JPH02111530A - Thermosetting stereolithography method - Google Patents
Thermosetting stereolithography methodInfo
- Publication number
- JPH02111530A JPH02111530A JP63265828A JP26582888A JPH02111530A JP H02111530 A JPH02111530 A JP H02111530A JP 63265828 A JP63265828 A JP 63265828A JP 26582888 A JP26582888 A JP 26582888A JP H02111530 A JPH02111530 A JP H02111530A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- solid
- fluid material
- thermosetting
- heat ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 29
- 229920001187 thermosetting polymer Polymers 0.000 title claims description 25
- 239000012530 fluid Substances 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 43
- 239000007787 solid Substances 0.000 claims description 39
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 230000001678 irradiating effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- UIZLQMLDSWKZGC-UHFFFAOYSA-N cadmium helium Chemical compound [He].[Cd] UIZLQMLDSWKZGC-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Polymerisation Methods In General (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、熱線及び熱硬化性流動物質を用いて所望形状
の固体を形成する熱硬化式立体造形法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thermosetting stereolithography process that uses hot radiation and a thermosetting fluid material to form a solid body of a desired shape.
従来の技術及びその問題点
従来、鋳型製作時に必要とされる製品形状に対応する模
型、或いは切削加工の倣い制御用又は形彫放電加工電極
用の模型の製作は、手加工により、或いはNCフライス
盤等を用いたNC切削加工により行われていた。しかし
ながら、手加工による場合は多くの手間と熟練とを要す
るという問題が存し、NC切削加工による場合は、刃物
の刃先形状変更のための交換や摩耗等を考慮した複雑な
工作プログラムを作る必要があると共に、加工面に生じ
た段を除くために更に仕上げ加工を必要とする場合があ
るという問題が存していた。Conventional technology and its problems Traditionally, models corresponding to the product shape required during mold production, or models for tracing control in cutting or die-sinking electrical discharge machining electrodes, have been produced by hand processing or using an NC milling machine. This was done by NC cutting using, etc. However, when using manual machining, there is a problem in that it requires a lot of time and skill, and when using NC machining, it is necessary to create a complicated machining program that takes into account exchanges to change the shape of the cutting edge, wear, etc. In addition, there is a problem in that additional finishing machining may be required to remove steps formed on the machined surface.
このような問題を解決するものとして本発明者は、以下
に示す光学的造形法を提案している(特開昭60−24
7515号、特開昭62−101408号)。To solve these problems, the present inventor has proposed the following optical modeling method (Japanese Patent Laid-Open No. 60-24
No. 7515, JP-A-62-101408).
該方法の1実施態様は、光硬化性流動物質を容器内に収
容して該容器の上方からの光照射により流動物質上下面
に及ぶ連続した硬化部分が得られる深さとし、該流動物
質の上方から凸レンズ等の光収束器を介して選択的に光
照射を行ない、該流動物質上下面に及ぶ硬化部分を形成
し、更に該硬化部分上に前記深さに相当する深さをなす
よう、光硬化性流動物質を付加し、該流動物質に選択的
光照射を行なって前記硬化部分から連続して上方へ延び
た硬化部分を形成し、これら光硬化性流動物質の付加及
び硬化部分の形成を繰り返して所望形状の固体を形成す
るものである。In one embodiment of the method, a photocurable fluid material is housed in a container, and the depth is such that a continuous hardened portion extending over the upper and lower surfaces of the fluid material is obtained by irradiating light from above the container, and selectively irradiate light through a light converging device such as a convex lens to form a hardened portion extending over the upper and lower surfaces of the fluid material, and further irradiate light onto the hardened portion to a depth corresponding to the above depth. Adding a curable fluid material, selectively irradiating the fluid material with light to form a cured portion that extends continuously upward from the cured portion, and adding the photocurable fluid material and forming the cured portion. This process is repeated to form a solid in a desired shape.
この光学的造形法によれば、所望形状の固体を高い寸法
精度で形成することができるが、該造形法に用いられる
光は、紫外線等の短波長光であることが必要である。該
短波長光としては、例えばヘリウム−カドミウムレーザ
(波長325止)。According to this optical modeling method, a solid body having a desired shape can be formed with high dimensional accuracy, but the light used in this modeling method needs to be short wavelength light such as ultraviolet light. The short wavelength light is, for example, a helium-cadmium laser (wavelength 325 or less).
アルゴンレーザ(波長363.8nm)等を用いること
ができるが、該短波長レーザは、電気から光への変換効
率が低く、従って該レーザの出力が低くならざるを得な
い(数mW〜数十mWの出力)。Argon laser (wavelength 363.8 nm) etc. can be used, but the short wavelength laser has a low conversion efficiency from electricity to light, so the output of the laser must be low (several mW to several tens of milliwatts). mW output).
このため、上記短波長レーザが照射される光硬化性流動
物質の硬化速度は遅くならざるを得ない。For this reason, the curing speed of the photocurable fluid material irradiated with the short wavelength laser is inevitably slow.
また、該短波長レーザ照射用のレーザ発振器が大きいた
めにシステム全体が大型となり、更に該発振器が高価で
あり且つ短寿命であるため、固体形成の製造コストが高
価になるという問題があった。Furthermore, since the laser oscillator for irradiating the short wavelength laser is large, the entire system becomes large, and furthermore, the oscillator is expensive and has a short lifespan, so there is a problem that the manufacturing cost for solid-state formation is high.
本発明の目的は、上記問題点を解決し、固体形成を短時
間で行うことができ、更にシステム全体の小型化を図る
ことができ、しかも該固体形成の製造コストを低摩にし
得る熱硬化式立体造形法を提供することにある。The purpose of the present invention is to solve the above-mentioned problems and to provide a thermosetting method that can form a solid in a short time, further downsize the entire system, and reduce the manufacturing cost of the solid. The objective is to provide a three-dimensional modeling method.
問題点を解決するための手段
本発明の上記目的は、熱により硬化する熱硬化性流動物
質を容器内に収容し、該流動物質中に熱線照射を行いつ
つ、該熱線照射箇所を前記容器に対し水平及び垂直方向
に造形対象の形状に応じて相対移動させ、所望形状の固
体を形成することを特徴とする熱硬化式立体造形法によ
り達成される。Means for Solving the Problems The above object of the present invention is to house a thermosetting fluid material that hardens by heat in a container, and while irradiating heat rays into the fluid material, irradiating the heat rays onto the container. On the other hand, this is achieved by a thermosetting three-dimensional modeling method, which is characterized by forming a solid body of a desired shape by relative movement in the horizontal and vertical directions according to the shape of the object to be modeled.
前記熱硬化性流動物質としては、熱線照射により硬化す
る種々の物質を用いることができ、例えばフェノール樹
脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂
、エポキシ樹脂、シリコン樹脂、ポリイミド樹脂、ジア
リルフタレートを挙げることができる。なお、該熱硬化
性流動物質は、常温での硬化が極めて少なく、しかも比
較的低粘度であるのが好ましい。As the thermosetting fluid substance, various substances that are cured by heat irradiation can be used, such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, silicone resin, polyimide resin, and diallyl phthalate. can be mentioned. In addition, it is preferable that the thermosetting fluid material harden very little at room temperature and have a relatively low viscosity.
前記熱線としては、使用する熱硬化性流動物質に応じ、
赤外線、半導体発光ダイオードから発せられる熱線等、
種々の放射熱線及び輻射熱線を用いることができる。該
熱線としてエネルギレベルの高い加熱レーザを用いるこ
とにより、造形時間を短縮させることができ、良好な集
熱性を利用して造形精度を向上させ得るという利点を得
ることができる。赤外線としては、例えば上記熱硬化性
流動物質に吸収される効率の大きいCO2レーザを用い
ることができ、また近赤外線を発するYAGレーザ、半
導体レーザ等を使用することもできる。赤外線照射用レ
ーザ発振器は、電気から熱への高いエネルギ変換効率を
有し、例えば数ワットもの赤外線を発するレーザ発振器
であっても小型であり、しかも安価に入手できる。前記
熱硬化性流動物質に熱吸収され難い可視光線や近赤外線
を照射する場合には、熱吸収を促進させ得る成分、例え
ばカーボン粉末等を予め前記流動物質に添加しておくの
が好ましい。該熱吸収促進成分を熱硬化性流動物質に添
加する場合には、加熱源として、例えばアルゴンレーザ
、ヘリウム−ネオンレーザ等の可視光レーザを用いるこ
ともできる。As the hot wire, depending on the thermosetting fluid material used,
Infrared rays, heat rays emitted from semiconductor light emitting diodes, etc.
A variety of radiant heat wires and radiant heat wires can be used. By using a heating laser with a high energy level as the heating wire, it is possible to shorten the molding time, and it is possible to obtain the advantage that the molding accuracy can be improved by utilizing good heat collecting property. As the infrared ray, for example, a CO2 laser which is highly efficient in being absorbed by the thermosetting fluid material can be used, and a YAG laser, a semiconductor laser, etc. that emit near infrared rays can also be used. Laser oscillators for infrared irradiation have high energy conversion efficiency from electricity to heat, and even laser oscillators that emit infrared rays of several watts, for example, are small and can be obtained at low cost. When irradiating the thermosetting fluid material with visible light or near-infrared rays that are difficult to absorb heat, it is preferable to add a component capable of promoting heat absorption, such as carbon powder, to the fluid material in advance. When the heat absorption promoting component is added to the thermosetting fluid material, a visible light laser such as an argon laser or a helium-neon laser can also be used as the heating source.
また、前記熱硬化性流動物質に、予め顔料、セラミック
ス粉、金属粉等の改質用材料を混入したものを使用して
もよい。Alternatively, the thermosetting fluid substance may be mixed with a modifying material such as pigment, ceramic powder, metal powder, etc. in advance.
実施例
以下に、本発明の実施例を、悉付図面を参照しつつ説明
する。Embodiments Below, embodiments of the present invention will be described with reference to the accompanying drawings.
第1図は、本発明方法を実施するための装置の1例を示
す。該装置は、熱硬化性流動物質(A)を収容する容器
(1)と、上下方向に延びる支持棒(3)の下端部に支
持されたベースプレート(2)と、支持棒(3)を介し
てベースプレート(2)を垂直方向に移動させ得る高さ
制御台(4)と、容器(1)及び高さ制御台(4)の双
方を支持しこれらを水平方向及び垂直方向に移動させ得
る位置制御台(5)とを備えている。更に、前記装置は
、熱線(L)を反射ミラー(6)に向けて放出する熱線
源(7)と、ミラー(6)により反射された熱線(L)
を容器(1)中の流動物質(A)上面近傍で点状に収束
させる熱線収束器(8)とを備え、位置制御台(5)の
移動に基づき、熱線照射位置に対し流動物質(A)を相
対的に移動させるようになっている。FIG. 1 shows an example of an apparatus for carrying out the method of the invention. The device consists of a container (1) containing a thermosetting fluid material (A), a base plate (2) supported at the lower end of a vertically extending support rod (3), and a support rod (3). a height control base (4) that can move the base plate (2) vertically; and a position that supports both the container (1) and the height control base (4) and allows them to be moved horizontally and vertically. It is equipped with a control stand (5). Further, the device includes a heat ray source (7) that emits heat rays (L) toward a reflecting mirror (6), and a heat ray (L) that is reflected by the mirror (6).
It is equipped with a heat ray concentrator (8) that converges the fluid material (A) in a dot shape near the upper surface of the fluid material (A) in the container (1), and the fluid material (A) is focused on the heat ray irradiation position based on the movement of the position control table (5). ) can be moved relatively.
この装置においては、熱線収束器(8)として凸レンズ
及び反射ミラー(6)を使用していたが、例えば熱線(
L)を反射し収束させる凹面鏡を用いてもよい。In this device, a convex lens and a reflecting mirror (6) were used as the heat ray concentrator (8).
A concave mirror that reflects and converges L) may also be used.
上記高さ制御台(4)及び位置制御台(5)の移動制御
は、NC等の自動制御や人手による制御等、適宜に行う
ことができる。Movement control of the height control table (4) and position control table (5) can be performed as appropriate, such as automatic control such as NC, manual control, etc.
本装置を用いて所望形状の固体の造形を行うには、先ず
容器(1)に熱硬化性流動物質(A)を入れ、つぎに支
持棒(3)を降下させてベースプレート(2)を流動物
質(A)中に浸漬し、上方からの熱線(L)照射に基づ
き流動物質(A)上面からベースプレート(2)上面に
及ぶ連続した硬化部分が得られる深さとなるように該ベ
ースプレート(2)を位置決めする。該位置決め後、流
動物質(A)の硬化に必要なエネルギレベルの熱線(L
)を熱線源(7)から発し、反射ミラー(6)及び熱線
収束器(8)でもって、該熱線(L)を点状に収束させ
つつベースプレート(2)上の流動物質(A)に集中照
射する。この状態で容器(1)を熱線(L)の集中箇所
に対し移動させ、得ようとする造形固体の形状に対応し
て選択的に熱線照射を行う。これにより、流動物質(A
)上面からベースプレート(2)上面に及ぶ硬化部分を
形成することができる。更に、該硬化部分上において、
前記深さに相当する深さをなすよう、ベースプレート(
2)を流動物質(A)中に沈降させ、該流動物質(A)
の上方から選択的熱線照射を行って前記硬化部分から連
続して上方へ延びた硬化部分を形成し、これらベースプ
レート(2)の沈降及び硬化部分の形成を繰り返し行う
。これにより、所望形状の固体を形成することができる
。To model a solid in a desired shape using this device, first pour the thermosetting fluid material (A) into the container (1), then lower the support rod (3) to flow the base plate (2). The base plate (2) is immersed in the substance (A) and irradiated with heat rays (L) from above to a depth such that a continuous hardened portion extending from the upper surface of the fluid substance (A) to the upper surface of the base plate (2) is obtained. position. After the positioning, a hot ray (L) with an energy level necessary for curing the fluid material (A) is applied.
) is emitted from a heat ray source (7), and the heat rays (L) are converged into a point shape using a reflecting mirror (6) and a heat ray concentrator (8) and concentrated on the fluid substance (A) on the base plate (2). irradiate. In this state, the container (1) is moved to a location where the heat rays (L) are concentrated, and heat rays are irradiated selectively in accordance with the shape of the shaped solid to be obtained. This allows the fluid substance (A
) A hardened portion can be formed extending from the top surface to the top surface of the base plate (2). Furthermore, on the hardened portion,
Place the base plate (
2) is precipitated in a fluid material (A), and the fluid material (A)
Selective heat ray irradiation is performed from above to form a hardened portion extending continuously upward from the hardened portion, and the settling of the base plate (2) and the formation of the hardened portion are repeated. Thereby, a solid having a desired shape can be formed.
第1図に示す硬化部分(B)は、上記所望形状の固体を
形成する途上での段階的硬化が繰り返されているもので
ある。The cured portion (B) shown in FIG. 1 is one in which stepwise curing is repeated during the formation of a solid having the desired shape.
上述したように、熱線源(7)は、電気から熱への高い
エネルギ変換効率を有しており、高出力の熱線照射を利
用することにより、固体形成に要する時間の短縮及びこ
れに基づくランニングコストの低減を図ることができる
。また、例えば数ワットもの赤外線等の熱線を発するレ
ーザ発振器であっても小型であり、立体造形装置全体の
小型化を図ることができる。しかも、このようなレーザ
発振器は、大出力型であっても比較的安価に入手できる
ため、該固体形成のための設備費を軽減することも可能
である。As mentioned above, the heat ray source (7) has high energy conversion efficiency from electricity to heat, and by using high-output heat ray irradiation, the time required for solid formation can be shortened and the running speed based on this can be reduced. Cost reduction can be achieved. Furthermore, even a laser oscillator that emits several watts of heat rays, such as infrared rays, is small in size, and the entire three-dimensional modeling apparatus can be made smaller. Furthermore, such a laser oscillator, even if it is a high output type, can be obtained at a relatively low cost, so it is possible to reduce the equipment cost for forming the solid state.
実験例
熱線源としてNd:YAGレーザ発振器(日本電気■製
5L115形、波長1.06μm)を用い、指環式エポ
キシ、ブタンジオール、熱開始剤(CP −77)を混
合したものにカーボン粉末(油煙)を熱吸収剤として約
0.5重量%混入し、これを熱硬化性流動物質として使
用した。なお、熱線収束器としては、焦点距離70mm
のガラス製凸レンズを用い、上記方法に従い、第2図に
示す特定の条件設定の下に、幅0゜2 rim、厚み0
. 5mmの柱状の固体形成を行った。Experimental Example A Nd:YAG laser oscillator (5L115 type manufactured by NEC ■, wavelength 1.06 μm) was used as a heat ray source. ) was mixed as a heat absorbent in an amount of about 0.5% by weight, and this was used as a thermosetting fluid material. In addition, as a heat ray concentrator, the focal length is 70 mm.
Using a glass convex lens of
.. A 5 mm columnar solid was formed.
第2図中、(α)は上記レーザ照射による非硬化領域を
、(β)は局所硬化領域を、(γ)は広範囲硬化領域を
それぞれ示す。In FIG. 2, (α) indicates a non-cured area by the laser irradiation, (β) indicates a locally cured area, and (γ) indicates a wide range cured area.
その結果、上述の光学的造形法に比べ、約10倍の速さ
で上記固体形成を行うことができた。As a result, the above-mentioned solid formation could be performed about 10 times faster than the above-mentioned optical modeling method.
このような立体造形法においては、−旦、熱線照射に基
づく硬化部分形成を行った後、該硬化部分上に流動物質
(A)を付加する場合、ベースプレート(2)の下降距
離が極めて僅かであることから、該流動物質(A)の表
面張力により、硬化部分上に該流動物質(A)が流入し
ないことがあり、上記付加の確実性に欠け、更に人手に
よる硬化部分上への流動物質(A)の導入を要する。従
って、ベースプレート(2)を上記深さよりも下降させ
て硬化部分上に流動物質(A)を流入させ、その後ベー
スプレート(2)を上昇させて流動物! (A)上面と
硬化部分上面との距離を上記深さに相当する距離とすれ
ば、流動物質(A)の付加を確実に行うことができ、人
手による手間を要しない。In such a three-dimensional modeling method, when the fluid material (A) is added onto the hardened portion after first forming a hardened portion based on heat ray irradiation, the downward distance of the base plate (2) is extremely small. Due to the surface tension of the fluid substance (A), the fluid substance (A) may not flow onto the hardened part, and the above-mentioned addition is not reliable. (A) must be introduced. Therefore, the base plate (2) is lowered below the above depth to allow the fluid material (A) to flow onto the hardened portion, and then the base plate (2) is raised to allow the fluid material to flow! (A) If the distance between the upper surface and the upper surface of the hardened portion is set to a distance corresponding to the above-mentioned depth, the fluid substance (A) can be added reliably and no manual labor is required.
また、容器(1)を、ベースプレート(2)沈降のため
に降下される支持棒(3)の浸漬体積増分の熱硬化性流
動物質(A)を溢れ出させる構造とし、該流動物質(A
)上面の高さを一定に保持しつつ固体形成を行ってもよ
い。このようにすれば、位置制御台(5)の垂直方向へ
の移動制御を要しないという利点がある。Further, the container (1) is configured to overflow the thermosetting fluid material (A) corresponding to the immersion volume increment of the support rod (3) that is lowered to settle the base plate (2).
) Solid formation may be performed while keeping the height of the top surface constant. This has the advantage that it is not necessary to control the movement of the position control table (5) in the vertical direction.
なお、本発明方法は、上述のように、熱硬化性流動物質
への熱線照射に基づき所望形状の固体形成を行うことを
特徴とするものであり、この特徴を備える限りにおいて
、熱線照射に基づく種々の造形法に適用されるものであ
る。従って、上記実施例に述べたベースプレート上方へ
の熱線照射に基づく造形法の外、例えば容器内の熱硬化
性流動物質の上面を僅かずつ上昇させ上方からの熱線照
射により固体を形成する方法、熱線透過性を有する底壁
を備える液密な箱状有底体を前記流動物質中で上昇させ
上方からの熱線照射に基づき固体を形成する方法に適用
され得る。更にまた、容器の側壁又は底壁の一部若しく
は全部を熱線透過性を有する物質で形成し、該物質に向
けて硬化部分支持用の基盤面を配置し、該基盤面を熱線
透過性物質から遠ざけつつ該物質を介する熱線照射に基
づき基盤面に固体を形成する方法などにも適用され得る
。As mentioned above, the method of the present invention is characterized by forming a solid in a desired shape based on heat ray irradiation on a thermosetting fluid material. It is applied to various modeling methods. Therefore, in addition to the modeling method based on heat ray irradiation above the base plate described in the above embodiment, for example, there is a method in which the upper surface of the thermosetting fluid material in the container is slightly raised and a solid is formed by heat ray irradiation from above. It can be applied to a method in which a liquid-tight box-shaped bottomed body having a permeable bottom wall is raised in the fluid material and a solid is formed based on heat ray irradiation from above. Furthermore, part or all of the side wall or bottom wall of the container is made of a material that is transparent to heat rays, a base surface for supporting the cured portion is arranged facing the material, and the base surface is made of a material that is transparent to heat rays. It can also be applied to a method of forming a solid on a substrate surface based on heat ray irradiation through the substance while keeping the substance at a distance.
上記箱状有底体を用いた固体造形法における硬化部分上
への熱硬化性流動物質の付加方法においては、該有底体
を上昇させるべき距離が極めて僅かであるために該有底
体と硬化部分とを剥離し得ないことがあり、流動物質付
加の確実性に欠ける。In the above-mentioned method of adding a thermosetting fluid material onto a hardened part in the solid-state modeling method using a box-shaped bottomed body, the distance to which the bottomed body must be raised is extremely small; It may not be possible to separate the hardened portion, and the reliability of adding the fluid substance is lacking.
このため、有底体を連続した硬化部分が得られる深さよ
り高く上昇させて該有底体の底壁と硬化部分との付着を
剥離し、その後有底体を下降させて底壁下面と硬化部分
上面との距離を、前記深さに相当する距離とするのが好
ましい。このことは、上記基盤面を用いた固体造形法に
おいても同様である。即ち、基盤面を連続した硬化部分
が得られる距離より大きく遠ざけて該硬化部分と熱線透
過性物質との付着を剥離し、その後基盤面を該物質に近
付けて硬化部分面と物質面との距離を適当なものとする
のが好ましい。For this purpose, the bottomed body is raised above the depth at which a continuous hardened portion is obtained, and the adhesion between the bottom wall of the bottomed body and the hardened portion is peeled off, and then the bottomed body is lowered to connect the lower surface of the bottom wall and the hardened portion. It is preferable that the distance from the upper surface of the portion corresponds to the depth. This also applies to the solid-state modeling method using the above-mentioned base surface. That is, the base surface is moved farther away than the distance that allows a continuous hardened part to be removed, and the adhesion between the hardened part and the heat-transparent material is peeled off, and then the base face is brought closer to the material to reduce the distance between the hardened part surface and the material surface. It is preferable to set it to an appropriate value.
また、これら方法における熱線照射は、例えば熱伝導体
を用いた熱線照射、複数の熱線照射源から発せられる熱
線を一点に交差させ集中的な高エネルギ領域を形成する
熱線照射、照射熱線の軸に垂直な断面における高エネル
ギ部分が環状の分布を呈する熱線の照射などを採用でき
る。上記複数の熱線を交差させる熱線照射を採用すれば
、該熱線照射箇所において熱エネルギを非線形的に増加
させることができ、所望形状の固体を速やかに形成する
ことができる。また、上記環状の熱エネルギ分布を有す
る熱線照射を行えば、該熱線照射の1度の走査で比較的
太い帯状固体を高い寸法精度で形成することができ、所
望形状の固体形成を効率良いものとする。In addition, heat ray irradiation in these methods includes, for example, heat ray irradiation using a thermal conductor, heat ray irradiation in which heat rays emitted from multiple heat ray irradiation sources intersect at one point to form a concentrated high-energy region, and It is possible to employ heat ray irradiation in which high energy portions in a vertical cross section exhibit an annular distribution. By employing heat ray irradiation in which the plurality of heat rays intersect, the thermal energy can be nonlinearly increased at the heat ray irradiation location, and a solid having a desired shape can be quickly formed. Furthermore, if heat ray irradiation with the above-mentioned annular thermal energy distribution is performed, a relatively thick band-shaped solid can be formed with high dimensional accuracy in one scan of the heat ray irradiation, and solids with a desired shape can be formed efficiently. shall be.
なお、これら上記した造形法においては、固体形成過程
における硬化部分の変形を防止するために、変形発生の
おそれある箇所に付着され、又は該箇所と他の箇所とに
わたって延びる補強用の形状保持部を同時に硬化形成し
つつ固体形成を行い、該形成後に前記形状保持部を必要
に応じて除去するのが好ましい。In addition, in these above-mentioned modeling methods, in order to prevent deformation of the hardened part during the solid formation process, a reinforcing shape-retaining part is attached to a part where deformation may occur or extends between the part and other parts. It is preferable to perform solid formation while curing and forming at the same time, and to remove the shape-retaining portion as necessary after the formation.
更に、上記変形を防止するため、熱線照射箇所の移動速
度に応じて照射熱線のエネルギ發を調節し、該照射箇所
に対する熱エネルギ照射総量を実質上一定に保持しつつ
固体形成を行うこともできる。Furthermore, in order to prevent the above deformation, it is also possible to adjust the energy level of the irradiated heat rays according to the moving speed of the heat ray irradiation location, and to perform solid formation while keeping the total amount of heat energy irradiated to the irradiation location substantially constant. .
また、固体形成後、該固体の支持面からの除去又は剥離
を良好なものとするため、該固体形成後に除去可能な形
状の支持部が所望形状の固体と支持面との間に介在する
ように、該支持部を熱線照射に基づき形成して前記固体
形成を行い、該形成後に前記支持部を必要に応じて除去
してもよく、固体形成後に除去可能な形状の支持部材を
固体支持面上に着脱可能に配設し、該支持部材に支持さ
れるように前記固体形成を行い、該形成後に前記支持部
材を必要に応じて除去してもよい。In addition, in order to facilitate the removal or peeling of the solid from the supporting surface after the solid is formed, a supporting portion having a shape that can be removed after the solid is formed is interposed between the solid having the desired shape and the supporting surface. The support part may be formed based on heat ray irradiation to form the solid, and after the formation, the support part may be removed as necessary, and the support member in a shape that can be removed after the solid formation is used as the solid support surface. The solid state may be formed so as to be supported by the support member, and the support member may be removed as necessary after the formation.
発明の効果
以上から明らかなように、本発明方法によれば、以下に
述べる効果を得ることができる。Effects of the Invention As is clear from the above, according to the method of the present invention, the following effects can be obtained.
即ち、熱硬化性流動物質に対し、熱線照射箇所を相対移
動させ、所望形状の固体を形成するというように、硬化
に必要なエネルギを熱により付与するので、一般に電気
から熱への高いエネルギ変換効率を有し、それでいて小
型の熱線発振器を用いることができる。これにより、上
記所望形状の固体形成を行い得る立体造形装置の小型化
を図ることができると共に、所望形状固体の形成を、高
いエネルギ変換効率の下に短時間とすることができ、ラ
ンニングコストを低置にし得る。しかも、このようなレ
ーザ発振器は、大出力型であっても比較的安価に入手で
きるため、該固体形成のための設備費を軽減することも
可能である。In other words, the heat ray irradiation point is moved relative to the thermosetting fluid material to form a solid in the desired shape, and the energy necessary for curing is provided by heat, so generally there is a high energy conversion from electricity to heat. An efficient yet small hot wire oscillator can be used. As a result, it is possible to downsize the three-dimensional modeling apparatus capable of forming a solid in the desired shape, and also to form a solid in a desired shape in a short time with high energy conversion efficiency, reducing running costs. Can be placed low. Furthermore, such a laser oscillator, even if it is a high output type, can be obtained at a relatively low cost, so it is possible to reduce the equipment cost for forming the solid state.
第1図は本発明方法を実施するための装置の1例を示す
概略図、第2図は本発明の1実施例にかかる熱硬化式立
体造形法においてレーザ出力と該レーザの送り速度との
関係を示すグラフである。
(1)・・・・・・容器
(2)・・・・・・ベースプレート
(7)・・・・・・熱線発振器
(A)・・・・・・熱硬化性流動物質
(B)・・・・・・硬化部分
(L)・・・・・・熱線
(以 上)
第
図
、L
第
図
レーサ゛−出力(w)FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a diagram showing the relationship between laser output and feed rate of the laser in a thermosetting three-dimensional modeling method according to an embodiment of the present invention. It is a graph showing a relationship. (1) Container (2) Base plate (7) Heat ray oscillator (A) Thermosetting fluid material (B) ...Hardened part (L) ...Heat wire (above) Fig. L Fig. Laser output (w)
Claims (1)
容し、該流動物質中に熱線照射を行いつつ、該熱線照射
箇所を前記容器に対し水平及び垂直方向に造形対象の形
状に応じて相対移動させ、所望形状の固体を形成するこ
とを特徴とする熱硬化式立体造形法。(1) A thermosetting fluid material that hardens with heat is placed in a container, and while heat rays are irradiated into the fluid material, the heat rays are irradiated in horizontal and vertical directions with respect to the container according to the shape of the object to be modeled. A thermosetting three-dimensional modeling method characterized by forming a solid body in a desired shape by relatively moving the solid body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63265828A JPH02111530A (en) | 1988-10-20 | 1988-10-20 | Thermosetting stereolithography method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63265828A JPH02111530A (en) | 1988-10-20 | 1988-10-20 | Thermosetting stereolithography method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02111530A true JPH02111530A (en) | 1990-04-24 |
Family
ID=17422619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63265828A Pending JPH02111530A (en) | 1988-10-20 | 1988-10-20 | Thermosetting stereolithography method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02111530A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003037606A1 (en) * | 2001-10-26 | 2003-05-08 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Method for producing three-dimensional bodies or three-dimensional surfaces by laser radiation |
-
1988
- 1988-10-20 JP JP63265828A patent/JPH02111530A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003037606A1 (en) * | 2001-10-26 | 2003-05-08 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Method for producing three-dimensional bodies or three-dimensional surfaces by laser radiation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62275734A (en) | Method for forming solid | |
US7063524B2 (en) | Apparatus for increased dimensional accuracy of 3-D object creation | |
JPS6340650B2 (en) | ||
CN1300667A (en) | Method and apparatus for forming three-layer laminated products from optical solidified liquid | |
JPS61114818A (en) | Apparatus for forming solid configuration | |
CN112338202A (en) | Metal material 3D printing method, system and equipment based on mixed laser source | |
JP3066606B2 (en) | Method and apparatus for manufacturing a three-dimensional object | |
JPH0222035A (en) | optical modeling | |
JPH02153722A (en) | optical modeling | |
JP3782049B2 (en) | Stereolithography method and apparatus therefor | |
JPH02111530A (en) | Thermosetting stereolithography method | |
JP2617532B2 (en) | Method and apparatus for forming a three-dimensional shape | |
CN104924616A (en) | 3D printing device and 3D printing method | |
CN110014647B (en) | Internal stereoscopic light projection curing molding 3D printing device and molding method thereof | |
JPH10249943A (en) | Stereolithography | |
JPH01228828A (en) | Optical shaping method | |
JPH0533900B2 (en) | ||
JPH02108519A (en) | Formation of three-dimensional shape and device therefor | |
KR102078571B1 (en) | 3 Dimension Printer | |
JPH07119064B2 (en) | Solid model manufacturing method | |
WO2022248069A1 (en) | Heat transfer device for additive manufacturing | |
KR100236566B1 (en) | Multi-optical molding device and method | |
JP3170832B2 (en) | Optical molding method | |
JPH02103127A (en) | Method and apparatus for forming three-dimensional configuration | |
JPH0562579B2 (en) |