JPH02104120A - surface acoustic wave resonator - Google Patents
surface acoustic wave resonatorInfo
- Publication number
- JPH02104120A JPH02104120A JP25775088A JP25775088A JPH02104120A JP H02104120 A JPH02104120 A JP H02104120A JP 25775088 A JP25775088 A JP 25775088A JP 25775088 A JP25775088 A JP 25775088A JP H02104120 A JPH02104120 A JP H02104120A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- acoustic wave
- surface acoustic
- resonator
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔概要〕
タンタル酸リチウム(LiTaO+)単結晶の36度回
転Y板から切り出した圧電体に駆動電極と反射電極とを
形成した弾性表面波共振子に関し、特に、高周波帯域の
電圧制御発振器(VCO)用として高安定、かつ、周波
数可変幅の広い共振子を提供することを目的とし、
LiTaO3単結晶の36度回転Y板から切り出した圧
電体の表面に形成した駆動電極の電極指のピッチと、反
射電極の電極指のピッチおよび、該駆動電極と該反射電
極との対向間における電極指ピッチとを、弾性表面波波
長の騒にしたことを特徴とし構成する。[Detailed Description of the Invention] [Summary] This invention relates to a surface acoustic wave resonator in which a driving electrode and a reflecting electrode are formed on a piezoelectric material cut out from a 36-degree rotated Y plate of lithium tantalate (LiTaO+) single crystal, especially in a high frequency band. The aim of this project is to provide a highly stable resonator with a wide frequency variable range for use in a voltage controlled oscillator (VCO). The pitch of the electrode fingers of the reflective electrode, the pitch of the electrode fingers of the reflective electrode, and the pitch of the electrode fingers between the driving electrode and the reflective electrode facing each other are set to a surface acoustic wave wavelength.
本発明は、LiTa0.単結晶の36度回転Y板から切
り出した圧電体の表面に、少なくとも駆動電極と反射電
極とを形成した弾性表面波共振子、特に高周波帯域のV
CO用共振子の構成に関する。The present invention provides LiTa0. A surface acoustic wave resonator in which at least a driving electrode and a reflecting electrode are formed on the surface of a piezoelectric body cut out from a 36-degree rotated Y plate of single crystal, especially in a high frequency band.
This invention relates to the configuration of a CO resonator.
近年のデジタル技術は、その進展に伴って音響機器や通
信機器に広く利用されるようになった。As digital technology has progressed in recent years, it has come to be widely used in audio equipment and communication equipment.
これに伴って、これら機器間の周波数を同期させる必要
が生じ、高性能の位相同期回路、その中心部品である高
性能なVCOが要求されると共に、使用周波数も数十M
Hz以上の高周波が要求されるようになった。Along with this, it has become necessary to synchronize the frequencies of these devices, which requires a high-performance phase synchronization circuit and a high-performance VCO that is its central component, and the operating frequency is also increasing to several tens of megawatts.
High frequencies of Hz or higher are now required.
高周波VCOは、水晶またはLC等の共振素子を用いた
と発振部および、可変容量ダイオード等を用いた制御素
子により構成される。しかし、水晶共振子を利用したV
COは、温度特性に優れる反面周波数可変幅が小さく、
LC発振回路を利用したVCOは、周波数可変幅を大き
くできる反面安定性に劣るという欠点があった。The high-frequency VCO is composed of an oscillation section using a resonant element such as a crystal or LC, and a control element using a variable capacitance diode or the like. However, V using a crystal resonator
CO has excellent temperature characteristics, but has a small frequency variation range.
Although a VCO using an LC oscillator circuit can have a wide variable frequency range, it has the drawback of poor stability.
そこで、高周波VCO用共振子として周波数可変幅を太
き(とるため、電気−機械結合係数Kzが約5%であり
、温度特性が約−30ppm/’CであるLiTaO3
単結晶の36度回転Y板から圧電体を切り出した共振子
が注目されるようになった。Therefore, as a resonator for a high-frequency VCO, LiTaO3, which has a wide frequency variable width and has an electro-mechanical coupling coefficient Kz of about 5% and a temperature characteristic of about -30 ppm/'C, is used.
Resonators made from piezoelectric material cut from a single crystal Y-plate rotated 36 degrees have started to attract attention.
第3図はLiTaO3単結晶の36度回転Y板から切り
出した圧電体を使用した従来の弾性表面波共振子の電極
を示す模式平面図(イ)と、該共振子の電極と弾性表面
波との関係の説明図(ロ)と、該共振子のインピーダン
ス特性図(ハ)である。Figure 3 is a schematic plan view (A) showing the electrodes of a conventional surface acoustic wave resonator using a piezoelectric material cut out from a 36° rotated Y plate of LiTaO3 single crystal, and the electrodes of the resonator and the surface acoustic wave. FIG. 2 is an explanatory diagram (b) of the relationship between the two, and an impedance characteristic diagram (c) of the resonator.
第3図(イ)において、弾性表面波共振子1はLiTa
0=単結晶の36度回転Y板から切り出した圧電体2の
表面に、駆動電極3と一対の反射電極4を形成してなる
。In FIG. 3(a), the surface acoustic wave resonator 1 is made of LiTa
0=A drive electrode 3 and a pair of reflective electrodes 4 are formed on the surface of a piezoelectric body 2 cut out from a 36-degree rotated Y plate of single crystal.
駆動電極3は、一対のすだれ状電極5の電極指5aが互
い違いに入り込むように形成し、駆動電極3の左側方お
よび右側方に形成した反射電極4は、電極指4aを並列
に接続した梯子形状である。電極指5aのピッチpI
と電極指4aのピッチp2は共に弾性表面波の波長λの
Aであり、駆動電極3と反射電極4との間に対向する電
極指5aと電極指4aとのピッチp、は、弾性表面波の
多重反射を利用する共振条件を満たすため、7/8λま
たは1/8λである。そして第3図(ロ)に示すように
、駆動電極3の電極指5aは弾性表面波6の腹部分と一
致し、反射電極4の電極指4aは内側のエツジが弾性表
面波6の節とほぼ一敗するようになる。The drive electrode 3 is formed so that the electrode fingers 5a of the pair of interdigital electrodes 5 are inserted alternately, and the reflective electrodes 4 formed on the left and right sides of the drive electrode 3 are formed by a ladder in which the electrode fingers 4a are connected in parallel. It is the shape. Pitch pI of electrode fingers 5a
and the pitch p2 of the electrode fingers 4a are both A of the wavelength λ of the surface acoustic wave, and the pitch p of the electrode fingers 5a and 4a facing each other between the driving electrode 3 and the reflective electrode 4 is the pitch p2 of the surface acoustic wave. 7/8λ or 1/8λ in order to satisfy the resonance condition using multiple reflections. As shown in FIG. 3(B), the electrode finger 5a of the driving electrode 3 coincides with the antinode of the surface acoustic wave 6, and the inner edge of the electrode finger 4a of the reflective electrode 4 coincides with the node of the surface acoustic wave 6. He almost loses once.
このように構成した弾性表面波共振子1のインピーダン
ス特性は、第3図(ハ)に示すように、主共振fmより
低周波側に、電Pi3および4の内部反射による大きな
スプリアスSが発生する。The impedance characteristic of the surface acoustic wave resonator 1 configured in this way is such that, as shown in FIG. .
以上説明したように、LiTaO3単結晶の36度回転
Y板から切り出した圧電体を利用する従来の共振子は、
主共振より低周波側に発生するスプリアスによって、V
COに利用すると周波数可変幅が広(できないという問
題点があった。As explained above, a conventional resonator using a piezoelectric material cut from a 36-degree rotated Y plate of LiTaO3 single crystal is
V
When used for CO, there was a problem that the frequency variable range was wide (not possible).
なお、周波数可変幅を広くとるためニオブ酸リチウム(
LiNbOs)単結晶の回転Y仮から切り出した圧電体
に金電極を形成することによって、電気−機械結合係数
に2が約30%であるエネルギ閉じ込め型の弾性表面波
共振子が報告されている。しかし、この共振子の温度特
性は一100ppm程度であり、そのためVCO用共振
子として利用することができない。In addition, in order to widen the frequency variable range, lithium niobate (
An energy-confined surface acoustic wave resonator with an electro-mechanical coupling coefficient of 2 of about 30% has been reported by forming gold electrodes on a piezoelectric material cut from a rotating (LiNbOs) single crystal. However, the temperature characteristic of this resonator is about -100 ppm, and therefore it cannot be used as a resonator for a VCO.
本発明の目的は、水晶またはLiTaO5単結晶を利用
した従来の共振子、並びにLC等を利用した共振回路に
おける前記問題点を除去し、VCO用に高安定で周波数
可変幅の大きい共振子を提供することである。An object of the present invention is to eliminate the above-mentioned problems in conventional resonators using quartz or LiTaO5 single crystals, and resonant circuits using LC, etc., and to provide a highly stable resonator for VCOs with a large frequency variable width. It is to be.
本発明の弾性表面波共振子は、その実施例を示す第1図
によれば、LiTa0:+単結晶の36度回転Y板から
切り出した圧電体2の表面に形成した駆動電極3の電極
指5aのピッチp1と、反射電極4の電極指4aのピッ
チp2および、駆動電極3と反射電極4との対向間にお
ける電極指ピッチp3とを、弾性表面波波長λの1/2
にしたことを特徴とし構成したものである。According to FIG. 1 showing an embodiment of the surface acoustic wave resonator of the present invention, electrode fingers of a drive electrode 3 are formed on the surface of a piezoelectric body 2 cut out from a 36 degree rotated Y plate of LiTa0:+ single crystal. 5a, the pitch p2 of the electrode fingers 4a of the reflective electrode 4, and the electrode finger pitch p3 between the driving electrode 3 and the reflective electrode 4 facing each other are set to 1/2 of the surface acoustic wave wavelength λ.
It is characterized by the following features:
上記手段によれば、圧電体にLiTaO3単結晶の36
度回転Y板を使用し、弾性表面波の進む速度の差を利用
したエネルギ閉じ込め型共振子を構成したことにより、
LiTaO3単結晶の36度回転Y板を使用した従来の
共振子に発生するスプリアスをなくすことができる。そ
のため、本発明による弾性表面波共振子をVCOに利用
したとき、該VCOは安定、かつ、周波数変化幅の広い
ものとなる。According to the above means, the piezoelectric body is made of LiTaO3 single crystal 36
By using a degree-rotated Y plate and constructing an energy-trapped resonator that takes advantage of the difference in speed of surface acoustic waves,
It is possible to eliminate spurious noise that occurs in a conventional resonator using a 36-degree rotated Y plate of LiTaO3 single crystal. Therefore, when the surface acoustic wave resonator according to the present invention is used in a VCO, the VCO becomes stable and has a wide frequency variation range.
以下に、図面を用いて本発明の実施例による弾性表面波
共振子を説明する。Below, surface acoustic wave resonators according to embodiments of the present invention will be explained using the drawings.
第1図は本発明の一実施例による弾性表面波共振子の電
極を示す模式平面図(イ)と、該共振子の表面を伝播す
る表面波の説明図(ロ)と、該共振子単結晶の36度回
転Y仮から切り出した圧電体2の表面に、一対のすだれ
状電極5の電極指5aが互い違いに入り込む駆動電極3
と、駆動電極3の左側方および右側方に位置する一対の
反射電極4を形成してなる。FIG. 1 is a schematic plan view (a) showing electrodes of a surface acoustic wave resonator according to an embodiment of the present invention, an explanatory diagram (b) of a surface wave propagating on the surface of the resonator, and a schematic plan view of the surface acoustic wave resonator according to an embodiment of the present invention. A driving electrode 3 in which electrode fingers 5a of a pair of interdigital electrodes 5 are inserted alternately into the surface of a piezoelectric body 2 cut out from a 36-degree rotated Y temporary crystal.
A pair of reflective electrodes 4 are formed on the left and right sides of the drive electrode 3.
弾性表面波の波長λの1%以上の厚さのアルミニウム膜
を圧電体2の表面に真空蒸着し、その不要部分をフォト
リソグラフィ技術で除去し形成された駆動電極3と反射
電極4は、駆動電極3の電極指5aのピッチp1と反射
電極4の電極指4aのピッチp2および、駆動電極3の
左右端に位置する電極指5aと該電極指5aに対向する
反射電極4の電極指4aとのピッチp3が、弾性表面波
の波長λのA2即ち
p+ −pz −p+ =’A・λ
である。The driving electrode 3 and the reflecting electrode 4 are formed by vacuum-depositing an aluminum film having a thickness of 1% or more of the wavelength λ of the surface acoustic wave on the surface of the piezoelectric body 2, and removing unnecessary parts using photolithography. The pitch p1 of the electrode fingers 5a of the electrode 3, the pitch p2 of the electrode fingers 4a of the reflective electrode 4, the electrode fingers 5a located at the left and right ends of the drive electrode 3, and the electrode fingers 4a of the reflective electrode 4 facing the electrode fingers 5a. The pitch p3 is A2 of the wavelength λ of the surface acoustic wave, that is, p+ −pz −p+ =′A·λ.
LiTa0.単結晶のX軸方向に伝播する弾性表面波共
振子11の弾性表面波6は、第1図(TI)に示すよう
に、駆動電極3の電極指5aおよび反射電極4の電極指
4aが、表面波の腹部分と一致するようになりる。LiTa0. As shown in FIG. 1 (TI), the surface acoustic wave 6 of the surface acoustic wave resonator 11 propagating in the X-axis direction of the single crystal is caused by the electrode finger 5a of the drive electrode 3 and the electrode finger 4a of the reflective electrode 4, It comes to match the antinode of the surface wave.
さらに、駆動電極3に直列に容量を接続することにより
、駆動電極3部を伝播する弾性表面波の音速が反射電極
4部より速くなり、弾性表面波のエネルギは駆動電極3
部に閉じ込められることになる。Furthermore, by connecting a capacitor in series with the drive electrode 3, the sound speed of the surface acoustic wave propagating through the drive electrode 3 becomes faster than that of the reflection electrode 4, and the energy of the surface acoustic wave is transferred to the drive electrode 3.
will be confined to the department.
このように構成した弾性表面波共振子11のインピーダ
ンス特性は第1図(ハ)に示すように、主共振「mの近
傍に発生する従来のスプリアスSが消滅するよ′うにな
る。The impedance characteristic of the surface acoustic wave resonator 11 constructed in this way is such that the conventional spurious S generated near the main resonance "m" disappears, as shown in FIG. 1(C).
第2図は本発明による弾性表面波共振子の駆動電極に直
列容量を接続したVCOの特性図である。FIG. 2 is a characteristic diagram of a VCO in which a series capacitance is connected to the drive electrode of the surface acoustic wave resonator according to the present invention.
第2図において、縦軸は発振周波数の変化率Δf/f
(%)、横軸は制御電圧(V)、測定点を実線で結ぶV
CO特性Aは、本発明の弾性表面波共振子11を使用し
たもの、測定点を破線で結ぶVCO特性Bは、従来の共
振子1を利用したものであり、例えば制御電圧3■にお
いて、特性Aは特性Bに対し発振周波数変化率Δf/f
が約40%増になる。In Figure 2, the vertical axis is the rate of change of oscillation frequency Δf/f
(%), the horizontal axis is the control voltage (V), and the solid line connects the measurement points with V
CO characteristic A is the one using the surface acoustic wave resonator 11 of the present invention, and VCO characteristic B, which connects the measurement points with a broken line, is the one using the conventional resonator 1. For example, at the control voltage 3■, the characteristic A is the oscillation frequency change rate Δf/f with respect to characteristic B
will increase by approximately 40%.
以上説明したように本発明によれば、LiTa0.単結
晶の36度回転Y板から切り出した圧電体を使用した弾
性表面波共振子において、主共振の近傍に発生するスプ
リアスをなくし、高安定かつ周波数可変幅を広く成し得
たごとによって、例えば高周波のVCOに利用しそれを
高性能化した効果を有する。As explained above, according to the present invention, LiTa0. In a surface acoustic wave resonator using a piezoelectric material cut from a single-crystal 36-degree rotated Y plate, we have achieved high stability and a wide frequency variable range by eliminating the spurious that occurs near the main resonance, for example. It has the effect of increasing the performance of high-frequency VCOs.
第1図は本発明の一実施例による弾性表面波共振子、
第2図は本発明による弾性表面波共振子を使用したVC
Oの特性図、
第3図は従来の弾性表面波共振子、
である。
図中において、
2は圧電体、
3は駆動電極、
4は反射電極、
4aは反射電極の電極指、
5aは駆動電極の電極指、
11は弾性表面波共振子、
plは電極指5aのピッチ、
p!は電極指4aのピッチ、
p3は駆動電極と反射電極との対向間における電極指ピ
ッチ、
6口)
CハルFIG. 1 shows a surface acoustic wave resonator according to an embodiment of the present invention, and FIG. 2 shows a VC using the surface acoustic wave resonator according to the present invention.
The characteristic diagram of O is shown in Fig. 3, which is a conventional surface acoustic wave resonator. In the figure, 2 is a piezoelectric body, 3 is a drive electrode, 4 is a reflective electrode, 4a is an electrode finger of the reflective electrode, 5a is an electrode finger of a drive electrode, 11 is a surface acoustic wave resonator, and pl is a pitch of the electrode fingers 5a. , p! is the pitch of the electrode fingers 4a, p3 is the electrode finger pitch between the opposing drive electrode and reflective electrode, 6) C hull
Claims (1)
出した圧電体(2)の表面に形成した駆動電極(3)の
電極指(5a)のピッチ(p_1)と、反射電極(4)
の電極指(4a)のピッチ(p_2)および、該駆動電
極と該反射電極との対向間における電極指ピッチ(p_
3)とを、弾性表面波波長(λ)の1/2にしたことを
特徴とする弾性表面波共振子。Pitch (p_1) of the electrode fingers (5a) of the drive electrode (3) formed on the surface of the piezoelectric body (2) cut out from a 36-degree rotated Y plate of lithium tantalate single crystal and the reflective electrode (4)
The pitch (p_2) of the electrode fingers (4a) and the electrode finger pitch (p_2) between the opposing electrode fingers (4a) of the drive electrode and the reflective electrode.
3) is set to 1/2 of the surface acoustic wave wavelength (λ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25775088A JPH02104120A (en) | 1988-10-13 | 1988-10-13 | surface acoustic wave resonator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25775088A JPH02104120A (en) | 1988-10-13 | 1988-10-13 | surface acoustic wave resonator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02104120A true JPH02104120A (en) | 1990-04-17 |
Family
ID=17310581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25775088A Pending JPH02104120A (en) | 1988-10-13 | 1988-10-13 | surface acoustic wave resonator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02104120A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6255916B1 (en) | 1993-05-27 | 2001-07-03 | Fujitsu Limited | Resonator-type surface-acoustic-wave filter for reducing the signal strength of a spurious peak |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61142811A (en) * | 1984-12-17 | 1986-06-30 | Toshiba Corp | Surface acoustic wave resonator |
-
1988
- 1988-10-13 JP JP25775088A patent/JPH02104120A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61142811A (en) * | 1984-12-17 | 1986-06-30 | Toshiba Corp | Surface acoustic wave resonator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6255916B1 (en) | 1993-05-27 | 2001-07-03 | Fujitsu Limited | Resonator-type surface-acoustic-wave filter for reducing the signal strength of a spurious peak |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4159435A (en) | Acoustic wave devices employing surface skimming bulk waves | |
EP0034351B1 (en) | Surface acoustic wave device | |
JPS5935204B2 (en) | ultrasound device | |
CN115549639A (en) | Acoustic wave filter | |
JP3360541B2 (en) | Surface acoustic wave device and design method thereof | |
US6903630B2 (en) | Surface acoustic wave device having a polarization inverted region | |
JPH027207B2 (en) | ||
JP2620085B2 (en) | 2-port SAW resonator | |
JP7519902B2 (en) | Transducer structure for source suppression in SAW filter devices - Patents.com | |
JP4705571B2 (en) | Oscillator with surface acoustic wave resonator | |
Lam et al. | A review of Lamé and Lamb mode crystal resonators for timing applications and prospects of Lamé and Lamb mode PiezoMEMS resonators for filtering applications | |
JP7355210B2 (en) | elastic wave device | |
JPS62160807A (en) | surface acoustic wave resonator | |
JPH02104120A (en) | surface acoustic wave resonator | |
US20230117944A1 (en) | Bonded substrate and its manufacturing method | |
JP3442202B2 (en) | Surface acoustic wave filter | |
US6160339A (en) | Two-port saw resonator | |
JPH02295212A (en) | Surface acoustic wave resonator | |
WO2002067424A1 (en) | Piezoelectric vibrator, ladder-type filter using this piezoelectric vibrator and double-mode piezoelectric filter | |
JP3112996B2 (en) | Surface acoustic wave filter | |
JPH0817303B2 (en) | Leaky SAW resonator | |
JP3597483B2 (en) | Surface acoustic wave device | |
JPH03128517A (en) | Surface acoustic wave resonator | |
JPH0614608B2 (en) | Elastic wave device | |
JP2006203839A (en) | Surface acoustic wave substrate having temperature highly stable diaphragm structure and surface acoustic wave function element using the substrate |