印加することにより、次
の如き効果を挙げることができた。In the present invention, by uniformly applying ultrasonic waves with a limited frequency and a limited intensity to the outer periphery of the mold near the feed nozzle 6, the following effects can be achieved.
(イ)左右鋳片の分離点を、はぼフィードノズル直下の
局部に常に安定して形成せしめることが可能となったの
で、左右鋳片の引抜速度を同一の一定にすることが可能
となり、鋳片の表面性状ならびに内部品質を著しく向上
させることができた。(a) Since it has become possible to always stably form the separation point of the left and right slabs in a local area directly below the feed nozzle, it has become possible to keep the drawing speed of the left and right slabs at the same constant. It was possible to significantly improve the surface quality and internal quality of the slab.
(ロ) (イ)によって鋳型と凝固殻間の摩擦を減少さ
せることが可能となり、鋳型の損耗が減少し寿命を延長
することができた。(b) (b) It became possible to reduce the friction between the mold and the solidified shell, reducing wear and tear on the mold and extending its life.
(ハ) (イ)によって操業中のブレークアウト等の事
故が皆無となり、生産性の著しい向上、ひいてはコスト
の低減が可能となった。(c) As a result of (b), there have been no accidents such as breakouts during operation, and it has become possible to significantly improve productivity and reduce costs.
(ニ)本発明による装置は比較的安価で、操業も極めて
簡単容易である。(d) The apparatus according to the present invention is relatively inexpensive and extremely simple to operate.
第1図は本発明による水平連続鋳造方法を示す部分斜視
図、第2図は従来の双方向引抜式水平連続鋳造機を示す
模式断面図、第3図は正常な水平連続鋳造による凝固殻
の形成状況を示す断面図、第4図、第5図はいずれも異
常な水平連続鋳造における凝固殻の形成状況を示す断面
図である。
2・・・タンディツシュ 4・・・溶鋼6・・・
フィードノズル 8・・・鋳型10・・・ブレー
クリング 12・・・水冷銅板14・・・オシレー
ション装置 16・・・ピンチロール18・・・凝固殻
(鋳片)
20・・・超音波印加ホーン
22・・・鋳片分離点Fig. 1 is a partial perspective view showing the horizontal continuous casting method according to the present invention, Fig. 2 is a schematic sectional view showing a conventional bidirectional drawing type horizontal continuous casting machine, and Fig. 3 is a partial perspective view showing the horizontal continuous casting method according to the present invention. 4 and 5 are cross-sectional views showing the formation situation of a solidified shell in abnormal horizontal continuous casting. 2... Tanditshu 4... Molten steel 6...
Feed nozzle 8... Mold 10... Break ring 12... Water-cooled copper plate 14... Oscillation device 16... Pinch roll 18... Solidified shell (slab) 20... Ultrasonic application horn 22... Slab separation point
Claims (2)
し水平に配置された振動する鋳型に溶鋼を注入し該鋳型
の両端部からそれぞれ反対方向にピンチロールによつて
凝固した鋳片を引抜く双方向引抜式水平連続鋳造方法に
おいて、前記フィードノズル近傍の鋳型に超音波振動を
印加することを特徴とする双方向引抜式水平連続鋳造方
法。(1) Bidirectional drawing in which molten steel is injected from a container such as a tundish into a horizontally placed vibrating mold through a feed nozzle, and the solidified slab is pulled out from both ends of the mold in opposite directions using pinch rolls. A bidirectional drawing horizontal continuous casting method, characterized in that ultrasonic vibrations are applied to the mold near the feed nozzle.
ーン当り1〜50kw/cm^2である請求項(1)記
載の双方向引抜式水平連続鋳造方法。(2) The bidirectional pultrusion horizontal continuous casting method according to claim 1, wherein the ultrasonic frequency is 1 to 50 kHz and the strength is 1 to 50 kW/cm^2 per horn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15961088A JPH0211247A (en) | 1988-06-28 | 1988-06-28 | Twin directional drawing type horizontal continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15961088A JPH0211247A (en) | 1988-06-28 | 1988-06-28 | Twin directional drawing type horizontal continuous casting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0211247A true JPH0211247A (en) | 1990-01-16 |
Family
ID=15697475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15961088A Pending JPH0211247A (en) | 1988-06-28 | 1988-06-28 | Twin directional drawing type horizontal continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0211247A (en) |
-
1988
- 1988-06-28 JP JP15961088A patent/JPH0211247A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100330509B1 (en) | Metal strip casting method and its continuous casting device | |
US3628596A (en) | Contoured mold for horizontal continuous casting | |
JPH05192748A (en) | Metal strip casting method | |
JP3089608B2 (en) | Continuous casting method of beam blank | |
JPH0211247A (en) | Twin directional drawing type horizontal continuous casting method | |
JPH0255642A (en) | Method and device for continuously casting strip steel | |
JPH0350612B2 (en) | ||
JPH0716767B2 (en) | Method and apparatus for continuous casting of metal ribbon | |
JPH02284744A (en) | Strip casting method and device using double plate type strip casting equipment | |
US4754804A (en) | Method and apparatus for producing rapidly solidified metallic tapes | |
JPS6092052A (en) | Continuous casting method of thin sheet | |
JP3289118B2 (en) | Shrinkage hole reduction device in continuous casting | |
JPS60137562A (en) | Continuous casting method for thin sheet | |
JPS6121143Y2 (en) | ||
JPS60170562A (en) | Continuous casting device for thin sheet | |
JPS6174757A (en) | Continuous casting device | |
JPH0526584B2 (en) | ||
JPS633729Y2 (en) | ||
JPH02192854A (en) | Method for controlling separating point in cast billet in twin directional drawing type horizontal continuous casting | |
JPH0518664B2 (en) | ||
JPH01154849A (en) | Mold for two directional drawing type horizontal continuous casting machine | |
JPS60187448A (en) | Continuous casting installation | |
JPH0464776B2 (en) | ||
JP2003071547A (en) | Composite mold for continuously casting of copper and copper alloy, continuous casting device for copper or copper alloy, and continuously casting method for copper or copper alloy | |
JPS63238951A (en) | Mold for horizontally continuous casting |