JPH0210900B2 - - Google Patents
Info
- Publication number
- JPH0210900B2 JPH0210900B2 JP56158735A JP15873581A JPH0210900B2 JP H0210900 B2 JPH0210900 B2 JP H0210900B2 JP 56158735 A JP56158735 A JP 56158735A JP 15873581 A JP15873581 A JP 15873581A JP H0210900 B2 JPH0210900 B2 JP H0210900B2
- Authority
- JP
- Japan
- Prior art keywords
- electrical resistance
- creep
- temperature
- resistance value
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012360 testing method Methods 0.000 claims description 36
- 230000006378 damage Effects 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 20
- 230000001066 destructive effect Effects 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims 2
- 239000000463 material Substances 0.000 description 14
- 230000007423 decrease Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012925 reference material Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/269—Various geometry objects
- G01N2291/2693—Rotor or turbine parts
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
本発明は蒸気タービンロータ等の高温で長期間
稼動によつて生ずる材料の劣化状態を非破壊的に
検出する新規な高温部材の破壊余寿命予知法に関
する。
蒸気タービンロータシヤフトは低合金鋼によつ
て製造されている。一般に、高温で使用されるこ
の材料は300〜600℃程度で長時間さらされると靭
性及び延性が低下する脆化現象が生じる。この材
料はこの様な脆加温度に長時間さらされると、冶
金的に結晶粒界及び粒内への炭化物の析出並びに
結晶粒界へのボイドの生成及び不純物元素量の増
加などにより結晶粒内及び粒界が脆弱となり、脆
化する。
蒸気タービンロータはこのような脆化温度範囲
で使用されており、当然材料の脆化の問題が生ず
る。また、長期間稼動を受けるので、脆化が蓄積
され、更に作用応力によつてき裂が発生する可能
性があるとともに、ロータの破壊事故にまで進展
する可能性がある。
したがつて、使用過程におけるロータの脆化状
態を知ることは実機の破壊事故防止の点から重要
である。
高温にさらされる機器の脆化状態を調らべる方
法として、従来は使用した高温部材から直接試験
片を切り出しその破壊試験を行なつていた。この
従来法では残余寿命を非破壊的に測定できない。
特開昭53−88781号公報には、高温で使用した
被測定材のミスオリエンテーシヨンをX線装置に
よつて測定し、その測定値を既知のミスオリエン
テーシヨンとクリープ変形量との関係線図にあて
はめてそのクリープ変形量を求めるとともに、被
測定材の使用温度及び使用時間を既知のコイルイ
ンピーダンスの変化量との関係にあてはめて求
め、既知のクリープ変形量と使用温度、使用時間
との関係にあてはめて被測定材の耐用年数を求め
る方法が記載されている。この方法では、複雑な
操作となり、測定がむずかしい。
本発明の目的は、蒸気タービンロータなどの高
温部材の破壊寿命を簡単な方法で非破壊的に推定
することのできる高温部材の破壊寿命予知法を提
供するにある。
本発明は給電端子と電位差測定端子とを試験体
に接触させて測定する電気抵抗測定装置による電
気抵抗法を適用し、蒸気タービンロータなどの高
温部材の破壊寿命を推定するものである。
本発明者らは、クリープ試験において、加熱温
度、負荷応力及び試験時間を種々に変化させ、ク
リープ損傷率が異なる試験片を多数作製し、材料
のクリープ損傷率と電気抵抗率比との関係を求め
た。その結果、両者にはよい相関性があり、クリ
ープ損傷率が増加すると抵抗率比が規則的に低下
することが実験で明らかとなり、本発明に到つ
た。
第1図は本発明における電気抵抗測定方法を示
す説明図である。被試験体1に給電端子2及び電
位差測定端子3を機械的に圧接せしめ、その状態
で給電端子2へ定電流を流し、電位差測定端子3
の間で電位を測定し、その結果から材料の電気抵
抗を測定するものである。
具体的には、予めクリープ試験によつてクリー
プ損傷率と電気抵抗率比との関係の基準データを
求めておく。次いで、蒸気タービンロータなどの
高温部材の電気抵抗率比を上記と同様の電気抵抗
測定装置を用いて測定する。この測定位置のクリ
ープ損傷率または破壊寿命は、測定された電気抵
抗率比を該当する温度の上記クリープ試験による
クリープ損傷率と電気抵抗率比との関係にあては
めることにより求めることができる。
高温部材の電気抵抗値は同じ時間でもその加熱
温度によつて異なり、加熱温度が高い程早く低く
なる。蒸気タービンロータの長手方向の温度分布
は各所によつて異なるので、マスター曲線にあて
はめる電気抵抗値は実機と同一加熱温度のデータ
を使用しなければならない。
第2図は予め作成された本発明の電気抵抗率比
とクリープ損傷率との関係を示す線図である。例
えば実機蒸気タービンロータの電気抵抗率比Rρ
がRρaであつたとすると、実機高温部材と同一温
度の第2図のデータにもとずいてφc1(=0.25)が
求められる。この場合の残余寿命t2は次の式から
求めることができる。
t2=t1(1/φc−1) ……(1)
(t1:高温部材の使用時間(h)
φc:クリープ損傷率)
例えばt1=3000h、φc=0.25の場合にはt2=
9000hとなる。つまり部材が破壊するまでには
9000hの寿命があることが推定できる。
以上のごとく、本発明は実機の残余寿命を簡便
に予知できることが明らかである。
更に、本発明は電気抵抗以外の他の非破壊手段
によつて物理量を測定し、その値によつて電気抵
抗値によつて寿命を推定したと同じようにして高
温機器の寿命を重複させて推定するものである。
電気抵抗の測定による寿命推定は、材料の加速ク
リープ段階に入るとボイドの形成が急速に進むこ
とから電気抵抗値が増加する方向となり、組織変
化に伴う電気抵抗値の減少と相殺されて全体とし
て電気抵抗値の変化が見られなくなり、その精度
が低下する。しかし、他の手段をそれに加えれ
ば、加速クリープ中での寿命を正確に予測でき
る。
実施例
第1表は供試母材として未使用の蒸気タービン
ロータCr−Mo−V鋼の主な化学組成(重量%)
及び第2表はその機械的性質である。
The present invention relates to a novel method for predicting the remaining fracture life of high-temperature components, which non-destructively detects the deterioration of materials caused by long-term operation at high temperatures, such as steam turbine rotors. Steam turbine rotor shafts are manufactured from low alloy steel. In general, when this material used at high temperatures is exposed to temperatures of about 300 to 600°C for a long time, embrittlement occurs in which toughness and ductility decrease. When this material is exposed to such embrittling temperatures for a long time, it metallurgically causes precipitation of carbides at the grain boundaries and within the grains, the formation of voids at the grain boundaries, and an increase in the amount of impurity elements. And the grain boundaries become weak and become brittle. Steam turbine rotors are used in such a embrittlement temperature range, and naturally the problem of material embrittlement arises. In addition, since the rotor is operated for a long period of time, embrittlement accumulates, and there is a possibility that cracks may occur due to the applied stress, which may even lead to rotor failure. Therefore, it is important to know the embrittlement state of the rotor during the use process from the viewpoint of preventing destruction accidents of actual machines. Conventionally, the method of investigating the embrittlement state of equipment exposed to high temperatures was to cut specimens directly from the high-temperature components used and conduct destructive tests on them. This conventional method cannot measure the remaining life non-destructively. JP-A No. 53-88781 discloses that the misorientation of a material to be measured used at high temperatures is measured using an X-ray device, and the measured value is used to compare the known misorientation with the amount of creep deformation. The amount of creep deformation is determined by applying it to the diagram, and the amount of creep deformation is determined by applying the usage temperature and usage time of the material to be measured to the relationship with the known amount of change in coil impedance. It describes a method for determining the service life of a material to be measured by applying the following relationship. This method requires complicated operations and is difficult to measure. An object of the present invention is to provide a method for predicting the destructive life of a high-temperature member, such as a steam turbine rotor, which can estimate the destructive life of a high-temperature member such as a steam turbine rotor in a simple and non-destructive manner. The present invention applies an electrical resistance method using an electrical resistance measuring device that measures the electrical resistance by bringing a power supply terminal and a potential difference measurement terminal into contact with a test object, and estimates the destructive life of a high-temperature member such as a steam turbine rotor. In the creep test, the present inventors varied the heating temperature, applied stress, and test time to prepare a large number of test pieces with different creep damage rates, and investigated the relationship between the creep damage rate and the electrical resistivity ratio of the material. I asked for it. As a result, it was found through experiments that there is a good correlation between the two, and that as the creep damage rate increases, the resistivity ratio regularly decreases, leading to the present invention. FIG. 1 is an explanatory diagram showing the electrical resistance measuring method according to the present invention. The power supply terminal 2 and the potential difference measurement terminal 3 are mechanically pressed into contact with the test object 1, and in this state, a constant current is applied to the power supply terminal 2, and the potential difference measurement terminal 3
The potential between the two is measured, and the electrical resistance of the material is measured from the result. Specifically, standard data on the relationship between the creep damage rate and the electrical resistivity ratio is determined in advance by a creep test. Next, the electrical resistivity ratio of a high-temperature member such as a steam turbine rotor is measured using an electrical resistance measuring device similar to that described above. The creep damage rate or fracture life at this measurement position can be determined by applying the measured electrical resistivity ratio to the relationship between the creep damage rate and electrical resistivity ratio determined by the creep test at the relevant temperature. The electrical resistance value of a high-temperature member varies depending on the heating temperature even for the same time, and the higher the heating temperature, the faster the electrical resistance value decreases. Since the temperature distribution in the longitudinal direction of the steam turbine rotor differs from place to place, data for the same heating temperature as in the actual machine must be used for the electrical resistance value applied to the master curve. FIG. 2 is a graph showing the relationship between the electrical resistivity ratio and the creep damage rate of the present invention, prepared in advance. For example, the electrical resistivity ratio Rρ of an actual steam turbine rotor
Assuming that Rρ a is Rρ a, φ c1 (=0.25) can be found based on the data in Figure 2, which has the same temperature as the high-temperature parts of the actual machine. The remaining life t 2 in this case can be calculated from the following formula. t 2 = t 1 (1/φ c -1) ...(1) (t 1 : usage time of high temperature parts (h) φ c : creep damage rate) For example, when t 1 = 3000h, φ c = 0.25 is t 2 =
It will be 9000h. In other words, by the time the component breaks
It is estimated that it has a lifespan of 9000 hours. As described above, it is clear that the present invention can easily predict the remaining life of an actual machine. Furthermore, the present invention measures a physical quantity by non-destructive means other than electrical resistance, and uses the measured value to estimate the lifespan of high-temperature equipment based on the electrical resistance value. It is estimated.
When estimating life by measuring electrical resistance, as the material enters the accelerated creep stage, void formation rapidly progresses, so electrical resistance increases, which is offset by a decrease in electrical resistance due to structural changes, resulting in an overall increase in electrical resistance. Changes in the electrical resistance value will no longer be observed, and its accuracy will decrease. However, if other measures are added to it, life in accelerated creep can be accurately predicted. Example Table 1 shows the main chemical composition (wt%) of unused steam turbine rotor Cr-Mo-V steel as the test base material.
and Table 2 are its mechanical properties.
【表】【table】
【表】
この蒸気タービンロータより、クリープ試験片
を採取し、各種温度及び応力でクリープ試験を行
つた。
クリープ試験後の各種クリープ損傷率が異なる
試験片の平行部より電気抵抗測定試験片を採取し
その電気抵抗を測定した。
クリープ試験した試験片の形状は直径10mm、平
行部の長さ52mmである。電気抵抗測定用試験片の
形状は3mm角、長さ20mmである。
クリープ損傷試験を加熱温度500、550、600℃
及び負荷応力をそれぞれ36、25、18Kg/cm2として
行つた。
第3図に実験で用いた電気抵抗測定装置のブロ
ツク図を示す。電流は直流電圧電源4を用い、給
電端子2を通して1A流した。電流値の変動は0.1
%以下である。電位差の測定は高精度のデジタル
ボルトメータ5(0.1μVのオーダまで測定可能)
で行つた。給電端子間距離S2は18mm、電位差測定
端子間距離S1は6mmである。
次に測定値の解析方法について述べる。電気抵
抗率比Rρは下記の式(2)で計算した。
Rρ=Ax・Vx/A0・V0 ……(2)
(A0:基準材の断面積
V0:基準材の電位差
Ax:試験材の断面積
Vx:試験材の電位差)
なお、電気抵抗測定のとき、測定端子と被試験
体の材質が異なる場合には、熱起電力が発生して
測定ばらつきの原因となるので、給電をOFFに
したときの電位差も測定し、その値を補正した。
第4図は試験温度500、550、600℃における電
気抵抗率比Rρとクリープ損傷率との関係を示す
線図である。クリープ損傷率φcは以下の計算で
求められる。
φc=t/tf
(t=試験時間
tf=クリープ破断時間)
その結果、電気抵抗率比Rρはいずれの加熱温
度においてもクリープ損傷率とよい相関性を示
し、クリープ損傷率が増加すると低下する。しか
も抵抗率比Rρは加熱温度に依存し、温度が高い
方が低下度合が大きくなる傾向を示す。先に述べ
たごとく、蒸気タービンロータの長手方向の温度
分布は各位置によつて異なる。したがつて、実機
蒸気タービンの電気抵抗を測定し既知の基礎デー
タからクリープ寿命を推定する場合にはロータの
加熱温度と同一の既知の基礎データを適用する必
要がある。
一方、電気抵抗率比Rρの低下度合はクリープ
損傷率φc=0.5程度までは大きいが、それ以降は
小さい。特に実機の測定にあたつてデータのバラ
ツキ等を考えた場合、寿命後半のクリープ損傷率
を電気抵抗法のみによつて推定することは難しい
と考えられる。
それに対して本発明では電気抵抗率比の低下度
合が鈍るクリープ損傷率φcが0.5程度をめどとし
て、それ以降を電気抵抗法と並行させて非破壊検
査法、例えばアコーステイツク・エミツシヨン
法、超音波探傷、X線、磁気探傷及び染色探傷検
査法の少なくとも1つによつて定期又は常時監視
することにより高精度の寿命予測が可能になる。
本発明法は、特に電気抵抗率の低下度合の少ない
実機破壊寿命後半を複数の手段を用いて監視する
ため、破壊事故を未然に防止できる信頼性確保に
大きく貢献できる。
実機蒸気タービンロータの25000時間使用した
ものの使用温度550℃にある電気抵抗を測定した
結果、電気抵抗率比Rρ=0.98であつた。この蒸
気タービンロータの化学組成は第1表に示すもの
とほぼ同程度である。
この電気抵抗率比を第4図の550℃の曲線にあ
てはめると、クリープ損傷率φcは0.2となる。こ
こでφc=0.2時点での使用時間t1が25.000hである
ので、前述(1)式から残余寿命t2は100.000時間と
なつた。
以上のように本発明によれば簡単に実機蒸気タ
ービンロータの破壊寿命を推定できることがわか
る。
本発明は実機蒸気タービンロータばかりでな
く、高温でクリープ損傷を受ける高温部材、例え
ば蒸気タービンケーシング、化学プラント及び原
子力プラントなどの破壊寿命を推定することがで
きることは明らかである。
以上、本発明によれば高温部材の残余寿命を簡
単に予知できるため、実機の破壊事故を未然に防
止できる優れた効果がある。[Table] Creep test pieces were taken from this steam turbine rotor and creep tests were conducted at various temperatures and stresses. Electrical resistance measurement test pieces were taken from the parallel parts of test pieces with different creep damage rates after the creep test, and their electrical resistances were measured. The shape of the specimen subjected to the creep test was 10 mm in diameter and 52 mm in length at the parallel part. The shape of the test piece for measuring electrical resistance is 3 mm square and 20 mm long. Heating temperature for creep damage test: 500, 550, 600℃
The test was carried out with the applied stress being 36, 25, and 18 Kg/cm 2 , respectively. Figure 3 shows a block diagram of the electrical resistance measuring device used in the experiment. A current of 1 A was passed through the power supply terminal 2 using a DC voltage power source 4. Current value fluctuation is 0.1
% or less. Measure the potential difference using a high-precision digital voltmeter 5 (can measure up to the order of 0.1μV)
I went there. The distance S 2 between the power supply terminals is 18 mm, and the distance S 1 between the potential difference measurement terminals is 6 mm. Next, we will discuss how to analyze the measured values. The electrical resistivity ratio Rρ was calculated using the following equation (2). Rρ=A x・V x /A 0・V 0 ...(2) (A 0 : Cross-sectional area of reference material V 0 : Potential difference of reference material A x : Cross-sectional area of test material V x : Potential difference of test material) When measuring electrical resistance, if the materials of the measurement terminal and the test object are different, thermal electromotive force will be generated and cause measurement variations. Therefore, the potential difference when the power supply is turned off is also measured, and the The value has been corrected. FIG. 4 is a diagram showing the relationship between electrical resistivity ratio Rρ and creep damage rate at test temperatures of 500, 550, and 600°C. The creep damage rate φc is obtained by the following calculation. φc = t/t f (t = test time t f = creep rupture time) As a result, the electrical resistivity ratio Rρ showed a good correlation with the creep damage rate at any heating temperature, and decreased as the creep damage rate increased. do. Moreover, the resistivity ratio Rρ depends on the heating temperature, and the higher the temperature, the greater the degree of decrease. As mentioned above, the temperature distribution in the longitudinal direction of the steam turbine rotor differs depending on the position. Therefore, when measuring the electrical resistance of an actual steam turbine and estimating the creep life from known basic data, it is necessary to apply the same known basic data as the rotor heating temperature. On the other hand, the degree of decrease in the electrical resistivity ratio Rρ is large up to the creep damage rate φc=0.5 or so, but is small thereafter. In particular, when considering the variation in data when measuring actual equipment, it is considered difficult to estimate the creep damage rate in the latter half of the life using only the electrical resistance method. In contrast, in the present invention, the creep damage rate φc, at which the degree of decrease in the electrical resistivity ratio slows down, is about 0.5, and after that point, non-destructive testing methods such as acoustic emission method, ultrasonic Periodic or constant monitoring using at least one of flaw detection, X-ray, magnetic flaw detection, and dye flaw detection allows highly accurate life prediction.
The method of the present invention uses a plurality of methods to monitor the latter half of the actual machine's destructive life, when the degree of decrease in electrical resistivity is small, so it can greatly contribute to ensuring reliability and preventing destructive accidents. The electrical resistance of an actual steam turbine rotor used for 25,000 hours at an operating temperature of 550°C was measured, and the electrical resistivity ratio Rρ was 0.98. The chemical composition of this steam turbine rotor is approximately the same as that shown in Table 1. When this electrical resistivity ratio is applied to the 550° C. curve in FIG. 4, the creep damage rate φc becomes 0.2. Here, since the usage time t 1 at the time of φc=0.2 is 25,000 hours, the remaining life t 2 is 100,000 hours from the above equation (1). As described above, it can be seen that according to the present invention, the destructive life of an actual steam turbine rotor can be easily estimated. It is clear that the present invention is capable of estimating the destructive life not only of actual steam turbine rotors, but also of high-temperature components that are subject to creep damage at high temperatures, such as steam turbine casings, chemical plants, and nuclear power plants. As described above, according to the present invention, the remaining life of a high-temperature member can be easily predicted, and therefore, there is an excellent effect of preventing destruction accidents of actual machines.
第1図は電気抵抗測定法の概略図、第2図は本
発明に係るクリープ損傷率と電気抵抗率比との関
係を示す線図、第3図は本発明の実施例で適用し
た電気抵抗測定装置のブロツク図、及び第4図は
本発明に係るクリープ損傷率と電気抵抗率との関
係を示す線図である。
1……被試験体、2……給電端子、3……電位
差測定端子、4……直流定電流電源、5……デジ
タルボルトメータ。
Fig. 1 is a schematic diagram of the electrical resistance measurement method, Fig. 2 is a diagram showing the relationship between the creep damage rate and the electrical resistivity ratio according to the present invention, and Fig. 3 is the electrical resistance applied in the example of the present invention. A block diagram of the measuring device and FIG. 4 are diagrams showing the relationship between creep damage rate and electrical resistivity according to the present invention. 1... Test object, 2... Power supply terminal, 3... Potential difference measurement terminal, 4... DC constant current power supply, 5... Digital voltmeter.
Claims (1)
及び組織を有する試験体のクリープ試験を行い、
給電端子と電位差測定端子とを前記試験体に接触
させて測定する電気抵抗測定装置によつてその試
験体の電気抵抗値を求める工程、その電気抵抗値
と前記クリープ試験におけるクリープ損傷率との
関係を求める工程及び前記高温機器の電気抵抗値
を前記電気抵抗測定装置によつて求め、該電気抵
抗値を前記高温機器の運転温度に対応する温度の
前記関係にあてはめて前記高温機器のクリープ損
傷率を求め、前記高温機器の運転時間からその寿
命を推定することを特徴とする高温機器の寿命予
知法。 2 前記クリープ損傷率は前記試験体のクリープ
破断時間に対するクリープ試験時間の比である特
許請求の範囲第1項記載の高温機器の寿命予知
法。 3 金属からなる高温機器とほぼ同一の化学組成
及び組織を有する試験体のクリープ試験を行い、
給電端子と電位差測定端子とを前記試験体に接触
させて測定する電気抵抗測定装置によつてその試
験体の電気抵抗値及び前記測定装置以外の他の非
破壊手段によつて前記電気抵抗値以外の物理量を
求める工程、前記電気抵抗値及び物理量と前記ク
リープ試験におけるクリープ損傷率との関係を
各々求める工程、及び前記高温機器の電気抵抗値
を前記電気抵抗測定装置によつて求め、更に前記
他の非破壊手段によつて前記電気抵抗値以外の物
理量を測定し、それらの値を前記高温機器の運転
温度に対応する温度の前記関係に各々あてはめて
前記高温機器のクリープ損傷率を求め、前記高温
機器の運転時間からその寿命を推定する工程を包
含することを特徴とする高温機器の寿命予知法。 4 前記他の非破壊手段はアコーステイツクエミ
ツシヨン法、超音波探傷法、X線法である特許請
求の範囲第3項記載の高温機器の寿命予知法。[Claims] 1. Performing a creep test on a specimen having almost the same chemical composition and structure as a high-temperature device made of metal,
A step of determining the electrical resistance value of the test object using an electrical resistance measuring device that measures the test object by bringing a power supply terminal and a potential difference measuring terminal into contact with the test object, and the relationship between the electric resistance value and the creep damage rate in the creep test. and calculating the electrical resistance value of the high-temperature equipment using the electrical resistance measuring device, and applying the electrical resistance value to the above-mentioned relationship of temperatures corresponding to the operating temperature of the high-temperature equipment to determine the creep damage rate of the high-temperature equipment. A method for predicting the lifespan of high-temperature equipment, characterized in that the life expectancy of the high-temperature equipment is estimated from the operation time of the high-temperature equipment. 2. The method for predicting the life of high-temperature equipment according to claim 1, wherein the creep damage rate is a ratio of creep test time to creep rupture time of the test specimen. 3 Perform a creep test on a test specimen with almost the same chemical composition and structure as high-temperature equipment made of metal,
The electrical resistance value of the test object is determined by an electrical resistance measuring device that measures the power supply terminal and the potential difference measuring terminal by bringing it into contact with the test object, and the electrical resistance value other than the above-mentioned electrical resistance value is determined by other non-destructive means other than the measuring device. a step of determining the electrical resistance value and the relationship between the physical quantity and the creep damage rate in the creep test, and determining the electrical resistance value of the high-temperature equipment by the electrical resistance measuring device; Measure physical quantities other than the electrical resistance value by non-destructive means, and apply these values to the temperature relationship corresponding to the operating temperature of the high-temperature equipment to determine the creep damage rate of the high-temperature equipment, and A method for predicting the lifespan of high-temperature equipment, the method comprising the step of estimating the lifespan of the equipment from the operating time of the equipment. 4. The method for predicting the lifespan of high-temperature equipment according to claim 3, wherein the other non-destructive means is an acoustic emission method, an ultrasonic flaw detection method, or an X-ray method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56158735A JPS5860248A (en) | 1981-10-07 | 1981-10-07 | How to predict the lifespan of high-temperature equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56158735A JPS5860248A (en) | 1981-10-07 | 1981-10-07 | How to predict the lifespan of high-temperature equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5860248A JPS5860248A (en) | 1983-04-09 |
JPH0210900B2 true JPH0210900B2 (en) | 1990-03-12 |
Family
ID=15678180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56158735A Granted JPS5860248A (en) | 1981-10-07 | 1981-10-07 | How to predict the lifespan of high-temperature equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5860248A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0264813B1 (en) * | 1986-10-16 | 1993-04-14 | Babcock-Hitachi Kabushiki Kaisha | Method of predicting remaining lifetime of metal material |
JP2569023B2 (en) * | 1986-11-05 | 1997-01-08 | 株式会社日立製作所 | Diagnosis method of center hole life of steam turbine rotor |
JPH076950B2 (en) * | 1988-09-14 | 1995-01-30 | 株式会社日立製作所 | Device and method for detecting deterioration of metallic material |
US8593138B2 (en) | 2009-12-17 | 2013-11-26 | Nsk Ltd. | Bearing residual life prediction method, bearing residual life diagnostic apparatus and bearing diagnostic system |
CN105987821B (en) * | 2015-08-13 | 2019-04-05 | 北京强度环境研究所 | The accelerated storage test method of single machine product under hypobaric stress |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5388781A (en) * | 1977-01-14 | 1978-08-04 | Mitsubishi Heavy Ind Ltd | Method of nondestructively measuring useful life of metal material |
JPS57113360A (en) * | 1981-01-07 | 1982-07-14 | Hitachi Ltd | Non-destructive inspection of high-temperature member |
-
1981
- 1981-10-07 JP JP56158735A patent/JPS5860248A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5388781A (en) * | 1977-01-14 | 1978-08-04 | Mitsubishi Heavy Ind Ltd | Method of nondestructively measuring useful life of metal material |
JPS57113360A (en) * | 1981-01-07 | 1982-07-14 | Hitachi Ltd | Non-destructive inspection of high-temperature member |
Also Published As
Publication number | Publication date |
---|---|
JPS5860248A (en) | 1983-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4924708A (en) | Method for calculating crack lengths of conductive sensors | |
EP1137926A1 (en) | Electrochemical noise technique for corrosion | |
JPH0210900B2 (en) | ||
US20060137466A1 (en) | Instrumentation and method for monitoring change in electric potential to detect crack growth | |
JPS5892952A (en) | Life expectancy prediction method for high temperature parts | |
JP2004144549A (en) | Non-breaking high-temperature creep damage evaluation method | |
JP3015599B2 (en) | Creep damage evaluation method for ferritic heat-resistant steel | |
JP3334070B2 (en) | A method for estimating creep life of hot parts for gas turbines. | |
JP2004028818A (en) | Method for monitoring corrosive environment and its apparatus | |
JPH0113060B2 (en) | ||
JP3441181B2 (en) | Method for detecting deterioration of super heat resistant alloy steel | |
JPH10227754A (en) | High temperature damage evaluation method for temper martensite stainless steel | |
Klymov et al. | Reliability of strain gauge measurements to clarify the strength of structures at high temperatures | |
JPS6259263B2 (en) | ||
JPH0752152B2 (en) | Weld damage detection method | |
JPS63134934A (en) | Method and device for diagnosing deterioration | |
JPH0658911A (en) | Life Prediction Method and Life Prediction Device for High Temperature Equipment Using Magnetic AE | |
JP3533517B2 (en) | Life prediction method for high temperature parts | |
JP3224053B2 (en) | Non-destructive test method and apparatus for heat-resistant metal | |
JPH01129154A (en) | Method and apparatus for inspecting embrittlement point of metal material | |
BR102020025147A2 (en) | Methodology for determining the real stress-strain curve in uniaxial tensile test using potential drop in alternating current | |
CN113008679A (en) | Creep rate measuring method based on endurance test | |
GB2057690A (en) | Testing metal components for strain therein | |
JPH01284732A (en) | Evaluating method for creep life expectancy of high temperature equipment | |
JPH08271575A (en) | Deterioration diagnostic method for wire and cable |