[go: up one dir, main page]

JPH02105485A - Buried type semiconductor laser - Google Patents

Buried type semiconductor laser

Info

Publication number
JPH02105485A
JPH02105485A JP25864688A JP25864688A JPH02105485A JP H02105485 A JPH02105485 A JP H02105485A JP 25864688 A JP25864688 A JP 25864688A JP 25864688 A JP25864688 A JP 25864688A JP H02105485 A JPH02105485 A JP H02105485A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
junction
layers
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25864688A
Other languages
Japanese (ja)
Inventor
Tomoki Murakami
村上 智樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25864688A priority Critical patent/JPH02105485A/en
Publication of JPH02105485A publication Critical patent/JPH02105485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To further improve a response characteristic by forming a plurality of PN junctions having the sufficiently small capacity in an anticurrent region. CONSTITUTION:Two grooves are provided in a multilayer construction having an active layer between a buffer layer 2 and a clad layer 4, while a block layer 5, a undoped layer 6 and a block layer 7 are provided on both side grooves of a striped multilayer construction lying between these grooves, while providing the block layers 5a, 5b and the nondoped layers 6a, 6b between the nondoped layer 6 and the block layer 7 thereto respectively. In this case, the undoped layers 6, 6a and 6b have all got an n-type InP layer having concentration of 1X10<15>cm<-3>. On the other hand, 5, 5a and 5b are all a p-type InP layer having concentration 1X10<17>cm<-3>. Here, each p-n junction consisting of 5 and 6, 5a and 6a and 5b and 6b gets a reverse bias in the state of operation of an element and a depletion layer largely spreads especially on the sides of 6, 6a and 6b so that the junction capacity of p-n junction 10, 11 and 12 is sufficiently small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は埋込み型半導体レーザに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an embedded semiconductor laser.

〔従来の技術〕[Conventional technology]

第3図に従来のInP/InGaAsP 2重チャネル
型ブレーナ埋込み型半導体レーザ(以下、半導体レーザ
と略記する)の断面図を示す。この半導体レーザは活性
層3をバッファー層2とクラッド層4とで挟んだストラ
イプ状多層構造を半導体基板1上に備え、ストライプ状
多層構造の両側にブロック層5、ノンドープ層6、ブロ
ック層7、半導体層8から成る電流阻止領域を有し、さ
らに最上部にキャップ層9を備えた構造となっている。
FIG. 3 shows a cross-sectional view of a conventional InP/InGaAsP double channel type brainer buried semiconductor laser (hereinafter abbreviated as semiconductor laser). This semiconductor laser has a striped multilayer structure on a semiconductor substrate 1 in which an active layer 3 is sandwiched between a buffer layer 2 and a cladding layer 4, and on both sides of the striped multilayer structure, a block layer 5, a non-doped layer 6, a block layer 7, It has a structure including a current blocking region made of a semiconductor layer 8 and a cap layer 9 on the top.

第3図において、1,2.7はN型1nP型、3はIn
GaAsP活性層、4.5.8.9はP型InP M、
6はノンドープInP暦である。ここで5.7.8は電
流を狭窄する為のブロック層であり、さらにノンドープ
層6は半導体レーザの応答特性改善を目指し、半導体レ
ーザの寄生容量を減らす目的で形成されたものである。
In Figure 3, 1, 2.7 are N type 1nP type, 3 is In
GaAsP active layer, 4.5.8.9 is P-type InP M,
6 is a non-doped InP calendar. Here, 5.7.8 is a blocking layer for confining the current, and the non-doped layer 6 is formed for the purpose of improving the response characteristics of the semiconductor laser and reducing the parasitic capacitance of the semiconductor laser.

すなわち、ノンドープ層6は通常1〜10 X 101
6cm−3の濃度のN型1nP層となり隣接するP型1
nP層5とPN接合10を形成するが、半導体レーザの
動作状態では上記PN接合10は逆バイアス状態であり
、かつノンドープ層6は半導体レーザ中の各半導体層の
うち最も濃度が低い為PN接合10による容量は半導体
レーザ中の他のPN接合による容量の中で最も小さい。
That is, the non-doped layer 6 usually has a thickness of 1 to 10×101
An N-type 1nP layer with a concentration of 6 cm-3 and an adjacent P-type 1
A PN junction 10 is formed with the nP layer 5, but since the PN junction 10 is in a reverse bias state in the operating state of the semiconductor laser, and the non-doped layer 6 has the lowest concentration among the semiconductor layers in the semiconductor laser, it forms a PN junction. The capacitance due to 10 is the smallest among the capacitance due to other PN junctions in the semiconductor laser.

ここで半導体レーザ全体容量は各PN接合による容量の
直列配置された状態の容量と考えられるから各容量中最
も小さい容量が半導体レーザ全体の容量を大きく左右し
ていた。
Here, since the overall capacitance of the semiconductor laser is considered to be the capacitance of the capacitors arranged in series by each PN junction, the smallest capacitance among the capacitors greatly influences the capacitance of the entire semiconductor laser.

一方、PN接合]0が形成されていない領域は素子全体
としては面積的に小さく、したがって容量も小さい。し
たがって、PN接合10による容量が半導体レーザ全体
の容量を大きく左右していた。
On the other hand, the area where the PN junction]0 is not formed is small in terms of area as a whole of the element, and therefore has a small capacitance. Therefore, the capacitance due to the PN junction 10 largely influences the capacitance of the entire semiconductor laser.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、より高速の応答が要求されるに至り、従来の構
造の半導体レーザではノンドープInP層6の低濃度化
は容易ではなく、したがって半導体レーザの寄生容量の
低減が困難でより高速な応答には対応できないという欠
点があった。
However, with the demand for faster response, it is not easy to reduce the concentration of the non-doped InP layer 6 in semiconductor lasers with conventional structures.Therefore, it is difficult to reduce the parasitic capacitance of semiconductor lasers, and faster response is required. The drawback was that it could not be handled.

本発明は半導体レーザの構造に工夫を施し、上記問題点
を解決して高速応答が可能な半導体レーザを得ることに
ある。
The object of the present invention is to improve the structure of a semiconductor laser, solve the above problems, and obtain a semiconductor laser capable of high-speed response.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体レーザは、電流注入により発光する活性
層を内包するストライプ状多層構造の両側に、少なくと
も片方の濃度がI X 1017cm−3以下であるP
型半導体層と、N型半導体層とを少なくとも複数組以上
、そのPN接合が半導体レーザの動作状態において逆バ
イアスとなるように形成した構造を有している。
The semiconductor laser of the present invention has a striped multilayer structure containing an active layer that emits light by current injection, and on both sides of the stripe-shaped multilayer structure, the concentration of P is less than or equal to I x 1017 cm-3.
The semiconductor laser has a structure in which at least a plurality of sets of type semiconductor layers and N-type semiconductor layers are formed such that their PN junctions are reverse biased in the operating state of the semiconductor laser.

〔実施例1〕 第1図に本発明の実施例の半導体レーザの断面図を示す
。第1図に示す本実施例の半導体レーザは第3図に示す
従来の構造の半導体レーザに比べ、ノンドープInP1
6a、6bとP型1nP層5a、5bが付加された構造
となっている。すなわち、バッファー層2とクラッドN
4とで活性層を挟んだ多層構造に2本の溝を設けて、こ
の溝に挟まれたストライプ状多層構造の両側溝部にブロ
ック層5、ノンドープ層6、ブロック層7を備え、さら
にノンドープ層6とブロックN7との間にブロック層5
a、5b、ノンドープ層6a。
[Example 1] FIG. 1 shows a cross-sectional view of a semiconductor laser according to an example of the present invention. The semiconductor laser of this embodiment shown in FIG. 1 has a non-doped InP1 structure compared to the conventional semiconductor laser shown in FIG.
6a, 6b and P-type 1nP layers 5a, 5b are added. That is, buffer layer 2 and cladding N
Two grooves are provided in the multilayer structure with the active layer sandwiched between the two grooves, and a block layer 5, a non-doped layer 6, and a block layer 7 are provided in the grooves on both sides of the striped multi-layer structure sandwiched between the grooves. Block layer 5 between block N7 and block N7
a, 5b, non-doped layer 6a.

6bをそれぞれ対にして設けた構造となっている。この
ほかは従来例と同じである。この場合、ノドープInP
層6.6a、6bはともに濃度が1 X 1016cm
−3のN型InP層となっている。また厚さはともに0
.3μmである。一方、5.5a。
6b are provided in pairs. The rest is the same as the conventional example. In this case, undoped InP
Layers 6.6a and 6b both have a concentration of 1 x 1016 cm
-3 N-type InP layer. Also, both thicknesses are 0
.. It is 3 μm. On the other hand, 5.5a.

5bはともに濃度I X 1017cm−3、厚さ0.
1μmのP型1nP層である。ここで、第1図に示すよ
うに素子の動作状態では5と6、らaと6a及び5bと
6bよりなるそれぞれのPN接合は逆バイアスとなり、
空乏層が特に6.6a、6b側に大きく広がる為、PN
接合10.11.12の接合容量は十分小さい さらに
上記3つのPN接合10.11.12は直列に配置され
ている為、それぞれの容量が等しいとすると、3つのP
N接合全体の容量は1つのPN接合の1/3となってい
る。この結果、半導体レーザ全体の寄生容量は従来のも
のより1/2から1/3に減少させることができ、半導
体レーザの応答特性を大幅に改善することができな。
5b both have a concentration of I x 1017 cm-3 and a thickness of 0.5b.
It is a 1 μm P-type 1nP layer. Here, as shown in FIG. 1, in the operating state of the element, each PN junction consisting of 5 and 6, ra and 6a, and 5b and 6b is reverse biased,
Since the depletion layer spreads greatly especially on the 6.6a and 6b sides, the PN
The junction capacitance of junction 10.11.12 is sufficiently small Furthermore, since the above three PN junctions 10.11.12 are arranged in series, assuming that their respective capacitances are equal, the three P
The capacitance of the entire N junction is 1/3 that of one PN junction. As a result, the parasitic capacitance of the entire semiconductor laser can be reduced to 1/2 to 1/3 compared to the conventional one, and the response characteristics of the semiconductor laser cannot be significantly improved.

〔実施例2〕 次に、第2図に本発明の第2の実施例の半導体レーザの
断面図を示す。この実施例は半導体基板1の上に形成し
た活性層を内包する多層構造をメサエッチングしてスト
ライプ状多層構造を形成し、このストライプ状多層構造
の両側にブロック層とノンドープ層を交互に積層してス
トライプ状条N構造を埋め込んだ構造となっている。ブ
ロック層7.半導体M8.キャップ層9は従来と同じで
ある。第2図において、6c、6d。
[Embodiment 2] Next, FIG. 2 shows a cross-sectional view of a semiconductor laser according to a second embodiment of the present invention. In this embodiment, a multilayer structure including an active layer formed on a semiconductor substrate 1 is mesa-etched to form a striped multilayer structure, and block layers and non-doped layers are alternately laminated on both sides of this striped multilayer structure. It has a structure in which striped N structures are embedded. Block layer 7. Semiconductor M8. The cap layer 9 is the same as the conventional one. In FIG. 2, 6c, 6d.

6e、6f、6gはともに厚さOjμm、濃度1 X 
1016cm−3のN型InP層であり、また5c。
6e, 6f, and 6g all have a thickness of Ojμm and a concentration of 1X
It is an N-type InP layer of 1016 cm-3 and 5c.

5d、5e、5f、5gはともに厚さ0.1μm、濃度
I X 1016cm−3のP型InP Jilである
。第2の実施例の半導体レーザは第1の実施例の半導体
レーザとは埋込み断面形状を異にしているが、電流経路
となる領域以外の領域に十分小さい容量のPN接合10
,11,12.13.14を形成した構造を有しており
、第1の実施例の半導体レーザと同様の効果を有する。
5d, 5e, 5f, and 5g are all P-type InP Jil with a thickness of 0.1 μm and a concentration of I×10 16 cm −3 . Although the semiconductor laser of the second embodiment has a buried cross-sectional shape different from the semiconductor laser of the first embodiment, it has a PN junction 10 with a sufficiently small capacitance in a region other than the region serving as a current path.
, 11, 12, 13, 14, and has the same effect as the semiconductor laser of the first embodiment.

さらに、本実施例の半導体レーザは上述のPN接合を形
成しているP型1nP層5c、5d、5e、5f、5g
とN型InP層6c、6d、6e、6f、6gが共に1
×10110l6’と低い濃度の半導体層である為、各
PN接合の容量はさらに小さくなり、またPN接合の数
も多い高弟1の実施例の半導体レーザに比べさらなる改
善効果を有する。
Furthermore, the semiconductor laser of this example has P-type 1nP layers 5c, 5d, 5e, 5f, and 5g forming the above-mentioned PN junction.
and N-type InP layers 6c, 6d, 6e, 6f, and 6g are all 1
Since the semiconductor layer has a low concentration of x10110l6', the capacitance of each PN junction is further reduced, and the semiconductor laser has a further improvement effect compared to the semiconductor laser of Example 1, which has a large number of PN junctions.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の半導体レーザは、電流阻止
領域中に十分小さい容量のPN接合を複数形成すること
により、上述の付加したPN接合全体の容量は形成した
PN接合の逆数に比例して減少し、さらに上述のPN接
合の容量は半導体レーザ中の他のPN接合の容量より小
さい為、半導体レーザ全体の容量を小さくできる効果が
ある。
As explained above, in the semiconductor laser of the present invention, by forming a plurality of PN junctions with sufficiently small capacitance in the current blocking region, the capacitance of the above-mentioned added PN junctions as a whole is proportional to the reciprocal of the formed PN junctions. Furthermore, since the capacitance of the above-mentioned PN junction is smaller than the capacitance of other PN junctions in the semiconductor laser, there is an effect that the capacitance of the entire semiconductor laser can be reduced.

この結果応答特性をより向上できた。As a result, the response characteristics could be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の半導体レーザの断面図、第
3図は従来の構造の半導体レーザの断面図である。 ■・・・半導体基板、2・・・バッファ層、3・・・活
性層、4・・・クラッド層、5.5a、5b、5c。 5d、5e、5f、5g・・・基板と反対の導電型のブ
ロック層、6.6a、6b、6c、6d。 6e、6f、6g・・・ノンドープ層、7・・・基板と
同じ導電型のブロック層、8・・・基板と反対の導電型
の半導体層、9・・・キャップ層、10,1,112.
13.14・・・PN接合。
1 and 2 are cross-sectional views of a semiconductor laser according to the present invention, and FIG. 3 is a cross-sectional view of a semiconductor laser having a conventional structure. 2... Semiconductor substrate, 2... Buffer layer, 3... Active layer, 4... Cladding layer, 5.5a, 5b, 5c. 5d, 5e, 5f, 5g... Block layers of conductivity type opposite to the substrate, 6.6a, 6b, 6c, 6d. 6e, 6f, 6g... Non-doped layer, 7... Block layer of the same conductivity type as the substrate, 8... Semiconductor layer of the opposite conductivity type to the substrate, 9... Cap layer, 10, 1, 112 ..
13.14...PN junction.

Claims (1)

【特許請求の範囲】[Claims] 電流注入により発光する活性層を内包するストライプ状
多層構造の両側に、半導体層を複数積層して構成した電
流阻止領域を備えた埋込み型半導体レーザにおいて、前
記電流阻止領域に、複数のPN接をそのPN接合が半導
体レーザの動作状態において逆バイアスとなるように形
成し、かつ上記PN接合を構成するP型半導体層とN型
半導体層のうち少なくとも片方の濃度が1×10^1^
7cm^−^3以下であることを特徴とした埋込み型半
導体レーザ。
In a buried semiconductor laser having a current blocking region formed by stacking a plurality of semiconductor layers on both sides of a striped multilayer structure containing an active layer that emits light by current injection, the current blocking region is provided with a plurality of PN contacts. The PN junction is formed so as to be reverse biased in the operating state of the semiconductor laser, and the concentration of at least one of the P-type semiconductor layer and the N-type semiconductor layer constituting the PN junction is 1×10^1^
An embedded semiconductor laser characterized by having a diameter of 7 cm^-^3 or less.
JP25864688A 1988-10-13 1988-10-13 Buried type semiconductor laser Pending JPH02105485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25864688A JPH02105485A (en) 1988-10-13 1988-10-13 Buried type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25864688A JPH02105485A (en) 1988-10-13 1988-10-13 Buried type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02105485A true JPH02105485A (en) 1990-04-18

Family

ID=17323163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25864688A Pending JPH02105485A (en) 1988-10-13 1988-10-13 Buried type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02105485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202333A (en) * 1993-12-28 1995-08-04 Nec Corp Manufacture of semiconductor optical waveguide element of buried structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202333A (en) * 1993-12-28 1995-08-04 Nec Corp Manufacture of semiconductor optical waveguide element of buried structure

Similar Documents

Publication Publication Date Title
US5406095A (en) Light emitting diode array and production method of the light emitting diode
KR960032781A (en) Semiconductor light emitting device and manufacturing method thereof
CA2254484A1 (en) Semiconductor laser device
JPH04144183A (en) Surface light emitting type semiconductor laser
JPH02105485A (en) Buried type semiconductor laser
JP2003110135A5 (en)
KR970063851A (en) Vertical laser emitting cavity surface with low resistive upper emitting ridge doped with p-type lower mirror and method of manufacturing the same
JPH0794826A (en) Semiconductor laser
JPH06130236A (en) Cross type optical switch
JPH0541534A (en) Resonant tunnel type phototransistor
JP2949298B2 (en) Method of forming quantum well layer
JPH09312448A (en) Carrier confinement structure using multiple adjacent confinement structure
JPS6045087A (en) Semiconductor laser device
JP2592265B2 (en) Optoelectronic integrated circuit device
KR960007301Y1 (en) Semiconductor laser diode in multilayer current blocking layer
JPH04196281A (en) Visible light semiconductor laser
KR20230104519A (en) Semiconductor light-emitting element, light-emitting device, and ranging device
JPH01147884A (en) Laser diode
JP2023537169A (en) vertical cavity surface emitting laser
JPH07122818A (en) Surface light emitting element
JP2769053B2 (en) Super luminescent diode
JPS61270886A (en) Semiconductor laser device
JPH027488A (en) Buried heterostructure semiconductor laser
JPH1187843A (en) Surface-emitting semiconductor light-emitting device
JPH05267796A (en) Semiconductor device