JPH02108907A - Distance/shape measuring instrument - Google Patents
Distance/shape measuring instrumentInfo
- Publication number
- JPH02108907A JPH02108907A JP63261625A JP26162588A JPH02108907A JP H02108907 A JPH02108907 A JP H02108907A JP 63261625 A JP63261625 A JP 63261625A JP 26162588 A JP26162588 A JP 26162588A JP H02108907 A JPH02108907 A JP H02108907A
- Authority
- JP
- Japan
- Prior art keywords
- light
- signal
- distance
- circuit
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 claims description 23
- 230000003287 optical effect Effects 0.000 claims description 9
- 238000000691 measurement method Methods 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、光の飛行時間を計測して物体までの距離およ
び/または物体の形状を求める距ktt形状測定装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distance ktt shape measuring device that measures the flight time of light to determine the distance to an object and/or the shape of the object.
[従来の技術]
光の飛行時間を時間計測や位相計測の手法を用いて計測
し、光が物体に当って帰ってくるまでの時間より、物体
までの距離を測定する光波距離計の手法は、地理測距用
測距儀、光フアイバ欠陥検査用0TDR1天体観測、レ
ーザレーダなどに広く用いられている。ところが、従来
は、光変調周波数が数MHzに留まっていたため、かか
る計測手法を近距離の物体の位置形状認識に用いる場合
には分解能が悪く適していなかった。[Prior art] A light wave distance meter is a method that measures the flight time of light using time measurement and phase measurement methods, and measures the distance to an object from the time it takes for the light to hit the object and return. It is widely used in , rangefinders for geographical distance measurement, 0TDR1 astronomical observation for optical fiber defect inspection, laser radar, etc. However, in the past, since the optical modulation frequency remained at a few MHz, the resolution was poor and the measurement method was not suitable for use in recognizing the position and shape of objects at short distances.
一方、近年の半導体レーザや高周波回路技術の発展によ
り、1 mm以下の分解能で距離が測れるようになって
きた[参考文献: Japanese Journal
of Applied Physics Vol 26
. No、10.(1987)、1690ページ〜、
K、5etaほか、など]。On the other hand, recent developments in semiconductor laser and high-frequency circuit technology have made it possible to measure distances with a resolution of 1 mm or less [Reference: Japanese Journal
of Applied Physics Vol 26
.. No, 10. (1987), 1690 pages ~,
K, 5eta, etc.].
また、2次元的に光を走査し距離形状を求める手法も行
なわれつつある[参考文献:オブトロニクス(1985
)、NO,12,59ページ〜、井口征士ほか。In addition, a method of scanning light two-dimensionally to determine the distance shape is also being used [Reference: Obtronics (1985
), NO, page 12, 59~, Seiji Iguchi et al.
など]。Such].
第3図は、従来例の1つである距離形状測定装置の概略
構成図である。これはモータ23により鏡24を駆動し
て物体25上にレーザ光を走査し、その反射光を光電管
27で受け、その信号などから物体25までの距離や物
体25の形状を求めるものである。FIG. 3 is a schematic configuration diagram of a distance shape measuring device, which is one of the conventional examples. In this method, a motor 23 drives a mirror 24 to scan an object 25 with a laser beam, the reflected light is received by a phototube 27, and the distance to the object 25 and the shape of the object 25 are determined from the signal.
[発明が解決しようとする課題]
しかしながら上記従来例によれば、鏡24などを機械的
手段によって駆動し光を走査しているため、高速化や安
定化の点で問題点があり、また計測位置と距離の対応関
係の明確化などに支障を来すという問題点があった。[Problems to be Solved by the Invention] However, according to the above conventional example, since the mirror 24 and the like are driven by mechanical means to scan the light, there are problems in speeding up and stabilizing the measurement. There was a problem in that it was difficult to clarify the correspondence between position and distance.
本発明は、上述の従来例における問題点に鑑み、光走査
のための機械的な駆動部分をなくし、高速にかつ安定し
て距離や形状を求めることができ、また計測位置と距離
との対応関係も明確にすることができる距離形状測定装
置を提供することを目的とする。In view of the above-mentioned problems in the conventional example, the present invention eliminates the mechanical driving part for optical scanning, allows distances and shapes to be determined quickly and stably, and also allows for correspondence between measurement positions and distances. It is an object of the present invention to provide a distance shape measuring device that can also clarify relationships.
[課題を解決するための手段および作用]上記の目的を
達成するため、本発明に係る距離形状測定装置では、光
波距離計の計測光を、物体上の測定範囲に照射し、その
物体上の測定範囲の像を結像する光学系の像面に複数個
の光強度センサからなるセンサアレイを配置し、光を走
査することなしにセンサアレイの各光強度センサ毎に設
けられた上記飛行時間の差を計測し、これに基づいて物
体の距離形状を計測することとしている。[Means and effects for solving the problem] In order to achieve the above object, the distance shape measuring device according to the present invention irradiates the measurement light of the light wave distance meter onto the measurement range on the object, and A sensor array consisting of a plurality of light intensity sensors is arranged on the image plane of an optical system that forms an image of the measurement range, and the above flight time is set for each light intensity sensor of the sensor array without scanning the light. The distance shape of the object is measured based on this difference.
すなわち、一種類以上の変調周波数で変調され、計測対
象上で計測対象の大きさに等しいかそれ以上の大きさに
投影される角度または大きさを持つ光を計測対象上に投
影し、その反射光または散乱光または回折光または干渉
光を光学系の共役面上に結像させ、結像面に配置した2
ヶ以上の光量測定センサで光量を求め、その光量の時間
変化より物体までの距離形状を求めるものである。In other words, light is modulated with one or more types of modulation frequencies and projected onto the measurement object at an angle or size that is equal to or larger than the measurement object, and its reflection is reflected. The light, scattered light, diffracted light, or interference light is imaged on the conjugate plane of the optical system, and the two
The amount of light is determined using more than one light amount measurement sensor, and the shape of the distance to the object is determined from the change in the amount of light over time.
[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.
第1図は、本発明の一実施例に係る距離形状測定装置の
概略構成図である。同図において、1はレーザを高速で
強度変調するレーザ制御装置、2は制御装置1によって
変調される半導体レーザなどのレーザ、3はレーザ2の
発したレーザ光を拡大しコリメートするレンズ、4はレ
ーザ光を分割するビーム分割鏡、5は被測定対象である
粗面を有する物体、6は物体5の像を結像するレンズ、
7はビーム分割鏡、8は結像された像を撮影するテレビ
カメラ、9は結像されたレーザ光強度を測るフォトダイ
オードアレイである。10はフォトダイオードアレイ9
の各素子から出力される光量信号を周波数変換した後、
位相測定に都合のよい強度に増巾し、また帯域制限する
信号整形回路(複数)である。11はヘテロダイン回路
用の局部発振回路、12はビーム分割鏡4を直進透過し
てくるレーザ光を測光する受光素子である。13は信号
整形回路10と同様にして、受光素子12の光量信号出
力を周波数変換した後、位相測定に都合のよい強度に増
巾し、あるいは帯域制限した後、位相の基準信号を作成
する基準作成回路である。14は信号整形回路10と基
準作成回路13の出力の位相差および信号整形回路10
の出力の強度を測定する測定回路(複数)、15は測定
回路14の測定結果をデジタル変換し信号処理回路16
へ送るインターフェース回路、16は測定結果を解析処
理し同時にテレビカメラ8の映像信号も解析処理し2つ
の信号を表示装置17に表示する信号処理装置、17は
処理装置1.6の出力を表示するCRTなどの表示装置
である。FIG. 1 is a schematic configuration diagram of a distance shape measuring device according to an embodiment of the present invention. In the figure, 1 is a laser control device that modulates the intensity of the laser at high speed, 2 is a laser such as a semiconductor laser that is modulated by the control device 1, 3 is a lens that magnifies and collimates the laser light emitted by the laser 2, and 4 is a laser that modulates the intensity of the laser at high speed. a beam splitting mirror that splits the laser beam; 5 is an object to be measured having a rough surface; 6 is a lens that forms an image of the object 5;
7 is a beam splitting mirror, 8 is a television camera that photographs the formed image, and 9 is a photodiode array that measures the intensity of the formed laser beam. 10 is a photodiode array 9
After converting the frequency of the light amount signal output from each element,
These are signal shaping circuits that amplify the signal to a level suitable for phase measurement and limit the band. 11 is a local oscillation circuit for the heterodyne circuit, and 12 is a light receiving element that measures the laser beam that passes through the beam splitting mirror 4 in a straight line. 13 is a standard for creating a phase reference signal after converting the frequency of the light amount signal output of the light receiving element 12, amplifying it to an intensity suitable for phase measurement, or band-limiting, in the same way as the signal shaping circuit 10. This is the creation circuit. 14 indicates the phase difference between the outputs of the signal shaping circuit 10 and the reference generation circuit 13 and the signal shaping circuit 10
15 is a signal processing circuit 16 that digitally converts the measurement results of the measurement circuit 14;
16 is a signal processing device that analyzes and processes the measurement results, simultaneously analyzes and processes the video signal of the television camera 8, and displays the two signals on a display device 17; 17 displays the output of the processing device 1.6; This is a display device such as a CRT.
上記の構成において、レーザ制御装置1によってレーザ
2より高速に強度変調されたレーザ光が発光し、レンズ
3によって拡大されほぼ平行光となる。レーザ光の平行
度は、フォトダイオードアレイ9の各素子に充分な光量
がかえってくる程度であればよい、ビーム分割鏡4によ
って、レーザ光は一方は物体5の方向へ、他方は受光素
子12の方向へ分割される。物体5により反射・散乱さ
れた光はレンズ6によってフォトダイオードアレイ9上
に結像される。各フォトダイオード素子の光量出力は、
それぞれ信号整形回路10へ導かれる。一方、局部発振
器11の信号も信号整形回路10へ導かれ、ヘテロダイ
ン方式により光量信号の強度および位相を保存した低周
波信号に変換される。In the above configuration, laser light whose intensity is modulated at a higher speed than that of the laser 2 is emitted by the laser control device 1, and is expanded by the lens 3 to become substantially parallel light. The parallelism of the laser beam only needs to be such that a sufficient amount of light is returned to each element of the photodiode array 9.The beam splitting mirror 4 directs one side of the laser beam toward the object 5 and the other toward the light receiving element 12. Divided into directions. The light reflected and scattered by the object 5 is imaged onto a photodiode array 9 by a lens 6. The light output of each photodiode element is
Each signal is guided to a signal shaping circuit 10. On the other hand, the signal from the local oscillator 11 is also guided to the signal shaping circuit 10, where it is converted into a low frequency signal that preserves the intensity and phase of the light amount signal using the heterodyne method.
また、ビーム分割鏡4を透過した光は、受光素子12に
入射し、同様に局部発振器11の信号により、低周波の
基準信号が基準信号作成回路13によって作成される。Further, the light transmitted through the beam splitting mirror 4 enters the light receiving element 12, and similarly, a low frequency reference signal is generated by the reference signal generation circuit 13 using a signal from the local oscillator 11.
基準作成回路13の出力と信号整形回路10の出力は、
強度・位相測定回路14に入力され、基準信号と光量信
号の位相差および光量信号内の基準信号と同周波数の成
分の強度が電圧12号として出力される。位相差および
強度信号はインターフェース回路15でアナログ/デジ
タル変換され、信号処理回路16へとりこまれる。信号
処理回路16は、位相差より距離を計算し、テレビカメ
ラ8で撮影した物体5の映像信号上に、色信号の形で距
離情報をのせ、近ければ赤遠ければ青という具合に、モ
ニタ17上に表示する。また、物体が複雑な形状、例え
ば貫通穴があるとき、光は返ってこない。したがって、
距離はそこだけ測れないがノイズで測定値は出る。した
がって、光量がある程度少ない場合は「光量が少ないか
ら還そうだ」ということを画面上で表現する必要がある
。The output of the reference generation circuit 13 and the output of the signal shaping circuit 10 are as follows.
The signal is input to the intensity/phase measurement circuit 14, and the phase difference between the reference signal and the light amount signal and the intensity of the component of the same frequency as the reference signal in the light amount signal are output as a voltage No. 12. The phase difference and intensity signals are analog/digital converted by the interface circuit 15 and taken into the signal processing circuit 16. The signal processing circuit 16 calculates the distance from the phase difference, and puts distance information in the form of a color signal on the video signal of the object 5 photographed by the television camera 8, so that it is displayed on the monitor 17 in the form of a color signal if it is close, and blue if it is far. Display above. Also, if the object has a complicated shape, for example, if there is a through hole, no light will be returned. therefore,
The distance cannot be measured at that point, but the measured value is due to noise. Therefore, when the amount of light is low to a certain extent, it is necessary to express on the screen that ``the amount of light is low, so it is likely to be returned.''
そこで、信号処理回路16は、強度信号が設定値以下で
あった場合、強制的に色をある指示色にすることを行な
っている。Therefore, the signal processing circuit 16 forcibly changes the color to a certain designated color when the intensity signal is less than a set value.
本実施例によれば、センサから処理回路まで電子部品お
よび素子のみで実現できるため、一体化に通しハイブリ
ットICやモノリシックIC化が可能である。また、す
べて低電圧の回路であるため、安全性のための回路や特
別な高圧回路を必要としない。According to this embodiment, everything from the sensor to the processing circuit can be realized using only electronic parts and elements, so that it is possible to integrate it into a hybrid IC or a monolithic IC. Additionally, since all circuits are low voltage, there is no need for safety circuits or special high voltage circuits.
さらに、映像信号に距純情報と強度情報(モノクロ信号
)を同時に持たせられるため、VTR他の映像機器の使
用ができる。また、レーザ光を不可視光とすれば、テレ
ビカメラに影響させることなく距離情報を入手できる。Furthermore, since the video signal can have distance information and intensity information (monochrome signal) at the same time, video equipment such as a VTR can be used. Furthermore, if the laser light is invisible light, distance information can be obtained without affecting the television camera.
[他の実施例]
第2図は、本発明の第二の実施例に係る距離形状測定装
置の概略構成図である。同図において第1図と同じ付番
は同一のものを表わす。[Other Embodiments] FIG. 2 is a schematic configuration diagram of a distance shape measuring device according to a second embodiment of the present invention. In this figure, the same numbers as in FIG. 1 represent the same parts.
第2図においては、局部発振器11の出力を、結像用フ
ォトダイオードアレイ9の各フォトダイオードに逆バイ
アス電圧として供給している。したがって、フォトダイ
オード自体でヘテロダイン変換がなされ、信号整形回路
10のヘテロダイン回路は不要となる。In FIG. 2, the output of the local oscillator 11 is supplied to each photodiode of the imaging photodiode array 9 as a reverse bias voltage. Therefore, the photodiode itself performs heterodyne conversion, and the heterodyne circuit of the signal shaping circuit 10 becomes unnecessary.
この第二の実施例によれば、フォトダイオード自体がヘ
テロダイン変換を行なうので、部品点数が減り小型化で
きる。また、フォトダイオードアレイと検出回路を一体
IC化した素子を作りやすい。According to this second embodiment, since the photodiode itself performs heterodyne conversion, the number of parts can be reduced and the device can be made smaller. Furthermore, it is easy to manufacture an element that integrates a photodiode array and a detection circuit into an integrated IC.
[発明の効果]
以上説明したように本発明によれば、以下のような効果
がある。[Effects of the Invention] As explained above, the present invention has the following effects.
l)駆動部がなく光走査が不要なため、電気計測回路の
計測時間で高速にかつ安定して、物体までの距離や物体
の形状が求まる。また、計測位置と距離との対応関係も
明確にすることができる。l) Since there is no drive unit and optical scanning is not required, the distance to the object and the shape of the object can be determined quickly and stably within the measurement time of the electrical measurement circuit. Furthermore, the correspondence between measurement positions and distances can also be clarified.
2)各点の計測に時間がかけられるため、高周波特性の
よくない回路部品でも使用できるようになった。2) Since it takes time to measure each point, it has become possible to use circuit components with poor high frequency characteristics.
3) 駆動部がないため長寿命化ができる。3) Longer life is possible because there is no driving part.
4)駆動部がないため、一体化が容易である。4) Since there is no driving part, integration is easy.
IC化も可能である。It is also possible to use IC.
第1図は、本発明の一実施例に係る距離形状測定装置の
概略構成図、
第2図は、本発明の第二の実施例に係る距離形状測定装
置の概略構成図、
第3図は、従来用いられていた距離形状測定装置の概略
構成図である。
1:レーザ制御装置、 2:レーザ、 3:レンズ、
4:ビーム分割鏡、 5:測定対象、6:レンズ、
7:ビーム分割鏡、 8:テレビカメラ、 9
:フォトダイオードアレイ、10:信号整形回路、
11:局部発振器、12:受光素子、 13:基準作
成回路、14:位相1強度測定回路、 15:インタ
ーフェース回路、 16:信号処理装置、 17:
表示装置、 18:レーザ、 19 :発振器、2
0:光変調器、 21:ビーム分割鏡、22:フォトダ
イオード、 23:モータ、24:走査鏡、 25
:測定対象、 26:光学レンズ系、 27:光電管
、 28:同調フィルタ、 29:位相強度測定器、
30:コンピュータ。
特許出願人 キャノン株式会社
代理人 弁理士 伊 東 哲 也
代理人 弁理士 伊 東 辰 雄FIG. 1 is a schematic configuration diagram of a distance shape measuring device according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a distance shape measuring device according to a second embodiment of the present invention, and FIG. , is a schematic configuration diagram of a conventionally used distance shape measuring device. 1: Laser control device, 2: Laser, 3: Lens,
4: Beam splitting mirror, 5: Measurement object, 6: Lens,
7: Beam splitting mirror, 8: Television camera, 9
: Photodiode array, 10: Signal shaping circuit,
11: Local oscillator, 12: Light receiving element, 13: Reference creation circuit, 14: Phase 1 intensity measurement circuit, 15: Interface circuit, 16: Signal processing device, 17:
Display device, 18: Laser, 19: Oscillator, 2
0: Optical modulator, 21: Beam splitting mirror, 22: Photodiode, 23: Motor, 24: Scanning mirror, 25
: Measurement object, 26: Optical lens system, 27: Phototube, 28: Tuning filter, 29: Phase intensity measuring device,
30: Computer. Patent Applicant Canon Co., Ltd. Agent Patent Attorney Tetsuya Ito Agent Patent Attorney Tatsuo Ito
Claims (1)
乱あるいは回折あるいは干渉されて光強度センサに入射
した光と該光源からの所定の基準光との飛行時間の差を
、時間計測または位相計測の手法を用いて計測し、該物
体までの距離および/または物体の形状を求める距離形
状測定装置において、 上記物体面の像を結像する光学系と、該光学系の結像面
に配置され複数個の光強度センサからなるセンサアレイ
と、該センサアレイの各光強度センサ毎に設けられた上
記飛行時間の差の計測をする手段とを具備することを特
徴とする距離形状測定装置。(1) The difference in flight time between the light that is emitted from a light source toward an object, is reflected, scattered, diffracted, or interfered with on the surface of the object, and enters the light intensity sensor, and a predetermined reference light from the light source is measured by time measurement or In a distance and shape measuring device that measures using a phase measurement technique to determine the distance to the object and/or the shape of the object, an optical system that forms an image of the object surface, and an image forming surface of the optical system are provided. A distance shape measuring device comprising: a sensor array consisting of a plurality of light intensity sensors arranged; and means for measuring the difference in flight time provided for each light intensity sensor of the sensor array. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63261625A JP2847289B2 (en) | 1988-10-19 | 1988-10-19 | Distance shape measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63261625A JP2847289B2 (en) | 1988-10-19 | 1988-10-19 | Distance shape measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02108907A true JPH02108907A (en) | 1990-04-20 |
JP2847289B2 JP2847289B2 (en) | 1999-01-13 |
Family
ID=17364491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63261625A Expired - Fee Related JP2847289B2 (en) | 1988-10-19 | 1988-10-19 | Distance shape measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2847289B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08122057A (en) * | 1994-10-27 | 1996-05-17 | Kubota Corp | Optical range-finding device |
JPH08313215A (en) * | 1995-05-23 | 1996-11-29 | Olympus Optical Co Ltd | Two-dimensional distance sensor |
JPH10508736A (en) * | 1994-11-14 | 1998-08-25 | ライカ アーゲー | Apparatus and method for detecting and demodulating intensity-modulated fields |
JP2000121339A (en) * | 1998-10-15 | 2000-04-28 | Hamamatsu Photonics Kk | Three-dimensional information detection method and device |
JP2004233126A (en) * | 2003-01-29 | 2004-08-19 | Nippon Telegr & Teleph Corp <Ntt> | Projection plane information acquiring device |
JP2004525351A (en) * | 2000-12-11 | 2004-08-19 | カネスタ インコーポレイテッド | A system for CMOS compatible three-dimensional image sensing using quantum efficiency modulation |
WO2013076769A1 (en) * | 2011-11-24 | 2013-05-30 | 三菱電機株式会社 | Optical range finder |
JP2019002847A (en) * | 2017-06-16 | 2019-01-10 | 京セラ株式会社 | Electromagnetic wave detector and information acquisition system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS591256U (en) * | 1982-06-25 | 1984-01-06 | 横河電機株式会社 | Avalanche photodiode drive circuit |
JPS6046403A (en) * | 1983-05-05 | 1985-03-13 | インタ−ナシヨナル スタンダ−ド エレクトリツク コ−ポレイシヨン | Device and method of detecting position and/or attitude |
JPS62279732A (en) * | 1986-05-28 | 1987-12-04 | Agency Of Ind Science & Technol | Heterodyne detection method by amplification degree modulation of avalanche photodiode |
JPS6480893A (en) * | 1987-09-24 | 1989-03-27 | Nec Corp | Laser distance measuring machine |
-
1988
- 1988-10-19 JP JP63261625A patent/JP2847289B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS591256U (en) * | 1982-06-25 | 1984-01-06 | 横河電機株式会社 | Avalanche photodiode drive circuit |
JPS6046403A (en) * | 1983-05-05 | 1985-03-13 | インタ−ナシヨナル スタンダ−ド エレクトリツク コ−ポレイシヨン | Device and method of detecting position and/or attitude |
JPS62279732A (en) * | 1986-05-28 | 1987-12-04 | Agency Of Ind Science & Technol | Heterodyne detection method by amplification degree modulation of avalanche photodiode |
JPS6480893A (en) * | 1987-09-24 | 1989-03-27 | Nec Corp | Laser distance measuring machine |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08122057A (en) * | 1994-10-27 | 1996-05-17 | Kubota Corp | Optical range-finding device |
JPH10508736A (en) * | 1994-11-14 | 1998-08-25 | ライカ アーゲー | Apparatus and method for detecting and demodulating intensity-modulated fields |
JPH08313215A (en) * | 1995-05-23 | 1996-11-29 | Olympus Optical Co Ltd | Two-dimensional distance sensor |
JP2000121339A (en) * | 1998-10-15 | 2000-04-28 | Hamamatsu Photonics Kk | Three-dimensional information detection method and device |
US7486804B2 (en) | 1998-10-15 | 2009-02-03 | Nippon Hoso Kyokai | Method and device for detecting three-dimensional information |
JP2004525351A (en) * | 2000-12-11 | 2004-08-19 | カネスタ インコーポレイテッド | A system for CMOS compatible three-dimensional image sensing using quantum efficiency modulation |
JP2004233126A (en) * | 2003-01-29 | 2004-08-19 | Nippon Telegr & Teleph Corp <Ntt> | Projection plane information acquiring device |
WO2013076769A1 (en) * | 2011-11-24 | 2013-05-30 | 三菱電機株式会社 | Optical range finder |
JP2019002847A (en) * | 2017-06-16 | 2019-01-10 | 京セラ株式会社 | Electromagnetic wave detector and information acquisition system |
Also Published As
Publication number | Publication date |
---|---|
JP2847289B2 (en) | 1999-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5200793A (en) | Range finding array camera | |
CA2038924C (en) | Lidar scanning system | |
US4796997A (en) | Method and system for high-speed, 3-D imaging of an object at a vision station | |
US6587186B2 (en) | CMOS-compatible three-dimensional image sensing using reduced peak energy | |
WO2021212915A1 (en) | Laser distance measuring device and method | |
US5020904A (en) | Dynamic laser speckle profilometer and method | |
US6388754B1 (en) | Shape measuring system and method | |
JPH04115108A (en) | Three-dimensional scanner | |
US5579103A (en) | Optical radar ranger with modulation of image sensor sensitivity | |
DE3886966D1 (en) | Image system in three dimensions with coherent optical detection. | |
JPH02108907A (en) | Distance/shape measuring instrument | |
US6522397B2 (en) | Method and a device for measuring speed by the doppler effect | |
CN1089443C (en) | Incoherent laser radar system for detecting atmosphere | |
EP0449337A2 (en) | Range finding array camera | |
JPS6326877B2 (en) | ||
JPH06186337A (en) | Laser distance measuring equipment | |
US20100312500A1 (en) | Array of Electromagnetic Radiation Sensors with On-Chip Processing Circuitry | |
TW202226819A (en) | shape measurement system | |
US5521694A (en) | Laser beam path profile sensor system | |
US5157487A (en) | Distance information obtaining device | |
GB2204947A (en) | Method and system for high speed, 3-D imaging of an object at a vision station | |
GB2256764A (en) | Laser system with heterodyne detection | |
JPH04110706A (en) | 3D shape data acquisition device | |
JPH0483132A (en) | Three-dimensional scanner | |
JPS63127106A (en) | How to measure 3D shape |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |