[go: up one dir, main page]

JPH0210326A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH0210326A
JPH0210326A JP16166288A JP16166288A JPH0210326A JP H0210326 A JPH0210326 A JP H0210326A JP 16166288 A JP16166288 A JP 16166288A JP 16166288 A JP16166288 A JP 16166288A JP H0210326 A JPH0210326 A JP H0210326A
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer
alignment film
crystal display
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16166288A
Other languages
Japanese (ja)
Inventor
Keizo Nakajima
啓造 中島
Shoichi Ishihara
將市 石原
Hirobumi Wakemoto
博文 分元
Narihiro Sato
成広 佐藤
Yoshihiro Matsuo
嘉浩 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16166288A priority Critical patent/JPH0210326A/en
Publication of JPH0210326A publication Critical patent/JPH0210326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To prevent the degradation of image quality such as flickering of a screen and unequal display by using a high polymer having the electric conductivity within a 10<-18>-10<-15>Q<-1>cm<-1> range as an oriented film. CONSTITUTION:The conductive high polymer having 10<-18>-10<-15>Q<-1>cm<-1> electrical conductivity is used as the oriented film in order to prevent accumulation of unnecessary charges in the liquid crystal display element. Investigation is made on polyethylene and polypyrrole having an alkyl chain and polyacetylene having a benzene ring in the side chain. As a result, these high polymers dissolve easily in solvents and the easy formation of the high-polymer films on a substrate is possible. The charges are less accumulated in this case and the accumulation of the charges on these high-polymer films arises hardly with these films themselves. The good electrolytic driving characteristic is, therefore, obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液晶表示素子に関するものであり、特に、液
晶を配向制御する配向膜を改良した液晶表示素子間する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a liquid crystal display device, and particularly to a liquid crystal display device with an improved alignment film for controlling the alignment of liquid crystals.

tre来の技術 液晶を用いた表示素子は、 l)消費電力が少ないこと 2)駆動電圧が小さいこと 3)小型・軽量化ができること などの利点を持ち、電卓、時計を始めさまざまな用途に
用いられている。
Display elements using liquid crystal technology have the following advantages: 1) Low power consumption 2) Low driving voltage 3) Compact and lightweight, and are used in a variety of applications including calculators and watches. It is being

このような液晶表示素子において、良好な特性を得るた
めには、液晶を一定方向に配列させ、モノドメイン化す
る必要がある。液晶をモノドメイン化するためには、界
面効果により、液晶を一定方向に配列させる必要があり
、そのため液晶表示素子には必ず配向膜が設けられてい
る。代表的な液晶配向膜処理方法として、斜方蒸着法、
ラビング法が挙げられる。
In order to obtain good characteristics in such a liquid crystal display element, it is necessary to align the liquid crystal in a certain direction and form a monodomain. In order to form liquid crystals into monodomains, it is necessary to align the liquid crystals in a certain direction due to interfacial effects, and for this reason, liquid crystal display elements are always provided with an alignment film. Typical liquid crystal alignment film processing methods include oblique evaporation,
One example is the rubbing method.

斜方蒸着法は、SiOの様な酸化物や八u、Ptの様な
金属を基板面に対【八斜め方向から数100A〜数10
0OAの厚みに蒸着することで配向膜を作成する。
In the oblique evaporation method, an oxide such as SiO or a metal such as Pt is deposited on the substrate surface at an angle of several hundred to several tens of amps from an oblique direction.
An alignment film is created by vapor deposition to a thickness of 0OA.

斜方蒸着法によって特定の分子配列が実現できろのは、
斜め蒸着によって基板面に形成された波紋形状面と液晶
分子の相互作用によるものであり、その形状の微妙な違
いで平行配列と傾斜配列の違いが生じる。
The reason why a specific molecular arrangement can be achieved using the oblique evaporation method is that
This is due to the interaction between the ripple-shaped surface formed on the substrate surface by oblique vapor deposition and liquid crystal molecules, and the subtle difference in the shape causes the difference between parallel alignment and tilted alignment.

一方、ラビング法は基板表面に形成した有機高分子膜を
布などで一定方向にこすることによって配向処理を行う
ことができる。ラビング法による液晶配向のメカニズム
は完全に解明されてはいないが、ラビングによって配向
膜表面にせん断応力を加えることで、表面付近のポリマ
ー鎖の配向が起こり、液晶がポリマー鎖の配向に従って
、配列すると考えられている。
On the other hand, in the rubbing method, an alignment process can be performed by rubbing an organic polymer film formed on a substrate surface in a certain direction with a cloth or the like. The mechanism of liquid crystal alignment by the rubbing method is not completely understood, but by applying shear stress to the surface of the alignment film by rubbing, alignment of polymer chains near the surface occurs, and the liquid crystal aligns according to the orientation of the polymer chains. It is considered.

これらの配向処理法のうち、配向膜作成の容易さ、配向
の安定性などの点から、液晶表示素子の配向法として、
ポリイミド膜のラビング法が広く用いられている。
Among these alignment treatment methods, from the viewpoint of ease of preparing an alignment film and stability of alignment, the following alignment methods are used for liquid crystal display elements:
Rubbing methods for polyimide films are widely used.

発明が解決しようとする課題 しかし、ポリイミド膜のラビング法に間しても、次のよ
うな問題点がある。ポリイミド樹脂は、−般に絶縁性が
高いため、配向膜として用いて表示を行った場合、液晶
、あるいは配向膜、あるいはそれらの界面に不要な電荷
を蓄積する。電荷の蓄積量が液晶素子の一方の基板上と
他方の基板」二で異なると、液晶層に加わる実効電圧が
極性によって異なることになり、特にアクティブマトリ
クス方式において、画面のちらつき、表示むらなとの原
因となる。この様な、画面のちらつき、表示むらなどの
画質低下に加え、長期にわたる信頼性にも問題がある。
Problems to be Solved by the Invention However, the rubbing method for polyimide films also has the following problems. Since polyimide resin generally has high insulating properties, when it is used as an alignment film for display, unnecessary charges are accumulated in the liquid crystal, the alignment film, or the interface thereof. If the amount of charge accumulated on one substrate of the liquid crystal element differs from that on the other substrate, the effective voltage applied to the liquid crystal layer will differ depending on the polarity, which can cause screen flickering and display unevenness, especially in active matrix systems. It causes In addition to such deterioration in image quality such as screen flickering and display unevenness, there is also a problem in long-term reliability.

また同様に、このポリイミド配向膜を強誘電性液晶表示
素子に用いる場合にも、表示のやきつき現象等、素子内
に蓄積した電荷による極性反転時の異常表示が発生し、
強誘電性液晶に特有のメモリ性が充分に得られなくなる
場合がある。
Similarly, when this polyimide alignment film is used in a ferroelectric liquid crystal display element, abnormal display occurs when polarity is reversed due to charges accumulated in the element, such as display burnout.
In some cases, the memory properties characteristic of ferroelectric liquid crystals cannot be sufficiently obtained.

液晶、あるいは配向膜、あるいはそれらの界面での電荷
蓄積が起こらないようにする方法として、配向膜の電気
導電性を高める方法が挙げられ、例えば、一般に導電性
樹脂やフィルムなどで行なわれているように、カーボン
粒を配向膜中に分散する方法が考えられる。しかし、カ
ーボン粒を混入する場合は、100A前後の微粒子の分
散が困難な上、カーボン粒による対向ショートや光透過
の問題があり、適当な対策にはならない。
One way to prevent charge accumulation in the liquid crystal, alignment film, or their interface is to increase the electrical conductivity of the alignment film. For example, this is generally done using conductive resin or film. One possible method is to disperse carbon grains in an alignment film. However, when carbon grains are mixed, it is difficult to disperse the fine particles of around 100A, and there are problems with opposing shorts and light transmission due to the carbon grains, so this is not an appropriate countermeasure.

本発明は、このような従来の液晶表示素子の課題を解消
した液晶表示素子を提供することを目的とする。
An object of the present invention is to provide a liquid crystal display element that solves the problems of conventional liquid crystal display elements.

課題を解決するための手段 本発明は、電気伝導度が10−19〜t□−1sΩ−1
cm−1の範囲内にある高分子を配向膜とする液晶表示
素子を用いることによって、上記目的を達成する。
Means for Solving the Problems The present invention has an electric conductivity of 10-19 to t□-1sΩ-1.
The above object is achieved by using a liquid crystal display element whose alignment film is made of a polymer within the range of cm-1.

作用 本発明は、導電性の高い高分子を液晶配向膜として用い
ることにより、電荷が蓄積されにくくなり、そのため、
良好な電界駆動特性が得られる。
Effect The present invention uses a highly conductive polymer as a liquid crystal alignment film, which makes it difficult for charges to accumulate.
Good electric field drive characteristics can be obtained.

実施例 以下に、本発明をその実施例を示す図面を参照して説明
する。
EXAMPLES The present invention will be explained below with reference to drawings showing examples thereof.

いま、液晶表示素子内に、不要電荷を蓄積させないよう
にするには、配向膜として、導電性高分子を用いる方法
が考えられる。導電性高分子の場合、ポリアセチレンに
代表されるように、一般に溶剤に不溶であったが、最近
可溶性の導電性高分子が開発されてきている。このうち
アルキル鎖のついたポリチェニレン、ポリピロールや、
側鎖にベンゼン環のついたポリアセチレンなどについて
検討を行なったところ、容易に溶剤に溶け、高分子膜を
基板上に容易に形成でき、また液晶の配向膜として用い
ても、液晶の配向性が良いことを確認した。またこの配
向膜を用いた液晶表示素子では、蓄積電荷の少ないこと
も発見した。これらの高分子膜の電気伝導度を測定した
ところ、10−1”〜10−+5Ω−’cm−’の範囲
内にあり、電気抵抗が液晶の抵抗とほぼ同じかあるいは
低いため、膜自体にも電荷が蓄積しにくいと考えられる
Currently, in order to prevent unnecessary charges from accumulating in a liquid crystal display element, a method of using a conductive polymer as an alignment film is considered. In the case of conductive polymers, as represented by polyacetylene, they are generally insoluble in solvents, but recently soluble conductive polymers have been developed. Among these, polythenylene and polypyrrole with alkyl chains,
We investigated polyacetylene with a benzene ring on the side chain and found that it dissolves easily in solvents, allows easy formation of a polymer film on a substrate, and also shows that even when used as an alignment film for liquid crystals, the alignment of liquid crystals does not improve. I confirmed that it was good. They also discovered that liquid crystal display devices using this alignment film have less accumulated charge. When the electrical conductivity of these polymer films was measured, it was within the range of 10-1'' to 10-+5Ω-'cm-', and since the electrical resistance is approximately the same or lower than the resistance of liquid crystal, the film itself It is also thought that charge is difficult to accumulate.

そこで、導電性の高い高分子を液晶配向膜として用いる
ことにより、電荷が蓄積されにくくなり、そのため、良
好な電界駆動特性が得られる。しかも、強誘電性液晶表
示にも、極めて容易に対処することができる。
Therefore, by using a highly conductive polymer as the liquid crystal alignment film, charges are less likely to be accumulated, and therefore good electric field drive characteristics can be obtained. Furthermore, it can be applied to ferroelectric liquid crystal displays very easily.

次に、本発明を更に具体的に説明する。Next, the present invention will be explained in more detail.

本発明の液晶表示素子に用いる高分子は、従来より用い
られている高分子配向膜(ポリイミド系高分子膜やポリ
ビニルアルコール膜など)と同様、スピンコードなどに
より容易に成膜できる。またその後、ラビング処理する
ことによって、容易に液晶を配向させることができる。
The polymer used in the liquid crystal display element of the present invention can be easily formed into a film using a spin cord or the like, similar to conventionally used polymer alignment films (polyimide polymer films, polyvinyl alcohol films, etc.). Furthermore, by performing a rubbing treatment thereafter, the liquid crystal can be easily aligned.

高分子の電気伝導度は、厚さ2000Aの高分子膜を、
面積が1ffIff12の電極にサンドイッチし、to
ov印加電印加電圧定を行なった。
The electrical conductivity of a polymer is as follows:
Sandwiched between electrodes with an area of 1ffIff12, to
The applied voltage was determined by applying an ov voltage.

液晶表示素子の画面のちらつき(フリッカ)の程度を表
わす量として、下式に示される輝度変調度mを定義した
A luminance modulation degree m expressed by the following formula was defined as a quantity representing the degree of flickering on the screen of a liquid crystal display element.

平均透過光強度 本実施例では、駆動波形をf=30Hz、矩形波とし、
液晶表示素子の光透過率を50%変化させるのに要する
電圧v51Iを印加してm値を測定した。透過光変動の
30Hz成分は、スペクトラム・アナライザ(アトパン
テスト(株)!!TR−9406)にて分離した。
Average transmitted light intensity In this example, the driving waveform is f = 30 Hz and a rectangular wave.
The m value was measured by applying a voltage v51I required to change the light transmittance of the liquid crystal display element by 50%. The 30 Hz component of the transmitted light fluctuation was separated using a spectrum analyzer (Atopantest Co., Ltd.!! TR-9406).

フリッカが感じられるレベルは個人差も大きいが、30
flzの場合、輝度変調度m<0.01ではほとんどの
場合フリッカは認識されない。
The level at which flicker can be felt varies greatly from person to person, but
In the case of flz, flicker is not recognized in most cases when the luminance modulation degree m<0.01.

実施例1 第1図に本発明における液晶表示素子の構造を示す。こ
の構造を有する素子を次のように作成した。まず、IT
O電極2,8を有する基板1,9上に、Niチル−2−
ヒ90言ル“ノン(NMP)に1容か したネ0す(0
−灯ルノエ:ル?セfトン)を乾燥後の配向膜3,4の
膜厚が50OAとなるように、スピンコード法により塗
布し、100℃で1時間乾燥した。ネ°す(0−メチJ
lフェニ117セチしン)配向膜の電気伝導度は、7X
10”目Ω−’am−’であった。
Example 1 FIG. 1 shows the structure of a liquid crystal display element according to the present invention. A device having this structure was created as follows. First, IT
On the substrates 1 and 9 having O electrodes 2 and 8, Ni chill-2-
Hi 90 words “Non (NMP) has one volume and 0 (0)
-Tourunoe: Lu? Cefton) was applied by a spin code method so that the thickness of the alignment films 3 and 4 after drying was 50 OA, and dried at 100° C. for 1 hour. Ne°su(0-MethiJ
The electrical conductivity of the alignment film is 7X
The 10th inch was Ω-'am-'.

次に、このガラス基板上の配向膜をラビングし、その後
、このラビングした方向が互いに90度ねじれるように
、セルギャップが5.871mになように、ビースペー
サ6を介して貼合わせ、注入口となる箇所を除いて周囲
をシール樹脂5で囲んだ。次に液晶7として、ネマチッ
ク液晶(LIXON(リクソン)9150チッソ石油化
学(株)社製ネマチック液晶)を素子内に減圧下、常温
で注入し、注入口を封止した。
Next, the alignment film on this glass substrate is rubbed, and then bonded together via a bead spacer 6 so that the rubbed directions are twisted 90 degrees to each other, and the cell gap is 5.871 m. The surrounding area was surrounded with sealing resin 5 except for the area where . Next, as the liquid crystal 7, a nematic liquid crystal (LIXON 9150 nematic liquid crystal manufactured by Chisso Petrochemical Co., Ltd.) was injected into the device under reduced pressure at room temperature, and the injection port was sealed.

この素子を偏光顕微鏡により観察したところ、液晶が均
一に配向していることがわかった。
When this device was observed using a polarizing microscope, it was found that the liquid crystals were uniformly aligned.

次にキャノン社製液晶評価装置を用いて、20℃で各素
子の電圧−透過率特性を測定し、光透過率が50%変化
するのに要する電圧V’lを求めた。
Next, the voltage-transmittance characteristics of each element were measured at 20° C. using a Canon liquid crystal evaluation device, and the voltage V′l required for a 50% change in light transmittance was determined.

そして、直流電圧5■を30分印加後、重連の方法によ
り30Hzの輝度変調度mを測定した。その結果、m=
0.0060で、ちらつきなどの異常表示はなく、電荷
の蓄積はほとんどないことがねかつた。
After applying a DC voltage of 5 cm for 30 minutes, the degree of brightness modulation m at 30 Hz was measured by the multiplex method. As a result, m=
0.0060, there were no abnormal displays such as flickering, and there was almost no charge accumulation.

実施例2 配向膜として、トルエンに溶かしたネ°す(3−ヘキシ
1工fLニリ)を用い、実施例1と同様に配向膜を作成
した。ネ’ +7 (3−へキシルチにカ)配向膜の電
気伝導度は、 8X 10−”Ω−’Cm−’であった
Example 2 An alignment film was prepared in the same manner as in Example 1 using a solution of 3-hexyl (3-hexyl) dissolved in toluene as the alignment film. The electrical conductivity of the +7 (3-hexyl) alignment film was 8×10-”Ω-’Cm-’.

素子を組み立て、ネマチック液晶を注入したところ、液
晶は均一に配向した。また輝度変調度mを実施例1と同
様に求めたところ、0.0075で、ちらつきはなく、
電荷の蓄積もほとんどなかった。
When the device was assembled and nematic liquid crystal was injected, the liquid crystal was aligned uniformly. In addition, when the brightness modulation degree m was determined in the same manner as in Example 1, it was 0.0075, and there was no flickering.
There was also almost no charge accumulation.

実施例3 配向膜として、NMPに溶かしたネ”J (Nす0ロピ
J1ピローJり(電気伝導度:9X10−’θΩ−’c
tn−’)を用い、実施例1と同様にセルを作成したと
ころ液晶は均一に配向し、m=o、0065で、電荷の
蓄積もほとんどなかった。
Example 3 As an alignment film, NJ (electrical conductivity: 9X10-'θΩ-'c) dissolved in NMP was used.
When a cell was prepared in the same manner as in Example 1 using tn-'), the liquid crystal was uniformly aligned, m=o, 0065, and there was almost no charge accumulation.

実施例4 配向膜として、NMPに溶かしたホ0す(p−(o−I
チル)ノエ二しシ)(電気伝導度:3X10−”Ω−’
 c m−’)を用い、実施例1と同様にセルを作成し
た。液晶は均一に配向し、m = 0 、0077、電
荷の蓄積もほとんどなかった。
Example 4 As an alignment film, phos(p-(o-I) dissolved in NMP was used as an alignment film.
Chill) Noenishishi) (Electrical conductivity: 3X10-"Ω-'
A cell was prepared in the same manner as in Example 1 using the following method. The liquid crystal was uniformly aligned, m = 0, 0077, and there was almost no charge accumulation.

実施例5 配向膜として、 ネ°す(O−メチ11フエニ117セ
チトン)を用い、 実施例1と同様に配向膜を作成した
Example 5 An alignment film was prepared in the same manner as in Example 1 using Ness (O-methy 11 pheni 117 cetiton) as the alignment film.

次に、このガラス基板上の配向膜をラビングし、上r基
板の配向膜のラビング方向が、互いに逆方向になるよう
に、2.07zmのスペーサを介して貼合わせた。、液
晶としては次のような相転移変化する強誘電性液晶を素
子内に、減圧下、90℃(I相)で注入した。
Next, the alignment film on this glass substrate was rubbed and bonded together with a 2.07 zm spacer in between so that the rubbing directions of the alignment film on the upper r substrate were opposite to each other. As the liquid crystal, a ferroelectric liquid crystal having the following phase transition was injected into the device at 90° C. (I phase) under reduced pressure.

→(11−+511A−+   5m(”この素子を偏
光顕微鏡より観察したところ、欠陥のない均一配向の強
誘電性液晶表示素子が得られた。液晶素子は、表示駆動
時においてもやきつき現象は起こらず、電荷蓄積はなか
った。
→(11-+511A-+ 5m("When this device was observed using a polarizing microscope, a uniformly aligned ferroelectric liquid crystal display device with no defects was obtained. This did not occur and there was no charge accumulation.

実施例6 配向膜として、本°す(3−ヘヘシルftニトシ)を用
い、実施例5と同様に配向膜を作成した。
Example 6 An alignment film was prepared in the same manner as in Example 5 using this film (3-hehesyl ft nitoshi) as the alignment film.

素子のギャップが2.0μmとなるように組み立て、強
誘電性液晶を注入したところ、液晶は均一に配向した。
When the device was assembled with a gap of 2.0 μm and ferroelectric liquid crystal was injected, the liquid crystal was aligned uniformly.

またやきつき現象は起こらず、電荷の蓄積もほとんどな
かった。
Further, no burnt-up phenomenon occurred, and there was almost no charge accumulation.

実施例7 配向膜として、NMPに溶かした本0す(N−)0ロヒ
0ルヒ0ロール)、実施例5と同様にセルを作成したと
ころ液晶は均一に配向し、やきつき現象は見られず、電
荷の蓄積もほとんどなかった。
Example 7 When a cell was prepared in the same manner as in Example 5 using a liquid crystal solution (N-) dissolved in NMP as an alignment film, the liquid crystal was aligned uniformly and no stickiness was observed. There was also almost no charge accumulation.

実施例8 配向膜として、NMPに溶かしたネ°す(p−(o−r
子11戸工二トン)を用い、実施例5と同様に強誘電性
液晶のセルを作成した。液晶は均一に配向し、やきつき
現象はなく、電荷の蓄積もほとんどなかった。
Example 8 As an alignment film, a solution of glue (p-(o-r) dissolved in NMP was used.
A ferroelectric liquid crystal cell was prepared in the same manner as in Example 5 using a ferroelectric liquid crystal cell. The liquid crystal was aligned uniformly, there was no burnt phenomenon, and there was almost no charge accumulation.

比較例1 高分子配向膜として、ポリイミド(電気伝導度:8×l
O伺6Ω−’cm利)を使い、実施例1と同様に液晶表
示素子を作成した。
Comparative Example 1 Polyimide (electrical conductivity: 8×l) was used as a polymer alignment film.
A liquid crystal display element was fabricated in the same manner as in Example 1 using a conductive material with a diameter of 6Ω-'cm.

この素子では、液晶は均一に配向したが、輝度変調度m
は0.0353と大きく、表示部のちらつきがわかり、
電荷が蓄積されていた。
In this device, the liquid crystal was uniformly aligned, but the brightness modulation degree m
is as large as 0.0353, and you can see the flickering on the display.
Electric charge had accumulated.

比較例2 高分子配向膜として、ポリ(o−メf11スチトシ)(
電気伝導度:4X10伺7Ω伺cm−’)を用い、実施
例3と同様に強誘電性液晶表示素子を作成した。
Comparative Example 2 As a polymer alignment film, poly(o-me f11 stitoshi) (
A ferroelectric liquid crystal display element was prepared in the same manner as in Example 3 using electrical conductivity: 4×10 Ω 7 Ω cm−’.

この素子は、電圧を印加する時間が長くなるほど、やき
つき現象による異常表示が発生した。
In this element, the longer the voltage was applied, the more abnormal display occurred due to the burnt phenomenon.

発明の効果 本発明の液晶表示素子は、従来から問題であった蓄積電
荷による画面のちらつき、表示むらなどを、電気伝導度
を限定した高分子を使用することにより、容易に解決で
きる。また、強誘電性液晶表示素子の場合にも、表示の
やきつけ現象など起こさない良好な表示素子である。
Effects of the Invention The liquid crystal display element of the present invention can easily solve conventional problems such as screen flickering and display unevenness due to accumulated charges by using a polymer with limited electrical conductivity. In addition, even in the case of a ferroelectric liquid crystal display element, it is a good display element that does not cause display burning phenomenon.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例における液晶表示素子の構成を表
す断面図である。 1.9・・・・・・ガラス基板、2,8・・・・・・I
TO電極、3,4・・・・・・配向膜、5・・・・・・
シール樹脂、6・・・・・・ビーズスペーサ、7・・・
・・・液晶。
The figure is a sectional view showing the structure of a liquid crystal display element in an embodiment of the present invention. 1.9...Glass substrate, 2,8...I
TO electrode, 3, 4... alignment film, 5...
Seal resin, 6... Bead spacer, 7...
···liquid crystal.

Claims (3)

【特許請求の範囲】[Claims] (1)電気伝導度が10^−^1^0〜10^−^1^
5Ω^−^1cm^−^1の範囲内にある高分子を配向
膜とした液晶表示素子。
(1) Electrical conductivity is 10^-^1^0~10^-^1^
A liquid crystal display element whose alignment film is made of a polymer within the range of 5Ω-^1cm^-^1.
(2)配向膜の高分子が、ポリチェニレン、ポリピロー
ル、ポリシアノアセチレン、ポリメチルアゾメチン、ポ
リフェニルアセチレン、ポリ(p−フェニレン)、ポリ
(m−フェニレン)、及びそれらの誘導体、あるいはこ
れらからなる混合体、あるいは共重合体である請求項1
記載の液晶表示素子。
(2) The polymer of the alignment film is polythenylene, polypyrrole, polycyanoacetylene, polymethylazomethine, polyphenylacetylene, poly(p-phenylene), poly(m-phenylene), and derivatives thereof, or a mixture thereof. Claim 1: The polymer is a polymer or a copolymer.
The liquid crystal display element described above.
(3)液晶が強誘電性液晶である請求項1記載の液晶表
示素子。
(3) The liquid crystal display element according to claim 1, wherein the liquid crystal is a ferroelectric liquid crystal.
JP16166288A 1988-06-29 1988-06-29 Liquid crystal display element Pending JPH0210326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16166288A JPH0210326A (en) 1988-06-29 1988-06-29 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16166288A JPH0210326A (en) 1988-06-29 1988-06-29 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH0210326A true JPH0210326A (en) 1990-01-16

Family

ID=15739448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16166288A Pending JPH0210326A (en) 1988-06-29 1988-06-29 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH0210326A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211225A (en) * 1990-03-15 1992-08-03 Canon Inc Liquid crystal element and display method and display device using the same
US5327272A (en) * 1991-03-27 1994-07-05 Canon Kabushiki Kaisha Optical modulation element
JP2003512647A (en) * 1999-10-15 2003-04-02 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Liquid crystal alignment layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211225A (en) * 1990-03-15 1992-08-03 Canon Inc Liquid crystal element and display method and display device using the same
US5327272A (en) * 1991-03-27 1994-07-05 Canon Kabushiki Kaisha Optical modulation element
US5838410A (en) * 1991-03-27 1998-11-17 Canon Kabushiki Kaisha Optical modulation element
JP2003512647A (en) * 1999-10-15 2003-04-02 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Liquid crystal alignment layer

Similar Documents

Publication Publication Date Title
CA2155269C (en) Liquid crystal device having uniaxial and non-uniaxial alignment characteristic substrates
JPH1152403A (en) Liquid crystal display device
JPH0210326A (en) Liquid crystal display element
CN1105149C (en) Heat resistant polymer composition, alignment layer formed using same and liquid crystal display having alignment layer
JPH0259723A (en) Tn type liquid crystal display panel
JP4999476B2 (en) Liquid crystal display element
JPH0264525A (en) Tn type liquid crystal panel
JPS63237031A (en) Liquid crystal display element
JPH10133205A (en) Liquid crystal display device
JP2548592B2 (en) Ferroelectric liquid crystal element
JPH11222593A (en) Liquid crystal composition and liquid crystal element
JPS6157926A (en) Liquid crystal display element
JPH11183912A (en) Liquid crystal element
JPS6377024A (en) Field effect type liquid crystal display element
JP2000111935A (en) Liquid crystal display element
JP2851500B2 (en) Liquid crystal display
EP0464623B1 (en) Ferroelectric liquid crystal display
JPH02179612A (en) High-polymer liquid crystal element
JPH04204827A (en) Liquid crystal display device
JPH0718258A (en) Liquid crystal composition and liquid crystal display element
JPS62178215A (en) Liquid crystal display device
JPH04359225A (en) Liquid crystal oriented film
JPS6036571B2 (en) lcd display cell
JPH01109324A (en) Field effect type liquid crystal display panel
JPS63172122A (en) Field effect type liquid crystal display element