JPH02110470A - electrophotographic photoreceptor - Google Patents
electrophotographic photoreceptorInfo
- Publication number
- JPH02110470A JPH02110470A JP26376188A JP26376188A JPH02110470A JP H02110470 A JPH02110470 A JP H02110470A JP 26376188 A JP26376188 A JP 26376188A JP 26376188 A JP26376188 A JP 26376188A JP H02110470 A JPH02110470 A JP H02110470A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- photoreceptor
- carbon
- resistance
- surface layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/043—Photoconductive layers characterised by having two or more layers or characterised by their composite structure
- G03G5/0433—Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08221—Silicon-based comprising one or two silicon based layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08285—Carbon-based
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光導電層としてアモルファスシリコン系材料
を用いた電子写真感光体に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor using an amorphous silicon-based material as a photoconductive layer.
近年、アモルファス水素化シリコン(a−Si(H))
は光感度、耐熱性に優れ、硬度が硬く、大面積の薄膜が
比較的容易に得られ、特に環境汚染の心配もないことか
ら、電子写真感光体用の光導電性材料として注目され開
発が進められている。In recent years, amorphous hydrogenated silicon (a-Si(H))
Because it has excellent photosensitivity and heat resistance, has high hardness, can be formed into large-area thin films relatively easily, and is not particularly concerned about environmental pollution, it has attracted attention and development as a photoconductive material for electrophotographic photoreceptors. It is progressing.
a−3i(H) は、−船釣にシリコンを含むガス、
例えばンラン(Sl)14>ガスを原料ガスとして用い
たプラズマCVDで作製される。この方法で作製される
a−3i(H) は、禁制帯中の局在準位が少なくて
光導電性が大きく、また、シボラン(BJ6)、フォス
フイン(PHi)などのガスを原料ガスに適当に混合す
ると電導文制御1価電子制御が可能で高抵抗化すること
ができ、さらに、適当なガスを原料ガスに混入すること
により炭素(C)、窒素(N)酸素(0)などをa−S
i (H) 中に導入することもでき、感光体とし
て要望される帯電性能、光感度。a-3i (H) is - gas containing silicon for boat fishing,
For example, it is produced by plasma CVD using Sl 14> gas as a raw material gas. a-3i(H) produced by this method has few localized levels in the forbidden band and has high photoconductivity, and it is also possible to use gases such as ciborane (BJ6) and phosphine (PHi) as the raw material gas. When mixed with the raw material gas, conductivity control and monovalent electron control are possible and high resistance can be achieved.Furthermore, by mixing an appropriate gas into the raw material gas, carbon (C), nitrogen (N), oxygen (0), etc. -S
i (H) can also be introduced into the photoreceptor, and has the required charging performance and photosensitivity as a photoreceptor.
温度特性1機械的強度などを満足し得る性能を付与する
ことができるので、a−3i(tl) からなる感光
層を有する感光体は非常に優れた性能を有するものとな
る。A photoreceptor having a photosensitive layer made of a-3i(tl) has extremely excellent performance because it can provide properties that satisfy temperature characteristics 1, mechanical strength, and the like.
ところが、このようなa−Si(H) を表面層とす
る感光体は、初期的には良好な画像が得られるものの、
長期間大気中あるいは高湿中に保存しておいた後画像複
写した場合、しばしば画像不良を発生することが判明し
ている。また、多数回複写プロセスを経験するとしだい
に画像ぼけを生じてくることもわかっている。このよう
な劣化した感光体は特に高湿中において、画面ぼけを発
生しやすく、複写回数が増すと画像ぼけを生じ始める臨
界湿度はしだいに下がる傾向があることが確かめられて
いる。However, although a photoreceptor with such a-Si(H) as a surface layer can initially produce good images,
It has been found that when images are copied after being stored in the atmosphere or in high humidity for a long period of time, image defects often occur. It has also been found that images become increasingly blurred as the copying process is repeated many times. It has been confirmed that such deteriorated photoreceptors are likely to cause screen blur, especially in high humidity environments, and that as the number of copies increases, the critical humidity at which image blur begins to occur tends to gradually decrease.
上述のごと< 、a−3i(H) を表面層とする感
光体は長期にわたって大気や湿気にさらされることによ
り、あるいは複写プロセスにおけるコロナ放電などで生
成される化学種(オゾン、窒素酸化物。As mentioned above, a photoreceptor with a-3i(H) as a surface layer is exposed to the atmosphere or moisture for a long period of time, or is exposed to chemical species (ozone, nitrogen oxides, etc.) generated by corona discharge during the copying process.
発生期酸素など)により、感光体最表面が影響を受けや
すく何らかの化学的な変質によって画像不良を発生する
ものと考えられるが、その劣化メカニズムについてはこ
れまでにまだ十分な解明はなされていない。It is thought that the outermost surface of the photoreceptor is easily affected by nascent oxygen (e.g., nascent oxygen) and some kind of chemical alteration causes image defects, but the mechanism of this deterioration has not yet been fully elucidated.
このような画像不良の発生を防止し耐刷性、耐湿性を向
上させるために、感光体の表面に保護層を設けて化学的
安定化を図る方法が試みられている。In order to prevent the occurrence of such image defects and improve printing durability and moisture resistance, attempts have been made to provide chemical stabilization by providing a protective layer on the surface of the photoreceptor.
例えば2表面保護層として水素化アモルファス炭化シリ
コン(a−3+++C+−x(H)+ 0<X4) 、
あるいは水素化アモルファス窒素化シリコン(a−3+
xN1−x()I)Q<x<l)を設けることによって
感光体表面層の複写プロセスあるいは環境男囲気による
劣化を防ぐ方法が知られている(特開昭57−1155
59号公報)。For example, hydrogenated amorphous silicon carbide (a-3+++C+-x(H)+0<X4) as the second surface protective layer,
Or hydrogenated amorphous silicon nitride (a-3+
There is a known method for preventing deterioration of the surface layer of a photoreceptor due to the copying process or environmental atmosphere by providing xN1-x()I)Q<x<l (Japanese Patent Laid-Open No. 57-1155).
Publication No. 59).
しかし、表面保護層中の炭素濃度あるいは窒素濃度を最
適な値に選べば耐刷性をかなり改良することができるが
、高湿度雰囲気中(相対湿度80%以上)での耐湿性を
維持することができず、数万枚の複写プロセスを経験す
ると相対湿度60%台で画像ぼけを発生し、これらの表
面保護層を付与しても、耐剛性、耐湿性を大幅に向上す
ることができない状況にある。However, if the carbon concentration or nitrogen concentration in the surface protective layer is selected to an optimal value, printing durability can be considerably improved, but it is difficult to maintain moisture resistance in a high humidity atmosphere (relative humidity of 80% or more). However, after copying tens of thousands of sheets, image blur occurs at relative humidity levels of 60%, and even with these surface protective layers, rigidity and moisture resistance cannot be significantly improved. It is in.
さらに、アモルファス炭素(a−C) がこのような
表面保護層の材料として非常に有効であることが知られ
てきたが、a−Cを用いることにより感光体の化学的安
定性、耐湿性は大幅に向上するが、画像特性に結びつく
残留電位が高くなるため、表面層を厚くつけることがで
きなかった。Furthermore, it has been known that amorphous carbon (a-C) is very effective as a material for such a surface protective layer, but the chemical stability and moisture resistance of the photoreceptor can be improved by using a-C. Although this is a significant improvement, the residual potential, which affects image characteristics, increases, making it impossible to apply a thick surface layer.
本発明の目的は、前述の欠点を除去して、長期保存およ
び繰り返し使用に際して特性劣化現象を起こさず、高湿
雰囲気中においても出力画像不良などの特性の劣化がほ
とんどみられず、さらに現像1 クリーニングなどの出
力画像形成プロセスにより感光体表面が磨耗や損傷を受
けにくい、耐湿性、耐刷性に優れた感光体を提供するこ
とにある。It is an object of the present invention to eliminate the above-mentioned drawbacks, to prevent characteristic deterioration phenomena during long-term storage and repeated use, to hardly cause any deterioration in characteristics such as defective output images even in a high humidity atmosphere, and furthermore, to It is an object of the present invention to provide a photoreceptor whose surface is not easily abraded or damaged by output image forming processes such as cleaning, and which has excellent moisture resistance and printing durability.
さらに表面層の厚付けによる残留電位の増加を防ぐこと
にある。Furthermore, the purpose is to prevent an increase in residual potential due to thickening of the surface layer.
上記目的を達成するために、本発明によれば、導電性基
体上にアモルファスシリコン系材料からなる光導電層を
存し、(の光導電層がバッファ層を介してアモルファス
炭素(a−C)からなる表面層により被覆されてなる感
光体において、表面層を微量のガリウムを含む炭素とす
る。In order to achieve the above object, according to the present invention, a photoconductive layer made of an amorphous silicon-based material is provided on a conductive substrate, and the photoconductive layer is made of amorphous carbon (a-C) through a buffer layer. In the photoreceptor coated with a surface layer consisting of carbon, the surface layer is made of carbon containing a trace amount of gallium.
このような構成の感光体では、帯電された電荷は自由表
面ではなく、第1の層(高抵抗層)と第2の層(低抵抗
層)の界面に蓄積される。このため、残留電位は第1の
層で定まり、第2の層を7(しても影響は出ない。すな
わち、第2の層の厚付けによる耐刷性のアップが可能と
なるのである。In a photoreceptor having such a configuration, charges are accumulated not on the free surface but at the interface between the first layer (high resistance layer) and the second layer (low resistance layer). Therefore, the residual potential is determined by the first layer, and there is no effect even if the second layer is added to 7 (7). In other words, printing durability can be increased by increasing the thickness of the second layer.
また、第2の層の抵抗を下げるための手段として、本研
究者達が鋭意研究を重ねた結果、不純物の添加が有効で
あることを見い出した。In addition, as a means of lowering the resistance of the second layer, the present researchers have conducted extensive research and have found that adding impurities is effective.
弗素添加は光学的エネルギーギャップを広げる効果があ
る。逆にエネルギーギャップを一定(表面層としての窓
効果を考えるとa−3i感光体では2、4eV以上必要
)として見ると、電気抵抗が低くなったことと同義であ
る。Fluorine addition has the effect of widening the optical energy gap. On the other hand, if we consider the energy gap to be constant (2.4 eV or more is required for the a-3i photoreceptor considering the window effect of the surface layer), this is synonymous with a decrease in electrical resistance.
6aを添加してドナー原子を増加させることも可能であ
る。また、この効果が、概ね100〜110000pp
の範囲で顕著であることも見い出した。It is also possible to increase the number of donor atoms by adding 6a. In addition, this effect is approximately 100 to 110,000pp
We also found that it was significant in the range of
以下、本発明の感光体の実施例について図面を参照しな
がら詳細を説明する。Hereinafter, embodiments of the photoreceptor of the present invention will be described in detail with reference to the drawings.
第1図は本発明による感光体の一実施例の層構成を示す
模式的断面図である。FIG. 1 is a schematic cross-sectional view showing the layer structure of an embodiment of the photoreceptor according to the present invention.
導電性基体1は円筒状、板状、シート状いずれでも良く
、材質的にはアルミニウム、ステンレス鋼などの金属、
あるいはガラス、樹脂上に導電処理をほどこしたもので
も良い。The conductive substrate 1 may be cylindrical, plate-like, or sheet-like, and may be made of metal such as aluminum, stainless steel, etc.
Alternatively, it may be made of glass or resin that has been subjected to conductive treatment.
ブロッキング層2は導電性基体lからの電荷の注入を阻
止するために設けられる。材料的には八j! 、0.、
A j’ N、 Si0.5in2. 水素化弗素
化アモルファス炭化シリコン(a−3i l −xCx
(F、 H))、 水素化アモルファス窒化ンリコ
ン<a−3iN−(H))、 水素化アモルファス炭
素(a−C(+1) )、 弗素化アモルファス炭素
(a−C(F))、周期律表■族やV族の元素などをド
ープしたa−C(H)、 a−C(F)、 a−3i(
H) などを使用できる。膜厚は1μm以下と薄い方
が良い。The blocking layer 2 is provided to prevent charge injection from the conductive substrate l. 8j in terms of materials! ,0. ,
A j'N, Si0.5in2. Hydrogenated fluorinated amorphous silicon carbide (a-3i l -xCx
(F, H)), hydrogenated amorphous nitride silicon<a-3iN-(H)), hydrogenated amorphous carbon (a-C(+1)), fluorinated amorphous carbon (a-C(F)), periodic law a-C(H), a-C(F), a-3i(
H) etc. can be used. The thinner the film thickness is, 1 μm or less, the better.
光導電層3は対象とする光の吸収能に優れ、かつ光導電
率の大きい材料が好ましく 、a−8i(H)。The photoconductive layer 3 is preferably made of a material that has excellent absorption ability for target light and high photoconductivity, such as a-8i (H).
a−3i(F、11>、 a−3il−x[:1L(
H)(0<x<0.3)、 a−5iNx(H)(0<
X<0.2)、 a−SiDx(11)(0<x<0.
1)、 a−3i、−xGex(If)などや、これら
に周期律表m族、■族の元素などをドープした材料が好
ましい。膜厚は3μm以上60μm以下が実用上好まし
い。a-3i(F, 11>, a-3il-x[:1L(
H)(0<x<0.3), a-5iNx(H)(0<
X<0.2), a-SiDx(11) (0<x<0.
1), a-3i, -xGex (If), etc., and materials in which these are doped with elements of Group M and Group II of the periodic table are preferable. The film thickness is practically preferably 3 μm or more and 60 μm or less.
バッファ層4の目的はより基体側の層1例えば光導電層
3と表面層5との材料的異質性を緩和することである。The purpose of the buffer layer 4 is to alleviate material heterogeneity between the layer 1 closer to the substrate, such as the photoconductive layer 3, and the surface layer 5.
材料的には、a−C(H)、 a−C(H,F)。In terms of materials, a-C(H), a-C(H,F).
a−3i+−x[x(H)(0<x<1)、 a−S
i+−xCx(F、)I)(0<x<1>a−S+Nx
(H)(0<x<4/3)、 a−8+0x()I)(
0<x<2)、 a 5IOK(F、 H) (0<に
<2)などを使用できる。バッファ層4の膜厚は、分光
感度1残留電位、隣接する層上の電気的整合性などの兼
ね合いで決まるが、1μm以下が望ましい。a-3i+-x[x(H) (0<x<1), a-S
i+-xCx(F,)I)(0<x<1>a-S+Nx
(H) (0<x<4/3), a-8+0x()I)(
0<x<2), a 5IOK(F, H) (0< to <2), etc. can be used. The thickness of the buffer layer 4 is determined by the spectral sensitivity 1 residual potential, electrical consistency on adjacent layers, etc., and is preferably 1 μm or less.
表面層5は水素を含むアモルファス炭素(a−C(H)
)からなる層であって、基本的にX線あるいは電子線に
よる回折像が明確でない膜であり、たとえ一部に結晶部
を含んだとしてもその比率は低いものである。a−C(
H)表面層中に含有される水素は炭素の未結合手に結合
してその安定化に寄与する。The surface layer 5 is made of amorphous carbon containing hydrogen (a-C(H)
), and is basically a film whose diffraction pattern by X-rays or electron beams is not clear, and even if it contains some crystal parts, the proportion thereof is low. a-C(
H) Hydrogen contained in the surface layer binds to the dangling bonds of carbon and contributes to its stabilization.
表面@5はCと日を含む炭化水素ガスを、例えばグロー
放電分解法により分解してa−C(H)膜を成膜し形成
するが、そのときの成膜条件により得られるa−C(H
)膜の特性が異なってくる。一般に、同−原料では原籾
ガスの流量を多くすると、また、ガス圧を高くするとE
g、電気抵抗が高く、硬度が小さくなる。Surface @5 is formed by decomposing hydrocarbon gas containing C and hydrogen, for example, by glow discharge decomposition method to form an a-C(H) film. (H
) The properties of the membrane will differ. Generally speaking, for the same raw material, if the flow rate of raw rice gas is increased and the gas pressure is increased, the E
g, electrical resistance is high and hardness is low.
本発明者等の知見によれば、a−C(H)からなる層中
に含有される水素原子と炭素原子との結合形態は炭素原
子同士の結合軟調を反映しており、形成されたa−[(
+1)層が電子写真感光体の表面層として適用され得る
か否かを左右する大きな要因の一つであって重要である
ことが判明している。炭素原子同士の結合状態としては
ダイヤモンド結合(四配位)、グラファイト結合(三配
位)などがある。According to the findings of the present inventors, the bonding form between hydrogen atoms and carbon atoms contained in the layer consisting of a-C(H) reflects the soft bonding between carbon atoms, and the formed a −[(
It has been found that the +1) layer is one of the major factors that determines whether or not the layer can be applied as a surface layer of an electrophotographic photoreceptor and is important. Bonding states between carbon atoms include diamond bonds (tetracoordinated) and graphite bonds (tricoordinated).
グラファイト結合や炭素と水素とからなるポリマー状結
合(−C)+2−)nを主体とするa−C(H)膜は耐
薬品性に劣り、また機械的強度にも劣ることが知られて
おり、他方、ダイヤモンド結合を主体とするa−C(I
f)膜は耐薬品性および機械的強度に著しく優れている
ことが知られている。It is known that a-C(H) films, which are mainly composed of graphite bonds and polymeric bonds (-C)+2-)n made of carbon and hydrogen, have poor chemical resistance and mechanical strength. On the other hand, a-C(I
f) The membrane is known to have excellent chemical resistance and mechanical strength.
本発明者等はこのへに鑑みa−C(H)膜の赤外吸収ス
ペクトルとその耐薬品性および機械的強度について鋭意
検討を重ねてきたが、その結果によれば、形成されるa
−C(H)表面層が電子写真感光体の表面保護層として
十分機能し得るためには、a−C(H)表面層の赤外吸
収スペクトルの2920cm−’における吸収係数α、
と2960cm ’における吸収係数α2との比α2/
α、の値が0.8以上とされ諮(好適である。In view of this, the present inventors have conducted intensive studies on the infrared absorption spectrum of the a-C(H) film, its chemical resistance, and mechanical strength, and the results show that the a-C(H) film formed by
In order for the -C(H) surface layer to function sufficiently as a surface protective layer of the electrophotographic photoreceptor, the absorption coefficient α at 2920 cm-' of the infrared absorption spectrum of the a-C(H) surface layer,
and the absorption coefficient α2 at 2960 cm', the ratio α2/
The value of α is preferably 0.8 or more.
炭素未結合手の安定化の手段としては、水素のみでなく
、弗素、酸素1窒素によっても可能である。As a means for stabilizing carbon dangling bonds, not only hydrogen but also fluorine, oxygen and nitrogen can be used.
第1図に示す構造を有する感光体の製造には、例えば第
2図に一例を示すようなアモルファス膜の生成装置が用
いられ、真空槽11の内部に基体lの保持部12とそれ
に対向する電極13が配置され、保持部12.電極13
にはそれぞれヒータ14.15が備えられている。トリ
クロルエチレンで脱脂洗浄したアルミニウム合金の円筒
基体1を保持部12に固定し、真空槽11内の圧力を1
0−’Torrになるように排気ポンプ16により排気
バルブ17を介して排気する。基体1および電極13の
温度を所定温度になるようにヒータ14およびヒータ1
5により加熱する。To manufacture a photoreceptor having the structure shown in FIG. 1, an amorphous film producing apparatus such as the one shown in FIG. 2 is used, for example. The electrode 13 is arranged, and the holding part 12. Electrode 13
are each equipped with a heater 14,15. An aluminum alloy cylindrical base 1 that has been degreased and cleaned with trichlorethylene is fixed to the holding part 12, and the pressure inside the vacuum chamber 11 is set to 1.
The exhaust pump 16 exhausts the air through the exhaust valve 17 so that the pressure becomes 0-' Torr. Heater 14 and heater 1 are used to maintain the temperature of base 1 and electrode 13 to a predetermined temperature.
Heat according to step 5.
保持部12と基体1とは周方向の膜均一性を得るために
回転する。次に原料ガスの圧力容器21〜25の中から
成膜に必要なガスの圧力容器1例えば21のバルブ1B
を開け、流量調節計Igを通し、ストー/プバルブ20
を開けて、真空槽11の中にガスを供給する。他のガス
についても必要に応じて同様にして供給する。次に、槽
内圧力を所定の圧力1例えば0、001〜5 Torr
の範囲内の所定方圧に調整後、高周波(RF)電源31
から高周波<13.56 M Hz >電力を絶縁材3
2を通して電極13に供給し、基体lとの間にグロー放
電を発生させて成膜を行う。The holding part 12 and the base body 1 are rotated to obtain uniformity of the film in the circumferential direction. Next, from among the source gas pressure vessels 21 to 25, a pressure vessel 1 for gas necessary for film formation, for example, a valve 1B of 21
Open the valve, pass the flow controller Ig, and connect the stop/stop valve 20.
is opened and gas is supplied into the vacuum chamber 11. Other gases are also supplied in the same manner as necessary. Next, the pressure inside the tank is set to a predetermined pressure 1, for example, 0,001 to 5 Torr.
After adjusting to a predetermined pressure within the range of , the radio frequency (RF) power source 31
High frequency <13.56 MHz> power from insulation material 3
2 to the electrode 13, and a glow discharge is generated between it and the substrate 1 to form a film.
以下具体的な実施例について説明する。Specific examples will be described below.
実施例1
トリクロルエチレンで脱脂洗浄したアルミニウム合金円
筒基体220を第2図の製造装置の真空槽11内の保持
部12に装着し、次の条件で厚さ0.2μmのブロッキ
ング層2を形成した。Example 1 An aluminum alloy cylindrical substrate 220 that had been degreased and cleaned with trichlorethylene was attached to the holding part 12 in the vacuum chamber 11 of the manufacturing apparatus shown in FIG. 2, and a blocking layer 2 with a thickness of 0.2 μm was formed under the following conditions. .
SiH4(100%)流1 250cc/
分B2H6(5000ppm、 82ベース)流量
20cc 7分ガス圧 Q 5
7orrRF電力
基体温度
成膜時間
さらにこの上に、
25μmに形成した。SiH4 (100%) flow 1 250cc/
minB2H6 (5000ppm, 82 base) flow rate
20cc 7 minutes gas pressure Q 5
7 orr RF power substrate temperature film formation time Further on top of this, a film was formed to a thickness of 25 μm.
5t)14(100%)流量
82116 (20ppm、 Hz ヘ−ス) 流1ガ
ス圧
RF主電
力体温度
成膜時間
さらにこの上に、次の条件でバラ
さ0.1μmに形成した。5t) 14 (100%) Flow rate 82116 (20 ppm, Hz Hose) Flow 1 Gas pressure RF main power element temperature Film forming time Further, a film was formed with a variation of 0.1 μm under the following conditions.
SIH,(100%)流量
C)14(100%)流量
BJ@(2000pHm、 )12ベース)流量ガス圧
RF主電
力体温度
成膜時間
0W
200℃
10分
次の条件で光導電層3を厚さ
200cc 7分
1Qcc 7分
1.2Torr
00W
200℃
3時閉
ファ層4を厚
100cc 7分
80cc 7分
15cc 7分
l QTorr
00W
200℃
2分
さらにこの上に、次の条件で8771層側の層5a(0
,1μm厚)、引き続いて自由表面側の層5b(2μm
厚)を形成し、表面層5とした。SIH, (100%) flow rate C) 14 (100%) flow rate BJ @ (2000 pHm, ) 12 base) flow rate Gas pressure RF main power body temperature Filming time 0W 200°C 10 minutes The photoconductive layer 3 is thickened under the following conditions. 200cc 7 minutes 1Qcc 7 minutes 1.2 Torr 00W 200℃ 3 o'clock closing layer 4 with a thickness of 100cc 7 minutes 80cc 7 minutes 15cc 7 minutes l QTorr 00W 200℃ 2 minutes Furthermore, on top of this, the 8771 layer side under the following conditions Layer 5a (0
, 1 μm thick), followed by a layer 5b (2 μm thick) on the free surface side.
thickness) was formed to form the surface layer 5.
CJs (99,99%)流m 20cc/分
10cc 7分ガス圧 0.05Torr
O,01TorrRF電力 20
0 W 300 w基体温度
100℃ 100℃成膜時間 5
分 30分以上のようにして作製した感光体の
光導電層3のエネルギーギャップ(Eg)は1.8eV
、 バッファ層4の組成はa−3+o、co、 s
(11)でそのEgは2.1eVである。また、表面層
5のうち、バッファ層側の層5aはE g 2.4eV
、 硬度400 kg / n+m’、 比抵抗1
014ΩcI111自由表面側の層5bはEg2.4e
ν。CJs (99,99%) flow m 20cc/min
10cc 7 minutes Gas pressure 0.05Torr
O,01TorrRF power 20
0 W 300 w Substrate temperature
100℃ 100℃ film formation time 5
The energy gap (Eg) of the photoconductive layer 3 of the photoconductor produced in the manner of 30 minutes or more was 1.8 eV.
, the composition of the buffer layer 4 is a-3+o, co, s
(11) and its Eg is 2.1 eV. In addition, among the surface layers 5, the layer 5a on the buffer layer side has an E g of 2.4 eV.
, hardness 400 kg/n+m', specific resistance 1
014ΩcI111 layer 5b on the free surface side is Eg2.4e
ν.
硬度1200 kg / ll1111’ 、比抵抗5
XIO”001mであった。Hardness 1200 kg/ll1111', specific resistance 5
It was XIO”001m.
なお、硬度は■島原製作所製超微小硬度計DUH−50
を用いて荷重0.05 gで測定した値である。The hardness is measured using an ultra-micro hardness meter DUH-50 manufactured by Shimabara Seisakusho.
This is a value measured using a load of 0.05 g.
この実施例の感光体を、カールソン方式の普通紙複写機
に装着し、5万枚のコピーを実施したが、感光体の特性
劣化は認められず、極めて群間な画像が得られた。また
、温度35℃、相対湿度85%の雰囲気中での複写にお
いても画像劣化はなかった。The photoreceptor of this example was installed in a Carlson-type plain paper copying machine and 50,000 copies were made, but no deterioration in the characteristics of the photoreceptor was observed and images with very good quality were obtained. Further, there was no image deterioration even when copying in an atmosphere at a temperature of 35° C. and a relative humidity of 85%.
このときの残留電位はIOVであった。The residual potential at this time was IOV.
比較例
バッファ層4までは実施例】と同一条件で作成し、バッ
ファ層側の層5aのみを5μm表面層として設けた試料
は、光感度をほとんどもたず、まっ黒な画像を程した。Comparative Example A sample prepared under the same conditions as in Example up to buffer layer 4, with only layer 5a on the buffer layer side provided as a 5 μm surface layer, had almost no photosensitivity and produced a pitch black image.
これは残留電位が高すぎるためである。This is because the residual potential is too high.
実施例2
表面層50条件を下の如く変えた以外は実施例1と同条
件で試料を作成した。Example 2 A sample was prepared under the same conditions as in Example 1 except that the conditions for the surface layer 50 were changed as shown below.
C,H,(+00%)流IJt 20cc/分
10cc 7分ガス圧
Q、Q7Torr
0.05Torr
RF電力 150 W 200
W基体温度 100℃ 100℃
成膜時間 5分 60分また、表
面層5のうち、バッファ層側の層5aはE g2.3e
V、 硬度700 kg / u’、 比抵抗5X
10”ΩC11l、自由表面側の層5bはE g 2.
5eV、 硬度1000kg/mm2. 比抵抗l
XlO12Ωcfflであった。膜中B濃度は200p
pmである。なお、硬度は■島原製作所製超微小硬度計
D U H−50を用いて荷重0.05 gで測定した
値である。C, H, (+00%) flow IJt 20cc/min
10cc 7 minutes Gas pressure Q, Q7Torr 0.05Torr RF power 150 W 200
W base temperature 100℃ 100℃
Film forming time 5 minutes 60 minutes Also, among the surface layer 5, the layer 5a on the buffer layer side is E g2.3e
V, hardness 700 kg/u', specific resistance 5X
10”ΩC11l, layer 5b on the free surface side is E g 2.
5eV, hardness 1000kg/mm2. Specific resistance l
XlO12Ωcffl. B concentration in the film is 200p
It is pm. The hardness is a value measured using an ultra-micro hardness meter DU H-50 manufactured by Shimabara Seisakusho under a load of 0.05 g.
この実施例の感光体を、カールソン方式の普通紙複写機
に装着し、5万枚のコピーを実施したが、感光体の特性
劣化1表面の磨耗などは認められず、極めて鮮明な画像
が得られた。また、温度35℃。The photoreceptor of this example was installed in a Carlson type plain paper copying machine and 50,000 copies were made, but no deterioration in the characteristics of the photoreceptor or wear on the surface was observed, and extremely clear images were obtained. It was done. Also, the temperature is 35℃.
85%RHで良好な画像であった。Good images were obtained at 85% RH.
(C2L) vGaGa流化変化り、Gaa度依存性を
調べたところ、1100pp以下では電気抵抗を逆に大
きくしてしまい残留電位が上昇していた。また1000
0pI]m以上では、グラファイト状の構造が主になる
ためと考えられるエネルギーギャップの低下が見られ窓
効果を果たさない。(C2L) When examining the dependence of vGaGa flow rate on Gaa degree, it was found that below 1100 pp, the electrical resistance increased and the residual potential increased. 1000 again
At 0 pI]m or more, the energy gap decreases, which is thought to be due to the graphite-like structure becoming the main structure, and the window effect is not achieved.
本発明によれば、導電性基体上にa−5i系材料からな
る光導電層を有し、その光導電層がバッファ層を介して
a−C(H)からなる表面層により被覆されてなる感光
体において、表面層のバッファ層に接する側の電気抵抗
を大きくし、自由表面側の電気抵抗をそれよりも小さく
する。According to the present invention, a photoconductive layer made of an a-5i material is provided on a conductive substrate, and the photoconductive layer is covered with a surface layer made of a-C(H) via a buffer layer. In a photoreceptor, the electrical resistance of the surface layer on the side in contact with the buffer layer is increased, and the electrical resistance on the free surface side is made smaller.
表面層をこのような層構成とすることにより、表面層の
バッファ層側が通常自由表面側の表面に蓄えられる帯電
電荷の保持の役目を果たすことになり、表面層の自由表
面、すなわち感光体の表面の厚付けを可能にしその耐刷
性を飛躍的に向上させる。かくして、現像、クリーニン
グなどの出力画像形成プロセスにより感光体表面が磨耗
しにくく、耐剛性、耐湿性に優れ、長期保存および繰り
返し使用に際して特性劣化現象を起こさず、高湿雰囲気
中においても出力画像不良がほとんど発生しない電子写
真感光体が得られることになる。By making the surface layer have such a layer structure, the buffer layer side of the surface layer plays the role of retaining the electrical charge that is normally stored on the surface of the free surface side, and the free surface of the surface layer, that is, the photoreceptor. It enables thickening of the surface and dramatically improves printing durability. As a result, the surface of the photoreceptor is less likely to be worn out by output image forming processes such as development and cleaning, has excellent rigidity resistance and moisture resistance, and does not suffer from characteristic deterioration during long-term storage or repeated use, and does not exhibit defective output images even in high-humidity environments. This results in an electrophotographic photoreceptor in which almost no particles are generated.
第1図は本発明の感光体の層構成を示す模式的断面図、
第2図は本発明の感光体を製造可能な装置の一例の概念
的系統図である。
l 導電性基体、2 ブロッキング層、3 光導電層、
4 バッファ層、5 表面層、5a バッファ1側の層
、5b 自由表面側の層。
第1図
第2図FIG. 1 is a schematic cross-sectional view showing the layer structure of the photoreceptor of the present invention;
FIG. 2 is a conceptual system diagram of an example of an apparatus capable of manufacturing the photoreceptor of the present invention. 1 conductive substrate, 2 blocking layer, 3 photoconductive layer,
4 buffer layer, 5 surface layer, 5a layer on buffer 1 side, 5b layer on free surface side. Figure 1 Figure 2
Claims (1)
る光導電層を有し、該光導電層がバッファ層を介して炭
素を主体としたアモルファス物質よりなる表面層で被覆
されている電子写真感光体において、該表面層がバッフ
ァ層に接した第1の層と、第1の層より電気抵抗が低く
自由表面側にある第2の層の2層構造であり、該第2の
層がガリウム原子を100ないし10000ppm含有
する水素化アモルファス炭素からなることを特徴とする
電子写真感光体。1) An electrophotographic photoreceptor having a photoconductive layer made of an amorphous silicon-based material on a conductive substrate, and the photoconductive layer covered with a surface layer made of an amorphous substance mainly composed of carbon via a buffer layer. The surface layer has a two-layer structure consisting of a first layer in contact with the buffer layer and a second layer that has lower electrical resistance than the first layer and is located on the free surface side, and the second layer is made of gallium atoms. An electrophotographic photoreceptor comprising hydrogenated amorphous carbon containing 100 to 10,000 ppm of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26376188A JPH02110470A (en) | 1988-10-19 | 1988-10-19 | electrophotographic photoreceptor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26376188A JPH02110470A (en) | 1988-10-19 | 1988-10-19 | electrophotographic photoreceptor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02110470A true JPH02110470A (en) | 1990-04-23 |
Family
ID=17393915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26376188A Pending JPH02110470A (en) | 1988-10-19 | 1988-10-19 | electrophotographic photoreceptor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02110470A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7678518B2 (en) | 2006-09-19 | 2010-03-16 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, and process cartridge and image-forming apparatus using the same |
US7727688B2 (en) | 2006-05-22 | 2010-06-01 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor and manufacturing method thereof, process cartridge, and image forming device |
US7750440B2 (en) | 2006-05-01 | 2010-07-06 | Fuji Xerox Co., Ltd. | Semiconductor film and manufacturing method thereof, light receiving element using semiconductor film, electrophotographic photoreceptor, process cartridge, and image forming device |
US7759033B2 (en) | 2006-09-22 | 2010-07-20 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge and image forming device using the same |
US7906261B2 (en) | 2008-04-04 | 2011-03-15 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, and image forming apparatus and process cartridge using the same |
JP2011069983A (en) * | 2009-09-25 | 2011-04-07 | Fuji Xerox Co Ltd | Oxide material, electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8404415B2 (en) | 2009-02-09 | 2013-03-26 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, and process cartridge and image forming apparatus using the same |
US8460452B2 (en) | 2009-09-24 | 2013-06-11 | Fuji Xerox Co., Ltd. | Oxide material, electrophotographic photoreceptor, process cartridge, and image forming device |
US8673525B2 (en) | 2009-06-26 | 2014-03-18 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge and image forming apparatus |
US9341963B2 (en) | 2013-03-27 | 2016-05-17 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9581919B1 (en) | 2015-09-25 | 2017-02-28 | Fuji Xerox Co., Ltd. | Image forming apparatus and process cartridge |
-
1988
- 1988-10-19 JP JP26376188A patent/JPH02110470A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7750440B2 (en) | 2006-05-01 | 2010-07-06 | Fuji Xerox Co., Ltd. | Semiconductor film and manufacturing method thereof, light receiving element using semiconductor film, electrophotographic photoreceptor, process cartridge, and image forming device |
US7727688B2 (en) | 2006-05-22 | 2010-06-01 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor and manufacturing method thereof, process cartridge, and image forming device |
US7678518B2 (en) | 2006-09-19 | 2010-03-16 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, and process cartridge and image-forming apparatus using the same |
US7759033B2 (en) | 2006-09-22 | 2010-07-20 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge and image forming device using the same |
US7906261B2 (en) | 2008-04-04 | 2011-03-15 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, and image forming apparatus and process cartridge using the same |
US8404415B2 (en) | 2009-02-09 | 2013-03-26 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, and process cartridge and image forming apparatus using the same |
US8673525B2 (en) | 2009-06-26 | 2014-03-18 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge and image forming apparatus |
US8460452B2 (en) | 2009-09-24 | 2013-06-11 | Fuji Xerox Co., Ltd. | Oxide material, electrophotographic photoreceptor, process cartridge, and image forming device |
US8709688B2 (en) | 2009-09-24 | 2014-04-29 | Fuji Xerox Co., Ltd. | Oxide material, electrophotographic photoreceptor, process cartridge, and image forming device |
JP2011069983A (en) * | 2009-09-25 | 2011-04-07 | Fuji Xerox Co Ltd | Oxide material, electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9341963B2 (en) | 2013-03-27 | 2016-05-17 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US9581919B1 (en) | 2015-09-25 | 2017-02-28 | Fuji Xerox Co., Ltd. | Image forming apparatus and process cartridge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62211659A (en) | electrophotographic photoreceptor | |
JPH02110470A (en) | electrophotographic photoreceptor | |
JP3124841B2 (en) | Electrophotographic photoreceptor | |
JPH0711706B2 (en) | Electrophotographic photoreceptor | |
JPH0514900B2 (en) | ||
JPS61219961A (en) | Electrophotographic sensitive body | |
US4837137A (en) | Electrophotographic photoreceptor | |
JPS61219962A (en) | Electrophotographic sensitive body | |
US4833055A (en) | Electrophotographic photoreceptor comprising amorphous silicon and amorphous carbon buffer layer | |
JPS5912448A (en) | Electrophotographic receptor | |
JPH01130165A (en) | Electrophotographic sensitive body | |
JPS62272275A (en) | Electrophotographic sensitive body | |
JPS62212662A (en) | electrophotographic photoreceptor | |
JPH02110469A (en) | electrophotographic photoreceptor | |
JPS6325662A (en) | electrophotographic photoreceptor | |
JPH02275466A (en) | Electrophotographic sensitive body | |
JPH0740138B2 (en) | Electrophotographic photoreceptor | |
JPS63186252A (en) | electrophotographic photoreceptor | |
JPS61223749A (en) | electrophotographic photoreceptor | |
JPS61278859A (en) | Manufacture of electrophotographic sensitive body | |
JPH0426466B2 (en) | ||
JPH0511305B2 (en) | ||
JPH10104862A (en) | Manufacturing method of electrophotographic photoreceptor | |
JPH01214870A (en) | Electrophotographic sensitive body | |
JPS61250655A (en) | Electrophotographic sensitive body |