JPH02105407A - X-ray mask manufacturing method - Google Patents
X-ray mask manufacturing methodInfo
- Publication number
- JPH02105407A JPH02105407A JP63257133A JP25713388A JPH02105407A JP H02105407 A JPH02105407 A JP H02105407A JP 63257133 A JP63257133 A JP 63257133A JP 25713388 A JP25713388 A JP 25713388A JP H02105407 A JPH02105407 A JP H02105407A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- dry etching
- film substrate
- ray mask
- ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000010409 thin film Substances 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 15
- 238000001312 dry etching Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 4
- 239000002470 thermal conductor Substances 0.000 claims description 3
- 238000001015 X-ray lithography Methods 0.000 claims description 2
- 238000009826 distribution Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はX線リソグラフィ用マスク作製法に係り、特に
パターンの寸法精度を向上させるのに好適なドライエツ
チング方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a mask for X-ray lithography, and particularly to a dry etching method suitable for improving the dimensional accuracy of a pattern.
従来のX線マスクパターンの作製方法は、ソリッド ス
テート テクノロジー1984 9月号(Advanc
es in X−Ray Mask Technolo
gy)あるいは第2図記載のように、マスクブランクと
称する中空の薄膜基板上に積層した材料を、反応性イオ
ンエツチングやスパッタエツチング等のドライエツチン
グ加工が行われている。The conventional method for producing X-ray mask patterns is described in Solid State Technology September issue 1984 (Advance
es in X-Ray Mask Technolo
gy) Alternatively, as shown in FIG. 2, materials laminated on a hollow thin film substrate called a mask blank are subjected to dry etching processing such as reactive ion etching or sputter etching.
〔発明が解決しようとする11I題〕
上記従来技術はドライエツチング時の発熱について配慮
がされておらず、第2図に示す如く反応ガスがイオン化
、或いはラジカル化して表面に飛来することによって表
面で発生する反応熱は、支持枠上では該支持枠、或いは
支持枠を通じてテーブルへ容易に放熱されるが、中空に
支持された薄膜基板上では放熱されにくい為、第3図に
示す如く薄膜基板上では温度上昇に起因してエツチング
速度が増大し、且つ温度分布がある為、エツチング速度
にも分布が生ずることにより、エッチングして得られる
パターンの加工寸法にもバラツキが生じ、寸法精度の制
御が困難であるという問題があった。[Problem 11I to be solved by the invention] The above conventional technology does not take into account heat generation during dry etching, and as shown in Figure 2, the reaction gas is ionized or radicalized and flies to the surface, causing The reaction heat generated on the support frame is easily radiated to the table through the support frame, but it is difficult to radiate the heat on the thin film substrate supported in the air. In this case, the etching rate increases due to temperature rise, and since there is a temperature distribution, the etching rate also has a distribution, which causes variations in the processing dimensions of the pattern obtained by etching, making it difficult to control the dimensional accuracy. The problem was that it was difficult.
本発明の目的は薄膜基板上で発生した熱を10!を極的
に放熱させることにより、薄膜基板上での温度分布を解
消し、エツチング速度の均一性を向上し得るX線マスク
作製方法を提供することにある。The purpose of the present invention is to reduce the heat generated on the thin film substrate by 10! An object of the present invention is to provide an X-ray mask manufacturing method that can eliminate temperature distribution on a thin film substrate and improve etching rate uniformity by extremely dissipating heat.
上記目的を達成するために、本発明では薄膜基板の裏面
に良熱伝導物より成る部材を近接、或いは接触させてド
ライエツチングを行うようにしたものである。In order to achieve the above object, the present invention performs dry etching by bringing a member made of a good thermal conductor close to or in contact with the back surface of a thin film substrate.
薄膜基板の裏面に近接、或いは接触させた良熱伝導部材
は、薄膜基板で発生した熱を雰囲気の気体を介し、或い
は輻射、伝導等直接的に放熱させる物として作用する。A good heat conductive member placed close to or in contact with the back surface of the thin film substrate acts as a material that radiates heat generated in the thin film substrate through the gas in the atmosphere or directly by radiation, conduction, etc.
それによって、薄膜基板上では温度分布を生ずることが
なくなるので均一なエツチング速度分布が得られる。As a result, no temperature distribution occurs on the thin film substrate, so that a uniform etching rate distribution can be obtained.
以下、本発明の一実施例を第1図、第3図より説明する
。支持枠5に厚さ400〜2000μmのシリコンウェ
ハを用い、該シリコンウェハ上に薄膜基板4として厚さ
1〜2μmの窒化ホウ素膜、あるいは窒化ケイ素膜をC
VD−7Aにより形成した後、シリコンウェハの中央部
を直径40mmの領域だけ除去してマスクブランクを作
製する。次に薄膜基板4の上に被加工層3としてX線吸
収体材料の金を厚さ1μm積層し、レジスト層2として
電子線レジストを塗布形成し、電子線リソグラフィによ
りパターン形成した。次にドライエツチングチャンバ内
に設置する際、良熱伝導部材7としてシリコンあるいは
銅のブロックを薄膜基板4との間隙が10μm以下にな
るように配置し、反応ガス1としてアルゴンを導入し、
雰囲気圧力が〜10 ””torrになるように調整し
て放電させ、レジストをマスクにした金のアルゴンイオ
ンによるミリングを行ない、金のエツチング速度分布を
測定したところ、第3図に示す如く支持枠上、薄膜基板
上にかかわらず均一なエツチング速度分布が得られた。An embodiment of the present invention will be described below with reference to FIGS. 1 and 3. A silicon wafer with a thickness of 400 to 2000 μm is used as the support frame 5, and a boron nitride film or a silicon nitride film with a thickness of 1 to 2 μm is coated on the silicon wafer as the thin film substrate 4.
After forming using VD-7A, a mask blank is produced by removing a 40 mm diameter region from the center of the silicon wafer. Next, gold as an X-ray absorber material was laminated to a thickness of 1 μm on the thin film substrate 4 as a layer 3 to be processed, an electron beam resist was applied as a resist layer 2, and a pattern was formed by electron beam lithography. Next, when installing in a dry etching chamber, a silicon or copper block is placed as a good heat conductive member 7 so that the gap with the thin film substrate 4 is 10 μm or less, and argon is introduced as a reaction gas 1.
The atmospheric pressure was adjusted to ~10" torr, and the gold was milled with argon ions using the resist as a mask. The etching rate distribution of the gold was measured, as shown in Figure 3. Above, a uniform etching rate distribution was obtained regardless of the thin film substrate.
また、被加工層3としてチタンやポリイミドから成る多
層膜を積層し、該多層膜のチタンをCF4ガスにて10
−2〜10−”torrの圧力で反応性イオンエツチン
グを行なった場合や、ポリイミド層を酸素ガスにて10
−3〜10 ””torrで反応性イオンエツチングを
行なった場合についても同様の結果が得られた。In addition, a multilayer film made of titanium or polyimide is laminated as the layer 3 to be processed, and the titanium of the multilayer film is heated to 10% by CF4 gas.
When reactive ion etching is performed at a pressure of -2 to 10 torr, the polyimide layer is etched with oxygen gas at a pressure of 10 torr.
Similar results were obtained when reactive ion etching was performed at −3 to 10” torr.
本発明によれば簿膜基板面に形成せしめるパターンのド
ライエツチング工程における寸法変動量の分布を均一化
できるので、従来は薄膜領域の中央部と周辺部で寸法差
が0.3μmであったものを0.1μm以下に抑えるこ
とが可能になった。According to the present invention, the distribution of dimensional variations in the dry etching process of the pattern formed on the film substrate surface can be made uniform, so that the dimensional difference between the central and peripheral parts of the thin film region was 0.3 μm in the past. It has become possible to suppress this to 0.1 μm or less.
さらに、治具を用いることにより、治具に装着したまま
連続して異なるドライエツチング装置への搬送、あるい
は検査後の追加ドライエツチングが行えるため、各工程
間でギャップ制御のバラツキがなくなる。Furthermore, by using a jig, it is possible to continuously transport the film to different dry etching devices while it is attached to the jig, or perform additional dry etching after inspection, thereby eliminating variations in gap control between processes.
第1図は本発明によるマスク作製方法を説明する図、第
2図は従来法を説明する図、第3図は本発明の詳細な説
明する図である。
1・・・反応ガス、2・・・レジスト層、3・・・被加
工層。
4・・・薄膜基板、5・・・支持枠、6・・・テーブル
、7・・・良熱伝導部材。FIG. 1 is a diagram for explaining the mask manufacturing method according to the present invention, FIG. 2 is a diagram for explaining the conventional method, and FIG. 3 is a diagram for explaining the present invention in detail. 1... Reactive gas, 2... Resist layer, 3... Layer to be processed. 4... Thin film substrate, 5... Support frame, 6... Table, 7... Good heat conductive member.
Claims (1)
に支持された薄膜上に積層した材料をドライエッチング
加工する場合、該薄膜の裏面に良熱伝導物より成る部材
を近接、或いは接触させてドライエッチングを行なうX
線マスク作製方法。 2、前記良熱伝導物より成る部材と上記薄膜との間隔を
維持したまま固定する治具を用いる第1項のX線マスク
作製方法。 3、上記治具に被加工基板を保持したまま、異なるドラ
イエッチング工程を行なう第2項のX線マスク作製方法
。[Claims] 1. In a method for producing a mask for X-ray lithography, when dry etching is performed on a material laminated on a thin film supported in the air, a member made of a good thermal conductor is placed on the back side of the thin film. Dry etching in close proximity or contact
Line mask production method. 2. The method for producing an X-ray mask according to item 1, which uses a jig for fixing the member made of the good thermal conductor and the thin film while maintaining the distance therebetween. 3. The method for producing an X-ray mask according to item 2, in which different dry etching steps are performed while the substrate to be processed is held in the jig.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63257133A JPH02105407A (en) | 1988-10-14 | 1988-10-14 | X-ray mask manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63257133A JPH02105407A (en) | 1988-10-14 | 1988-10-14 | X-ray mask manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02105407A true JPH02105407A (en) | 1990-04-18 |
Family
ID=17302181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63257133A Pending JPH02105407A (en) | 1988-10-14 | 1988-10-14 | X-ray mask manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02105407A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19715194B4 (en) * | 1996-04-11 | 2005-03-17 | Denso Corp., Kariya | Method for manufacturing semiconductor devices using dry etching |
-
1988
- 1988-10-14 JP JP63257133A patent/JPH02105407A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19715194B4 (en) * | 1996-04-11 | 2005-03-17 | Denso Corp., Kariya | Method for manufacturing semiconductor devices using dry etching |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4334832B2 (en) | Membrane mask having a large area and method for producing the same | |
JPH03271200A (en) | Method for etching diamond thin film | |
JPH0317369B2 (en) | ||
KR100579619B1 (en) | Plasma treatment method and plasma treatment device | |
JPH02145782A (en) | Etching apparatus | |
US5401932A (en) | Method of producing a stencil mask | |
JPH02105407A (en) | X-ray mask manufacturing method | |
JP3060693B2 (en) | Stencil mask forming method | |
JPS5825041B2 (en) | Method for manufacturing diamond-like carbon film | |
US3585091A (en) | Method for etching thin layers of oxide or nitride | |
JP5256928B2 (en) | Stencil mask and manufacturing method thereof | |
JPS6329504A (en) | Bias sputtering method | |
JP2899542B2 (en) | Method of manufacturing transfer mask | |
JPH04309220A (en) | Etching equipment | |
JPS6010731A (en) | plasma etching equipment | |
JPS6127900B2 (en) | ||
JPH03182752A (en) | How to create an exposure mask | |
JP2638080B2 (en) | Method of manufacturing mask material for X-ray exposure | |
JP2792156B2 (en) | Etching apparatus and etching method | |
JPS62219924A (en) | How to manufacture an X-ray mask | |
JPH0774076A (en) | Conductive resist film and method for manufacturing semiconductor device | |
JP2002025424A (en) | Patterned orientational carbon nanotube cathode, manufacturing method of the same, charged particle beam exposure system, and manufacturing method of semiconductor device | |
JPH04143266A (en) | Device for formation of low stress film | |
JP3279181B2 (en) | Method of manufacturing mask for X-ray exposure | |
JPS60211849A (en) | Forming method of conductive film pattern |