JPH0211007B2 - - Google Patents
Info
- Publication number
- JPH0211007B2 JPH0211007B2 JP59068794A JP6879484A JPH0211007B2 JP H0211007 B2 JPH0211007 B2 JP H0211007B2 JP 59068794 A JP59068794 A JP 59068794A JP 6879484 A JP6879484 A JP 6879484A JP H0211007 B2 JPH0211007 B2 JP H0211007B2
- Authority
- JP
- Japan
- Prior art keywords
- double layer
- electric double
- activated carbon
- polarizable electrode
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 42
- 239000003990 capacitor Substances 0.000 claims description 26
- 239000011148 porous material Substances 0.000 claims description 17
- 239000003792 electrolyte Substances 0.000 claims description 16
- 239000005486 organic electrolyte Substances 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000000835 fiber Substances 0.000 claims description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 12
- 150000001768 cations Chemical class 0.000 description 8
- 150000001450 anions Chemical class 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- -1 γ-butyl lactone Chemical class 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- WGHUNMFFLAMBJD-UHFFFAOYSA-M tetraethylazanium;perchlorate Chemical compound [O-]Cl(=O)(=O)=O.CC[N+](CC)(CC)CC WGHUNMFFLAMBJD-UHFFFAOYSA-M 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-IGMARMGPSA-N Carbon-12 Chemical class [12C] OKTJSMMVPCPJKN-IGMARMGPSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920006361 Polyflon Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- AXZAYXJCENRGIM-UHFFFAOYSA-J dipotassium;tetrabromoplatinum(2-) Chemical compound [K+].[K+].[Br-].[Br-].[Br-].[Br-].[Pt+2] AXZAYXJCENRGIM-UHFFFAOYSA-J 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229910001487 potassium perchlorate Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
産業上の利用分野
本発明は小型大容量の湿式電気二重層キヤパシ
タに関するものである。
従来例の構成とその問題点
第1図に従来の電気二重層キヤパシタの一構成
例を示す。
分極性電極体1として活性炭繊維布を用い、ま
た導電性電極2としてアルミニウム、チタン等の
金属層、または導電性樹脂層を形成した構成を有
する。これらをセパレータ3を介して重ね合わ
せ、電解液を注入した後、ガスケツト4で正、負
極を絶縁した状態でコイン型ケース5内に収納
し、封口したものである。ここで、金属の導電性
電極2は、プラズマ溶射法、アーク溶射法によ
り、また導電性樹脂を用いる場合は、主にカーボ
ンを導電性粒子とした導電性樹脂をスクリーン印
刷法やスプレイ法、デイツプ法のいずれかにより
形成されている。
導電性樹脂を用いた場合は、金属層を用いた場
合より、内部インピーダンスが大きくなり、強放
電の用途には適さないキヤパシタになる。
従来、この種のキヤパシタには、(1)水系電解液
と、(2)非水系電解液を用いたものがある。(2)の非
水系、すなわち有機電解液は、水系の電解液より
導電率は低いが耐電圧が高くなる。溶媒には、プ
ロピレンカーボネート、γ−ブチルラクトン、N
−N−ジメチルホルムアミド、アセトニトリル等
を用い、過塩素酸テトラエチルアンモニウムのよ
うな、テトラアルキルアンモニウムの過塩素酸塩
や、テトラアルキルアンモニウムの6フツ化リン
酸塩またはホウフツ化塩、さらに、リチウム、ナ
トリウム、カリウムの過塩素酸塩等の溶質を用い
ている。特に、現在実用化されている電気二重層
キヤパシタは、分極性電極として活性炭を用いて
いる。
分極性電極として活性炭を用いる場合、キヤパ
シタ特性は次の3項目により大きく左右される。
比表面積
細孔径
細孔容積
また、電気二重層キヤパシタの容量は式で表
わされる。
η=d/4πδφ ……
η:単位面積あたりの電荷
d:媒質の誘電率
δ:固体表面から電解質イオン間の平均距離
φ:二重層電位
したがつて、単セルあたりに蓄積される電荷量
をQとし、二重層形成面積をSとすると、Qは
式で表わせる。
Q=d/4πδS・φ ……
したがつて、電気二重層キヤパシタはその二重
層形成面積が大きければ大きい程、蓄積される電
荷量も大きくなる。したがつて条件比表面積
は、大きい程良い。しかしながら、比表面積を増
大させるには、賦活を進めなくてはならず、機械
的強度は逆に大きく減少してしまうという欠点が
ある。
一般に比表面積の大きいもの程、細孔容積も
大きくなる。しかしながら、いくら比表面積が大
きくても、第2図に示すように細孔径が小さな
ものでは、効率良く二重層を形成することができ
なくなる。図中、6は分極性電極、6aは細孔、
6bは電解質イオンである。毛管凝縮の理論か
ら、効率良く二重層を形成するには第3図に示す
ように細孔径8が電解質イオン径7の4倍以上必
要となる。特に0℃以下の低温になると、有機溶
媒ではその粘度が上昇し、水系電解液は凍結しは
じめるため、電解質イオンの移動度が大幅に減少
し、二重層が形成されにくくなるばかりでなく、
一度形成された二重層を容易に放電させることが
できなくなる。
上述の理由により、従来、特に活性炭繊維を分
極性電極に、また電解液に有機電解液を用いた電
気二重層キヤパシタでは、正、負両極とも比表面
積が2000m2/gと非常に大きく、細孔径も2〜
4nmに大部分存在する活性炭繊維を用いてきた。
しかしながら、このような大きな特徴を有する活
性炭繊維は、賦活収率が20%程度と非常に低いと
いう欠点を有している。
発明の目的
本発明は、単位体積あたりの電気二重層の形成
効率を改善した電気二重層キヤパシタを得ること
を目的とするものである。
発明の構成
この目的を達成するために本発明は、正極側の
分極性電極体の比表面積を負極側の分極性電極体
の比表面積より小さくしたものである。
実施例の説明
具体的な実施例を述べる前に本発明の正極側お
よび負極側に使用する活性炭、炭素、または黒鉛
と電解質イオンで形成される電気二重層について
述べる。
本発明の効果は、水系電解液よりも有機電解液
系で、また活性炭粒子よりも活性炭繊維を用いた
場合の方が顕著である。
その理由を以下に述べる。
プロピレンカーボネートや、γ−ブチルラクト
ンなどの有機溶媒に過塩素テトラエチルアンモニ
ウムや過塩素酸リチウムなどの電解質を溶解させ
た場合、過塩素酸イオン(ClO-)はそのイオン
半径が2.36Aでありリチウムイオン(Li+)はそ
のイオン半径が0.6Aと小さいにもかかわらず、
一般に、非プロトン性の極性溶媒は、陰イオンに
対するよりも陽イオンに強く溶媒和するため、溶
媒和を含めたイオン径は、逆にカチオンの方がア
ニオンよりも大きくなる。第4図にその状態を模
式的に示す。9は溶媒和したアニオン、10は溶
媒和したカチオン、11は正極活性炭繊維、1
1′は負極活性炭繊維、6aは細孔である。同一
出発物質から炭化賦活を進めると第1表に示すよ
うなものができる。したがつてコイン型のキヤパ
シタを作成するには、このようなものを同一面積
で打抜き作成するため、正極、すなわちアニオン
と二重層を形成するには、第1表のステージ(2)を
使うと、賦活収率も良好で、抵抗も低く、しかも
強度も強くベストである。しかしながら、負極側
にはステージ(3)のような十分賦活が進行し、比表
面積の大きな、しかも溶媒和したカチオンが十分
細孔内に浸入できる程度に大きな細孔径を有して
いる活性炭繊維を使用する必要がある。
INDUSTRIAL APPLICATION FIELD The present invention relates to a small-sized, large-capacity wet type electric double layer capacitor. 1. Structure of conventional example and its problems FIG. 1 shows an example of the structure of a conventional electric double layer capacitor. It has a structure in which an activated carbon fiber cloth is used as the polarizable electrode body 1, and a metal layer of aluminum, titanium, etc., or a conductive resin layer is formed as the conductive electrode 2. After stacking these with a separator 3 in between and injecting an electrolytic solution, the positive and negative electrodes were insulated with a gasket 4 and housed in a coin-shaped case 5, which was then sealed. Here, the metal conductive electrode 2 is formed by a plasma spraying method or an arc spraying method, or if a conductive resin is used, a conductive resin containing mainly carbon as conductive particles is formed by a screen printing method, a spray method, or a dip method. Formed by any of the laws. When a conductive resin is used, the internal impedance becomes larger than when a metal layer is used, making the capacitor unsuitable for strong discharge applications. Conventionally, this type of capacitor uses (1) an aqueous electrolyte and (2) a non-aqueous electrolyte. The non-aqueous, ie, organic electrolyte of (2) has a lower electrical conductivity than an aqueous electrolyte, but has a higher withstand voltage. Solvents include propylene carbonate, γ-butyl lactone, N
Using -N-dimethylformamide, acetonitrile, etc., a perchlorate of tetraalkylammonium such as tetraethylammonium perchlorate, a hexafluorophosphate or borofluoride salt of tetraalkylammonium, and also lithium, sodium , using solutes such as potassium perchlorate. In particular, electric double layer capacitors currently in practical use use activated carbon as polarizable electrodes. When activated carbon is used as a polarizable electrode, the capacitor characteristics are largely influenced by the following three items. Specific surface area Pore diameter Pore volume Also, the capacity of the electric double layer capacitor is expressed by the formula. η=d/4πδφ... η: Charge per unit area d: Dielectric constant of medium δ: Average distance between solid surface and electrolyte ions φ: Double layer potential Therefore, the amount of charge accumulated per single cell is When Q is the double layer forming area and S is the double layer forming area, Q can be expressed by the formula. Q=d/4πδS·φ... Therefore, the larger the double layer formation area of the electric double layer capacitor, the larger the amount of charge accumulated. Therefore, the larger the specific surface area, the better. However, in order to increase the specific surface area, it is necessary to proceed with activation, which has the disadvantage that the mechanical strength is significantly reduced. Generally, the larger the specific surface area, the larger the pore volume. However, no matter how large the specific surface area is, if the pore diameter is small as shown in FIG. 2, a double layer cannot be efficiently formed. In the figure, 6 is a polarizable electrode, 6a is a pore,
6b is an electrolyte ion. According to the theory of capillary condensation, in order to efficiently form a double layer, the pore diameter 8 needs to be at least four times the electrolyte ion diameter 7, as shown in FIG. In particular, at low temperatures below 0°C, the viscosity of organic solvents increases and aqueous electrolytes begin to freeze, which not only greatly reduces the mobility of electrolyte ions and makes it difficult to form a double layer.
Once formed, the double layer cannot be easily discharged. For the above-mentioned reasons, conventional electric double layer capacitors that use activated carbon fibers as polarizable electrodes and organic electrolytes as electrolytes have very large specific surface areas of 2000 m 2 /g for both positive and negative electrodes. The pore diameter is also 2~
Activated carbon fibers, which are mostly present at 4 nm, have been used.
However, activated carbon fibers having such great characteristics have the disadvantage that the activation yield is very low at about 20%. OBJECT OF THE INVENTION The object of the present invention is to obtain an electric double layer capacitor in which the efficiency of forming an electric double layer per unit volume is improved. Structure of the Invention In order to achieve this object, the present invention is such that the specific surface area of the polarizable electrode body on the positive electrode side is smaller than the specific surface area of the polarizable electrode body on the negative electrode side. Description of Examples Before describing specific examples, an electric double layer formed of activated carbon, carbon, or graphite and electrolyte ions used in the positive electrode side and the negative electrode side of the present invention will be described. The effects of the present invention are more remarkable when an organic electrolyte is used than an aqueous electrolyte, and when activated carbon fibers are used rather than activated carbon particles. The reason for this is explained below. When an electrolyte such as tetraethylammonium perchlorate or lithium perchlorate is dissolved in an organic solvent such as propylene carbonate or γ-butyllactone, the perchlorate ion (ClO - ) has an ionic radius of 2.36A and becomes a lithium ion. Although (Li + ) has a small ionic radius of 0.6A,
In general, aprotic polar solvents solvate cations more strongly than anions, so the ionic diameter including solvation is conversely larger for cations than for anions. FIG. 4 schematically shows the state. 9 is a solvated anion, 10 is a solvated cation, 11 is a positive electrode activated carbon fiber, 1
1' is a negative electrode activated carbon fiber, and 6a is a pore. When carbonization is activated from the same starting material, the products shown in Table 1 are produced. Therefore, in order to create a coin-shaped capacitor, such a thing is punched out with the same area, so to form a double layer with the positive electrode, that is, the anion, stage (2) in Table 1 is used. , the activation yield is good, the resistance is low, and the strength is also strong, making it the best. However, on the negative electrode side, there are activated carbon fibers that have undergone sufficient activation as shown in stage (3) and have a large specific surface area and a pore diameter large enough to allow solvated cations to penetrate into the pores. Must be used.
【表】
粒状活性炭12と活性炭繊維11の細孔のよう
すを第5図に模式的に示す。この図から判るよう
に、活性炭粒子は、マクロポアー13の内にミク
ロポアー14を有しているため、電解質の浸入
が、活性炭繊維のように直接ミクロポアー14を
有しているものよりも容易である。そこで、正、
負極共に活性炭粒子を用いた場合、本発明の効果
が顕著に表われないと考えられる。
以上述べたように、本発明は、細孔の大きさを
コントロールしやすい活性炭繊維のような分極性
電極体と、カチオンに強く溶媒和する有機電解液
系で非常に効果的である。すなわち、負極側分極
性電極に強く溶媒和したカチオンでも細孔に浸入
でき二重層が形成可能なものを用いる必要があ
る。しかしながら、正極側分極性電極には、アニ
オンが浸入できる程度の負極側より炭化賦活率が
高く、強度も強く、電気抵抗も低いものを使用
し、これを負極側分極性電極体と組み合わせると
最も効率良く二重層を形成でき、原料を有効に使
用できまた生産性も向上できる。
実施例 1
フエノール系、アクリロニトリル、レーヨン系
の繊維をそれぞれ炭化、炭化賦活し、第2表の
〜に示す特徴を有する炭素繊維、活性炭繊維を
得た。集電体は、プラズマ溶射法によりアルミニ
ウム層を300μm程度形成した。第2表〜を第
3表に示す組み合わせで、第6図に示す、正、負
極の分極性電極体の異なるコイン型キヤパシタを
作製し、その諸特性も同表に示した。第6図中、
15は正極ケース、16は集電体(アルミニウ
ム)16aを有する正極側分極性電極、17は負
極ケース、18は集電体(アルミニウム)18a
を有する負極側分極性電極、19はセパレータ、
20はガスケツトである。電解液には、電気化学
的に安定な過塩素酸テトラエチルアンモニウム
を、プロピレンカーボネート、γ−ブチルラクト
ンの1:1混合溶媒に1モル溶解した有機電解液
を用いた。電極はそれぞれ14mm径の円形に打抜き
使用した。[Table] Figure 5 schematically shows the pores of the granular activated carbon 12 and the activated carbon fibers 11. As can be seen from this figure, activated carbon particles have micropores 14 within macropores 13, so electrolyte can penetrate more easily than activated carbon fibers, which have micropores 14 directly. So, Tadashi,
It is considered that when activated carbon particles are used for both the negative electrode and the negative electrode, the effects of the present invention are not noticeable. As described above, the present invention is very effective with polarizable electrode bodies such as activated carbon fibers whose pore size can be easily controlled and with organic electrolyte systems that strongly solvate cations. In other words, it is necessary to use a material that is capable of penetrating into pores even with strongly solvated cations in the negative polarizable electrode and forming a double layer. However, the positive polarizable electrode should have a higher carbonization activation rate, stronger strength, and lower electrical resistance than the negative electrode to which anions can penetrate, and when combined with the negative polarizable electrode body, the best A double layer can be formed efficiently, raw materials can be used effectively, and productivity can be improved. Example 1 Phenol-based, acrylonitrile-based, and rayon-based fibers were carbonized and carbonized, respectively, to obtain carbon fibers and activated carbon fibers having the characteristics shown in Table 2. For the current collector, an aluminum layer of approximately 300 μm was formed by plasma spraying. Coin-shaped capacitors with different polarizable electrode bodies for positive and negative polarities as shown in FIG. 6 were manufactured using the combinations shown in Tables 2 to 3, and their various characteristics are also shown in the same table. In Figure 6,
15 is a positive electrode case, 16 is a positive polarizable electrode having a current collector (aluminum) 16a, 17 is a negative electrode case, and 18 is a current collector (aluminum) 18a.
19 is a separator,
20 is a gasket. The electrolytic solution used was an organic electrolytic solution in which 1 mole of electrochemically stable tetraethylammonium perchlorate was dissolved in a 1:1 mixed solvent of propylene carbonate and γ-butyl lactone. Each electrode was punched into a circular shape with a diameter of 14 mm.
【表】【table】
【表】【table】
【表】
第2表の特徴をもつ炭素繊維、活性炭繊維の第
3表の電極組み合わせにより、第3表中No.1、
2、3、4、8、9、10、11、12、13、15、17、
18がいずれも良好なキヤパシタ特性を示す。すな
わちNo.7のように正、負極とも賦活の十分進んだ
ものを用いなくても十分容量の大きな、しかも低
温特性の良好な、低インピーダンスキヤパシタが
得られる。No.5、6は、負極側に溶媒和したカチ
オンが容易に浸入できず、低温特性が極めて悪く
なる。
実施例 2
負極側分極性電極として、比表面積が1400m2/
g、細孔径が20〜100Aの大きさに80%以上存在
する活性炭粒子100部に対し1部のポリフロンを
バインダーとして加えたチタンネツトにプレスし
たものを用い、正極には、表2のc,dの活性炭
繊維を用い、第6図に示したキヤパシタを構成し
た。第4表にそのキヤパシタ特性を示す。第4表
より本実施例においても良好な特性を示すことが
判る。[Table] With the electrode combination in Table 3 of carbon fibers and activated carbon fibers with the characteristics in Table 2, No. 1 in Table 3,
2, 3, 4, 8, 9, 10, 11, 12, 13, 15, 17,
All No. 18 exhibit good capacitor characteristics. That is, a low impedance capacitor with sufficiently large capacity and good low-temperature characteristics can be obtained without using sufficiently activated positive and negative electrodes like No. 7. In Nos. 5 and 6, solvated cations cannot easily penetrate into the negative electrode side, resulting in extremely poor low-temperature characteristics. Example 2 As a negative polarizable electrode, the specific surface area is 1400 m 2 /
g, 80% or more of activated carbon particles with a pore size of 20 to 100 A, pressed onto a titanium net with 1 part of Polyflon added as a binder to 100 parts of activated carbon particles, and the positive electrode was A capacitor shown in FIG. 6 was constructed using the activated carbon fiber of d. Table 4 shows the capacitor characteristics. From Table 4, it can be seen that this example also exhibits good characteristics.
【表】
実施例 3
第3表No.4の組み合わせで、第7図、第8図に
示した大型キヤパシタを作製した。縦が10cm、横
が5cmの大きさである。図中、21は正極リー
ド、22は正極、23はセパレータ、24は負極
リード、25は負極、26はポリエチレンラミネ
ート樹脂、第8図は第7図をa−a′線で切断した
場合の断面図である。本キヤパシタの特性を第5
表に示す。本実施例において電解液には、プロピ
レンカーボネート、γ−ブチルラクトンの1:1
混合溶媒に、過塩素酸リチウムを1モル溶解させ
たものを用いた。[Table] Example 3 The large capacitors shown in FIGS. 7 and 8 were manufactured using the combinations shown in Table 3, No. 4. It measures 10cm in height and 5cm in width. In the figure, 21 is a positive electrode lead, 22 is a positive electrode, 23 is a separator, 24 is a negative electrode lead, 25 is a negative electrode, 26 is a polyethylene laminate resin, and Figure 8 is a cross section of Figure 7 taken along the a-a' line. It is a diagram. The fifth characteristic of this capacitor is
Shown in the table. In this example, the electrolyte contains propylene carbonate and γ-butyllactone in a ratio of 1:1.
A mixed solvent in which 1 mole of lithium perchlorate was dissolved was used.
【表】
発明の効果
以上のように本発明は、正極、負極分極性電極
にそれぞれ、アニオン、カチオンと効率良く電気
二重層を形成しうる電極を用いているため、低イ
ンピーダンスで小型大容量の電気二重層キヤパシ
タを得ることができる。[Table] Effects of the Invention As described above, the present invention uses electrodes that can efficiently form an electric double layer with anions and cations as the positive electrode and the negative polarizable electrode, respectively, so the present invention has a low impedance, small size and large capacity. An electric double layer capacitor can be obtained.
第1図は従来の電気二重層キヤパシタの一例を
示す半分断面正面図、第2図〜第5図は、分極性
電極の細孔と電解質イオンの状態を示す模式図、
第6図は本発明の一実施例による電気二重層キヤ
パシタを示す断面図、第7図は本発明の他の実施
例による電気二重層キヤパシタを示す平面図、第
8図は第7図のa−a′線で切断した断面図であ
る。
16……正極側分極性電極、18…負極側分極
性電極、22…正極、25…負極。
FIG. 1 is a half-sectional front view showing an example of a conventional electric double layer capacitor; FIGS. 2 to 5 are schematic diagrams showing the states of pores of a polarizable electrode and electrolyte ions;
FIG. 6 is a sectional view showing an electric double layer capacitor according to one embodiment of the present invention, FIG. 7 is a plan view showing an electric double layer capacitor according to another embodiment of the present invention, and FIG. 8 is a of FIG. FIG. 3 is a cross-sectional view taken along the -a′ line. 16... Positive polarizable electrode, 18... Negative polarizable electrode, 22... Positive electrode, 25... Negative electrode.
Claims (1)
二重層を有し、正極側の分極性電極体の比表面積
を負極側の分極性電極体の比表面積より小さくし
たことを特徴とする電気二重層キヤパシタ。 2 正極側の分極性電極体の細孔径が10〜30Aに
10%以上分布し、かつ負極側の分極性電極体の細
孔径が20〜40Aに70%以上分布していることを特
徴とする特許請求の範囲第1項記載の電気二重層
キヤパシタ。 3 分極性電極体として、繊維状、紙状、フエル
ト状、多孔質状の活性炭または炭素を用いること
を特徴とする特許請求の範囲第1項記載の電気二
重層キヤパシタ。 4 電解液に有機電解液を用いることを特徴とす
る特許請求の範囲第1項記載の電気二重層キヤパ
シタ。[Claims] 1. An electric double layer formed at the interface between the polarizable electrode body and the electrolyte, and the specific surface area of the polarizable electrode body on the positive electrode side is smaller than the specific surface area of the polarizable electrode body on the negative electrode side. An electric double layer capacitor featuring: 2 The pore diameter of the polarizable electrode body on the positive electrode side is 10 to 30A.
2. The electric double layer capacitor according to claim 1, wherein the pore diameter of the polarizable electrode body on the negative electrode side is 70% or more in the range of 20 to 40A. 3. The electric double layer capacitor according to claim 1, wherein activated carbon or carbon in the form of fibers, paper, felt, or porous is used as the polarizable electrode body. 4. The electric double layer capacitor according to claim 1, wherein an organic electrolyte is used as the electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59068794A JPS60211821A (en) | 1984-04-05 | 1984-04-05 | Electric couble layer capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59068794A JPS60211821A (en) | 1984-04-05 | 1984-04-05 | Electric couble layer capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60211821A JPS60211821A (en) | 1985-10-24 |
JPH0211007B2 true JPH0211007B2 (en) | 1990-03-12 |
Family
ID=13383978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59068794A Granted JPS60211821A (en) | 1984-04-05 | 1984-04-05 | Electric couble layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60211821A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004335889A (en) * | 2003-05-09 | 2004-11-25 | Tdk Corp | Electrochemical capacitor |
WO2006054747A1 (en) * | 2004-11-19 | 2006-05-26 | Ube Industries, Ltd. | Electric double layer capacitor |
WO2007032064A1 (en) * | 2005-09-14 | 2007-03-22 | Kitagawa Seiki Kabushiki Kaisha | Electrode for electric double layer capacitor and process for producing the same |
US9607776B2 (en) | 2013-10-24 | 2017-03-28 | Corning Incorporated | Ultracapacitor with improved aging performance |
-
1984
- 1984-04-05 JP JP59068794A patent/JPS60211821A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60211821A (en) | 1985-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fic et al. | Novel insight into neutral medium as electrolyte for high-voltage supercapacitors | |
US20080003166A1 (en) | Methods of forming nanoporous carbon material and electrodes and electrochemical double layer capacitors therefrom | |
US20100195269A1 (en) | Hybrid supercapacitor using surface-oxidized transition metal nitride aerogel | |
JPH097896A (en) | Electric double layer capacitor | |
JP5548837B1 (en) | Carbon material for polarizable electrode and method for producing the same | |
WO2018077614A1 (en) | Optimized hybrid supercapacitor | |
US20170250032A1 (en) | Hybrid Supercapacitor | |
JP2002231585A (en) | Electric double-layered capacitor | |
EP0867900B1 (en) | Electric double layer capacitor and electrolyte therefor | |
JP2014064030A (en) | Electrochemical capacitor | |
JPH0211007B2 (en) | ||
KR20140138739A (en) | Electrode material, and capacitor and secondary battery using said electrode material | |
JP3812098B2 (en) | Electric double layer capacitor | |
JP2000106327A (en) | Electric double layer capacitor | |
JPH08162375A (en) | Electric double layer capacitor and method for manufacturing polarizable electrode for electric double layer capacitor | |
EP1209707B1 (en) | Electric double layer capacitor and electrolyte therefor | |
JP2002260970A (en) | Activated carbonaceous structure and electric double layer capacitor using the same | |
Nono et al. | EDLC performance of various activated carbons in spiro-type quaternary ammonium salt electrolyte solutions | |
KR100342069B1 (en) | Preparing method of electrode made by Rice Hull Activated Carbon and Application for Electric Double Layer Capacitor | |
JP2000299259A (en) | Electric double layer capacitor and manufacture thereof | |
JP2005093779A (en) | Electric double layer capacitor | |
JPS63316422A (en) | electric double layer capacitor | |
KR101278888B1 (en) | Structure for Negative Electrode of Hybrid Capacitors and Hybrid Capacitor Using The Same | |
JP3837880B2 (en) | Electric double layer capacitor | |
JP2667837B2 (en) | Electric Double Layer Capacitor |