JPH02102948A - Gears for increasing/decelerating drive machines - Google Patents
Gears for increasing/decelerating drive machinesInfo
- Publication number
- JPH02102948A JPH02102948A JP25224488A JP25224488A JPH02102948A JP H02102948 A JPH02102948 A JP H02102948A JP 25224488 A JP25224488 A JP 25224488A JP 25224488 A JP25224488 A JP 25224488A JP H02102948 A JPH02102948 A JP H02102948A
- Authority
- JP
- Japan
- Prior art keywords
- gear
- rigid
- flexible
- teeth
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002093 peripheral effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 230000003746 surface roughness Effects 0.000 abstract 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/08—Profiling
- F16H55/0833—Flexible toothed member, e.g. harmonic drive
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Retarders (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、波動歯車装置を用いた増減速駆動機用歯車に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gear for an increasing/decelerating drive using a wave gear device.
従来、波動歯車装置に使用する歯車の歯形としては、直
線歯形またはインボリュート歯形が用いられてきたが、
それらの歯形は歯車の噛合理論に基づいて決定されたも
のではなく、減速比が大きい場合の近似的解析結果によ
るものであった。Conventionally, linear tooth profiles or involute tooth profiles have been used as tooth profiles for gears used in wave gear devices.
These tooth profiles were not determined based on gear meshing theory, but were based on approximate analysis results when the reduction ratio is large.
このため、歯形が不適正のものである場合には噛合が無
理なものとなり、波動歯車装置の効率を低下させる原因
となっていた。For this reason, if the tooth profile is inappropriate, meshing becomes difficult, which causes a reduction in the efficiency of the wave gear device.
噛合を円滑なものとし、この問題を解決するためには、
歯車の波動運動および歯の噛合について幾何学的な解析
を行い、それにより適正な歯形を決定することが必要で
ある。In order to make the mesh smooth and solve this problem,
It is necessary to perform a geometric analysis of the wave motion of the gear and the meshing of the teeth, and thereby determine an appropriate tooth profile.
このため本件出願人は特公昭63−14216号公報に
幾何学的解析法およびそれによって得た歯形を有する歯
車を提供した。For this reason, the applicant of the present application provided a geometric analysis method and a gear having a tooth profile obtained thereby in Japanese Patent Publication No. 14216/1983.
しかしながら、その歯車は幾何学的解析法により単に理
論的に求めたにすぎないものであり、実際にその歯車を
加工形成するときの難易性は考慮に入れられていない。However, the gears are merely theoretically determined using a geometrical analysis method, and the difficulty of actually machining and forming the gears is not taken into account.
一般に1.波動歯車装置に使用する歯車のうち、特に内
歯車は加工が難しいものに属するが、内歯車を例えば直
線歯形またはインボリュート歯形とした場合に前記幾何
学的解析法により求めた歯形を正確に加工形成すること
はより困難であり、たとえ加工形成が可能であるにして
もコスト的に不利である。Generally 1. Among the gears used in wave gear devices, internal gears are particularly difficult to machine. However, if the internal gear has a linear tooth profile or an involute tooth profile, it is possible to accurately process and form the tooth profile determined by the above-mentioned geometric analysis method. It is more difficult to do so, and even if processing and forming is possible, it is disadvantageous in terms of cost.
このため本発明は、増減速駆動機に用いる波動歯車装置
の歯車を、幾何学的解析法により決定した適正な歯形を
備えているものとするとともに、その加工形成を容易に
し、従ってコスト的にも有利なものとして提供すること
を目的とする。Therefore, the present invention provides a gear of a wave gear device used in an accelerating/decelerating drive machine, which has an appropriate tooth profile determined by a geometrical analysis method, and which facilitates processing and formation, thereby reducing cost. The aim is to provide the same advantageous results.
この目的を達成するため、本発明の波動歯車装置におい
ては、歯形に円弧形状を用いることを基本とし、外歯車
と内歯車のうち内歯車に凸状または凹状の円弧形状を応
用する。In order to achieve this object, the wave gear device of the present invention basically uses an arc shape for the tooth profile, and applies a convex or concave arc shape to the internal gear of the external gear and the internal gear.
前記幾何学的解析法によれば理論上は内歯車と外歯車の
どちらにも円弧形状を応用できる。しかし、一般に、加
工形成技術上は外歯車よりも内歯車を加工形成する方が
困難であるから、内歯車に円弧形状を応用する方が有利
であり、本願発明の目的にもより合致する。According to the above-mentioned geometrical analysis method, arc shapes can theoretically be applied to both internal gears and external gears. However, in general, it is more difficult to process and form an internal gear than an external gear in terms of forming technology, so it is more advantageous to apply an arc shape to the internal gear, and it is more consistent with the purpose of the present invention.
この前提の下、本発明の歯車は、一方を変形しない剛体
からなる剛歯車とするとともに他方を波状の運動をする
可撓性の柔歯車とし、その柔歯車に波動運動を発生させ
る波動発生器により剛歯車と柔歯車とをその複数の波状
凸部で噛み合わせ、このとき隣接する凸部と凸部との間
の剛歯車と柔歯車との歯数に差を設けることにより噛合
部の移動に伴う剛歯車と柔歯車との間の相対的移動を可
能にした波動歯車装置において、剛歯車が、後述するよ
うに、ピン、内周面に円弧状凹部を設けた部材または内
周面に円弧形状の凹凸面を設けた部材からなる内歯車と
して形成され、柔歯車が、互いに噛み合う剛歯車と柔歯
車との一対の歯のそれぞれと同じ相対運動を行う仮想接
触板(以下「ころがり接触板」と呼ぶ)の形状を歯の相
対運動の瞬間中心がそれぞれの歯に固定した平面上に描
く軌跡として設定し、歯の噛合点における両歯形の共通
法線が上記ころがり接触板の接触点を通るという条件の
もとに設定された歯形を有する外歯車として形成される
ことを特徴とする。Based on this premise, the gear of the present invention has one rigid gear made of a rigid body that does not deform, and the other a flexible flexible gear that moves in a wave-like manner, and a wave generator that generates wave motion in the flexible gear. The rigid gear and flexible gear are meshed with their multiple wavy convex portions, and at this time, the movement of the meshing portion is achieved by creating a difference in the number of teeth between the rigid gear and the flexible gear between adjacent convex portions. In a strain wave gear device that enables relative movement between a rigid gear and a flexible gear due to A virtual contact plate (hereinafter referred to as a "rolling contact plate") is formed as an internal gear made of a member with an arc-shaped uneven surface, and the flexible gear makes the same relative movement as each of a pair of teeth of a rigid gear and a flexible gear that mesh with each other. '') is set as a trajectory drawn by the instantaneous center of the relative movement of the teeth on a plane fixed to each tooth, and the common normal of both tooth profiles at the meshing point of the teeth is the contact point of the rolling contact plate. It is characterized by being formed as an external gear having a tooth profile set under the condition that the gear passes through the gear.
以下、本発明の実施例を解析の過程に沿って説明する。 Examples of the present invention will be described below along with the analysis process.
第1図に波動歯車装置の一例を示す。装置は剛性の大き
な歯車、すなわち剛歯車11波動運動をする歯車、すな
わち柔歯車2及び柔歯車2に波動運動を発生させる機構
、すなわち波動発生器3よりなる。この剛歯車と柔歯車
とをその複数の波状凸部で噛み合わせ、このとき隣接す
る噛合部の間の剛歯車と柔歯車との歯数に差を設けるこ
とによって、噛合部の移動に伴う剛歯車と柔歯車との間
の相対的移動が可能になる。FIG. 1 shows an example of a wave gear device. The device consists of a highly rigid gear, that is, a rigid gear 11, a gear that makes a wave motion, that is, a flexible gear 2, and a mechanism that generates a wave motion in the flexible gear 2, that is, a wave generator 3. The rigid gear and the flexible gear are meshed with their plurality of wavy convex parts, and by providing a difference in the number of teeth between the rigid gear and the flexible gear between adjacent meshing parts, the rigid gear and the flexible gear are meshed with each other. Relative movement between the gear and the soft gear is possible.
以下、柔歯車の運動の軌跡についての解析を行う。これ
を明らかにすることによって、剛歯車の歯形を任意に設
定すれば、それに噛合う柔歯車の歯形を適正な歯形に設
定できる。Below, the trajectory of the motion of the flexible gear will be analyzed. By clarifying this, if the tooth profile of the rigid gear is arbitrarily set, the tooth profile of the soft gear that meshes with it can be set to an appropriate tooth profile.
■、基礎条件
柔歯車が薄板のたわみ材でできている場合を考えると、
歯底の部分の板厚は歯の部分:こ比べて極端に薄いため
、変形はもっばら歯底の部分で生じていると考えられる
。即ち、変形の間、相異なる歯は相対的に移動するが、
−画一歯は剛体と考えることができる。これは、柔歯車
の動きが歯の部分をリンクとし、歯底の部分をヒンジと
するO −ラーチェーンの運動とまさに同じであること
を意味する。また、薄板が曲げ変形を受ける時、変形前
と同じ長さを保つ中立線が存在するが、この線はローラ
ーチェーンのヒンジの中心をなめらかに結んだ線と同じ
と考えられる。■Basic conditions Considering the case where the flexible gear is made of thin flexible material,
The plate thickness at the bottom of the tooth is extremely thin compared to that at the tooth, so it is thought that deformation occurs mostly at the bottom of the tooth. That is, during deformation, different teeth move relative to each other, but
- A stroke tooth can be thought of as a rigid body. This means that the movement of a flexible gear is exactly the same as that of an O-Lar chain, with the teeth serving as links and the tooth bottoms serving as hinges. Furthermore, when a thin plate undergoes bending deformation, there is a neutral line that maintains the same length as before deformation, and this line can be thought of as the same line that smoothly connects the centers of the hinges of a roller chain.
第2図に示すように、柔歯車の一歯一歯に固定した座標
系で、中立線上の点Miにおける接線u1を横座標、法
線’/l(これは歯の中心を通るものとする。)を縦座
標とする直交座標系(M1u1+ vi)を考えるい
は歯の番号)。このとき、次の仮定を置く。As shown in Figure 2, in a coordinate system fixed to each tooth of a flexible gear, the tangent u1 at point Mi on the neutral line is the abscissa, and the normal '/l (this passes through the center of the tooth). Consider a Cartesian coordinate system (M1u1+vi) whose ordinate is (or tooth number). At this time, we make the following assumptions.
(1) 柔歯車が運動するとき、歯に固定した座標(
Mt−ut、 Vt)からその歯を観察したとき歯形は
変わらない。(1) When the flexible gear moves, the coordinates fixed to the teeth (
When the tooth is observed from Mt-ut, Vt), the tooth profile does not change.
(2)中立線上においては各歯のピッチMiMコは一定
である。(2) The pitch MiM of each tooth is constant on the neutral line.
一歯一歯を剛体と考えるならば、二股的な歯形解析法に
従って歯の運動を調べ、歯形を決定することができる。If each tooth is considered to be a rigid body, the tooth movement can be investigated and the tooth profile can be determined using the two-pronged tooth profile analysis method.
すなわち、第3図に示すように、歯形C1及びころがり
接触板P1を一体のものとし、歯形C2及びころがり接
触板P2を一体のものとすると、歯の噛合点Cにおける
歯形の共通法線Tは、同じ相対運動を行うころがり接触
板P。That is, as shown in FIG. 3, if the tooth profile C1 and the rolling contact plate P1 are integrated, and the tooth profile C2 and the rolling contact plate P2 are integrated, the common normal T of the tooth profiles at the meshing point C of the teeth is , a rolling contact plate P that performs the same relative motion.
及びP2のころがり接触点、すなわち瞬間中心Pを通る
、という機構学的必要条件を与えて歯形C1及びC2を
決定することができる。The tooth profiles C1 and C2 can be determined by giving the mechanical requirement that they pass through the rolling contact point of and P2, that is, the instantaneous center P.
■、運動の解析
ここで、歯数ZFの柔歯車、歯数Z11の剛歯車及び楕
円形状の波動発生器よりなる一般的な波動歯車装置を例
として考える。波動発生器と柔歯車との間には摩擦力は
働かないものとする。(2) Analysis of Motion Here, we will consider as an example a general wave gear device consisting of a flexible gear with the number of teeth ZF, a rigid gear with the number of teeth Z11, and an elliptical wave generator. It is assumed that no frictional force acts between the wave generator and the flexible gear.
変形前の中立線の直径をd。Fとすると、柔歯車の中立
線が楕円形に変形した後も、仮定(2)により中立線上
の歯のピッチπdoF/ZFは一定である。The diameter of the neutral line before deformation is d. If F, then even after the neutral line of the flexible gear is deformed into an elliptical shape, the pitch πdoF/ZF of the teeth on the neutral line remains constant based on assumption (2).
以後、変形後の中立線を柔基準ピッチ曲線と呼ぶ。Hereinafter, the neutral line after deformation will be referred to as a soft standard pitch curve.
また、剛歯車においては柔基準ピッチ曲線と同じピッチ
をもつピッチ円が存在するが、以後これを剛歯車の相対
基準ピッチ円と呼ぶ。その直径をdellとすると
doi= (ZR/ ZF) X day ・・・
・・・(1)である。In addition, in a rigid gear, there is a pitch circle having the same pitch as the soft reference pitch curve, and this will hereinafter be referred to as the relative reference pitch circle of the rigid gear. If its diameter is dell, then doi= (ZR/ZF) X day...
...(1).
また、剛歯車、柔歯車及び波動発生器は同じ固定中心の
まわりに回転運動できるが、いま波動発生器を固定して
考え、剛歯車が一定角速度Ωで、時間tの間に角度φだ
け回転したとする。このとき柔歯車において、同じ時間
tの間に歯の部分は剛歯車と同方向に、柔基準ピッチ曲
線に沿って5=(ZR/ZF)X (dat/2)Xφ
・・・・・・(2)の距離だけ等速で運動するが、回転
運動を取り出す部分の角速度はΩX(Za/ZF)であ
る。Also, rigid gears, flexible gears, and wave generators can rotate around the same fixed center, but if we consider the wave generator to be fixed, the rigid gear rotates by an angle φ during time t at a constant angular velocity Ω. Suppose we did. At this time, in the flexible gear, during the same time t, the tooth part moves in the same direction as the rigid gear, along the flexible reference pitch curve 5=(ZR/ZF)X (dat/2)Xφ
...It moves at a constant speed over the distance (2), but the angular velocity of the part from which rotational motion is extracted is ΩX (Za/ZF).
次に、剛歯車に対する柔歯車の相対運動を調べるために
、剛歯車を固定して考え、波動発生器を回転させたとき
の柔歯車の運動を解析する。Next, in order to investigate the relative motion of the flexible gear with respect to the rigid gear, we will consider the rigid gear to be fixed and analyze the motion of the flexible gear when the wave generator is rotated.
第4図において、(Ox、y)は軸の回転中心Oを原点
とする剛歯車に固定した直交座標で、y軸は剛歯車の歯
溝の中心を通るものとする。また、(M−u、v)は柔
基準ピッチ曲線上の点Mを原点とする柔歯車の歯に固定
した直交座標で、U軸は柔基準ピッチ曲線の接線、V軸
はこの座標系が固定されている歯の中央を通るものとす
る。In FIG. 4, (Ox, y) are orthogonal coordinates fixed to the rigid gear whose origin is the rotation center O of the shaft, and the y-axis passes through the center of the tooth space of the rigid gear. In addition, (M-u, v) is a rectangular coordinate fixed to the tooth of the soft gear with the origin at point M on the soft standard pitch curve, the U axis is the tangent to the soft standard pitch curve, and the V axis is the coordinate system of this coordinate system. It shall pass through the center of the fixed tooth.
(0−X、Y)は波動発生器に固定した直交座標でY軸
は楕円形の長軸に一致するものとする。(0-X, Y) are orthogonal coordinates fixed to the wave generator, and the Y axis coincides with the long axis of the ellipse.
Y軸がy軸に一致しているとき、座標(M−u。When the Y axis coincides with the y axis, the coordinate (Mu.
V)の原点は柔基準ピッチ曲線の凸部頂点M。にあり、
V軸はy軸上にあるものとする。この時点から、波動発
生器を角度φだけ回転したとき、柔基準ピッチ曲線の凸
部頂点はMoからQに移動し、柔歯車の歯の原点はMe
からMに移動する。このとき波動発生器に対して相対的
に柔歯車の歯はその原点がQからMに移動したことにな
り、蚕の移ここで柔基準ピッチ曲線rの形状は、0を極
、長軸Yを始線、rを動径、θを偏角とする次のような
極座標で表されるものとする。The origin of V) is the vertex M of the convex part of the soft reference pitch curve. Located in
It is assumed that the V-axis is on the y-axis. From this point on, when the wave generator is rotated by an angle φ, the convex apex of the soft standard pitch curve moves from Mo to Q, and the origin of the teeth of the soft gear is Me.
Move from to M. At this time, the origin of the teeth of the soft gear moves from Q to M relative to the wave generator, and the shape of the soft reference pitch curve r where the silkworm moves is such that 0 is the pole and the major axis is Y. It is assumed that it is expressed by the following polar coordinates, where is the starting line, r is the radius, and θ is the argument.
r=f(θ) ・・・・・・・・ (3)角度0から
θまでのこの曲線の長さをSとすると、これが(2)式
のSと等しいと置くことにより波動発生器の回転角φと
点Mの偏角θの関係を次式から求めることができる。r=f(θ) ・・・・・・・・・ (3) If the length of this curve from angle 0 to θ is S, then by setting this equal to S in equation (2), the wave generator can be calculated. The relationship between the rotation angle φ and the argument angle θ of point M can be determined from the following equation.
・ ・ ・ ・ ・ ・ ・ ・ ・ (4)(4)
式から、角度φと角度θの関係を簡単な初等関数で表す
ことはできないが、それは数値積分によって必ず求める
ことができる。・ ・ ・ ・ ・ ・ ・ ・ ・ (4) (4)
From the formula, the relationship between angle φ and angle θ cannot be expressed by a simple elementary function, but it can always be determined by numerical integration.
次に、点Mの(x、 y)座標を(XM 、 y、
4)とすると
x、=−rsin(θ−φ)
yう=rcos(θ−φ) ・・・(5)また、y軸
とV軸のなす角度をψとするとψ=θ−φ十μ ・・・
・・・・・・(6)ただし、μはV軸と動径OMのなす
角度でである。Next, the (x, y) coordinates of point M are (XM, y,
4) Then x, = -rsin (θ - φ) y = rcos (θ - φ) ... (5) Also, if the angle between the y axis and the V axis is ψ, then ψ = θ - φ 10μ ...
(6) However, μ is the angle formed by the V-axis and the radius vector OM.
結局、
変換式は
u= (x−Xx )cosψ+(V yx )si
nψV= <’l Yx )cosψ−(X X)
I )sinψ・・・(8)
(0−X、Y)と(M−u、v)の座標となる。In the end, the conversion formula is u= (x-Xx)cosψ+(Vyx)si
nψV= <'l Yx ) cosψ−(X X)
I) sin ψ...(8) These are the coordinates of (0-X, Y) and (Mu, v).
ここで、座標(0−x、y)に対する座標〈M−u、
v)の運動の瞬間中心Pの(x、 y)座標を(x
p、yp)とすると
dy、+
・ ・ ・(9)
となる。Here, the coordinates 〈M-u,
Let the (x, y) coordinates of the instantaneous center P of the motion of
p, yp), then dy, + ・ ・ ・ (9).
φを変化させ、点Pが座標(0−x、y)及び座標(M
−u、v)に描く軌跡を求めれば、それぞれ剛歯車及び
柔歯車の歯と一体の運動を行うころがり接触板の形状と
なる。By changing φ, point P has coordinates (0-x, y) and coordinates (M
If the trajectories drawn in -u and v) are found, they will be in the shape of rolling contact plates that move integrally with the teeth of the rigid gear and flexible gear, respectively.
■、ころがり接触板の形状の計算側
梁基準ピッチ曲線の形状が、rを動径、θを闘鶏、d及
びδを定数として次のような極座標で表される場合につ
いて具体的計算を行う。(2) Calculation of the shape of the rolling contact plate A specific calculation is performed for the case where the shape of the side beam reference pitch curve is expressed by the following polar coordinates, where r is the radius vector, θ is the cockfight, and d and δ are constants.
r= (d/2) +(δ/2)cos2θこの柔基準
ピッチ曲線の周の長さは第1象限内の長さの4倍である
から
・ ・ ・ ・ ・01)
となる。r= (d/2) + (δ/2) cos2θ Since the circumferential length of this soft standard pitch curve is four times the length in the first quadrant, . . . . . 01).
また、柔基準ピッチ曲線の最大径d+δと剛歯車の相対
基準ピッチ円の直径dolkはλを偏位係数として次の
関係にある。Further, the maximum diameter d+δ of the soft reference pitch curve and the diameter dolk of the relative reference pitch circle of the rigid gear have the following relationship with λ as the deviation coefficient.
d十δ=λaoi ・・・・・・・・・Q2)こうし
て(1)、α1)、(12)式からd、δが求まり柔基
準ピッチ曲線の形状が決まると、ころがり接触板の形状
が求まる。d+δ=λaoi ・・・・・・・・・Q2) When d and δ are determined from equations (1), α1), and (12) and the shape of the soft standard pitch curve is determined, the shape of the rolling contact plate is determined. Seek.
第5図(a)、 (b)は歯数比Z* / ZF =1
.1 、λ=1.0の場合の剛歯車と柔歯車のころがり
接触板とその軌跡を示したもので、座標のとり方は第3
図と同じである。Figures 5 (a) and (b) show the tooth number ratio Z* / ZF = 1
.. 1. This shows the rolling contact plates and their trajectories of rigid gears and flexible gears when λ=1.0.
Same as the figure.
第5図(a)において、剛歯車を固定とし、柔基準ピッ
チ曲線の凸部頂点に位置していた柔歯車の歯と一体のこ
ろがり接触板PFは、波動発生器の回転とともに剛歯車
のころがり接触板PRとすべることなくころがり運動を
行うものとすれば、波動発生器の回転角φがφ=20°
のときP点が接触点となる。In Fig. 5(a), the rigid gear is fixed, and the rolling contact plate PF, which is integrated with the teeth of the flexible gear and located at the apex of the convex portion of the flexible reference pitch curve, rotates as the wave generator rotates. Assuming that the contact plate PR rolls without slipping, the rotation angle φ of the wave generator is φ=20°.
When , point P becomes the contact point.
波動発生器がさらに回転すると、ころがり接触点は漸近
線に沿って進み、dψ/dφ−0になると、ころがり接
触点は漸近線の反対側から戻ってくることとなる。As the wave generator rotates further, the rolling contact point advances along the asymptote, and when dψ/dφ-0 is reached, the rolling contact point returns from the opposite side of the asymptote.
その後は第5図(b)に示すように、ころがり接触板P
、′及びPF5 はころがり接触を行い、φ=70”の
ときP′点が接触点となる。After that, as shown in FIG. 5(b), the rolling contact plate P
, ' and PF5 make rolling contact, and when φ=70'', point P' becomes the contact point.
ここで、Lllは柔歯車の歯に固定した座標(M−u、
v)の原点Mの軌跡であり、L12は座標(M−u
、v)の座標位置0′の軌跡である。柔歯車が円形のと
きは0′は歯車の回転中心0に一致する。当然に、点M
におけるL8の法線及び点O′におけるし。′の法線は
ともにころがり接触点PまたはP′を通る。更に、ころ
がり接触板PF及びPF5はそれぞれ二点MとO′を結
ぶ直線MO’について対象であり、ころがり接触板p
、 /とP、’ (pm’は破線で示す)とはy軸につ
いて対象である。Here, Lll is the coordinate (M-u,
v) is the locus of the origin M, and L12 is the coordinate (M-u
, v) at coordinate position 0'. When the flexible gear is circular, 0' coincides with the rotation center 0 of the gear. Naturally, point M
The normal of L8 at and the line at point O'. The normals of both pass through the rolling contact point P or P'. Furthermore, the rolling contact plates PF and PF5 are symmetrical with respect to the straight line MO' connecting two points M and O', and the rolling contact plates p
, / and P,'(pm' is shown by a dashed line) are symmetric about the y-axis.
以上が柔歯車の運動の軌跡についての解析である。次に
、剛歯車が円弧形状を用いた歯形を有するものとしての
実施例を掲げる。The above is the analysis of the locus of motion of the flexible gear. Next, an example will be described in which the rigid gear has a tooth profile using an arc shape.
〔実施例1〕
第6図は、剛歯車1が、複数のビン4により内歯が形成
され、該ビン4はそれらの軸線が互いに平行になるよう
にかつ該ビン4の中心が任意半径の円の円周上にあるよ
うに等間隔に配置された内歯車として形成された波動歯
車装置の例を示す。[Embodiment 1] Fig. 6 shows a rigid gear 1 in which internal teeth are formed by a plurality of pins 4, and the pins 4 are arranged so that their axes are parallel to each other and the center of the pins 4 has an arbitrary radius. 1 shows an example of a strain wave gearing device formed as internal gears arranged at equal intervals on the circumference of a circle.
ビン4の直径およびそれらのビンの中心が位置する円の
直径は任意に選定でき、これらが選定され、従って剛歯
車1の歯形が決定すると柔歯車2の歯形は前記解析法に
よって求められる。第6図は22本のビン4からなる剛
歯車lと噛み合う歯数20の柔歯車2の歯形の一例であ
る。The diameters of the bins 4 and the diameters of the circles in which the centers of these bins are located can be arbitrarily selected, and once the tooth profile of the rigid gear 1 is determined, the tooth profile of the flexible gear 2 can be determined by the analytical method described above. FIG. 6 shows an example of the tooth profile of a flexible gear 2 having 20 teeth that meshes with a rigid gear 1 consisting of 22 pins 4.
ビン4は、例えば第6図に示すようなビン支持部材5に
より支持される。The bottle 4 is supported by a bottle support member 5 as shown in FIG. 6, for example.
同図はビンが固定されている例を示しているが、ビンは
回転可能に支持する構造とすることもできる。Although the figure shows an example in which the bottle is fixed, the bottle may also have a structure in which it is rotatably supported.
〔実施例2〕
第7図は剛歯車1が、円形内周面に複数の円弧状凹部が
その円周方向に沿って等間隔に設けられている部材から
なる内歯車として形成された波動歯車装置の例を示す。[Embodiment 2] Fig. 7 shows a wave gear in which the rigid gear 1 is formed as an internal gear made of a member in which a plurality of arc-shaped recesses are provided at equal intervals along the circumferential direction on the circular inner peripheral surface. An example of a device is shown.
凹部を形成する円弧の半径およびその円弧の中心を結ぶ
円の半径は任意に選定でき、これらが選定され、従って
剛歯車1の歯形が決定すると柔歯車2の歯形は前記解析
法によって求められる。第7図は22個の円弧状凹部、
すなわち22個の歯数を有する剛歯車1と噛み合う歯数
20の柔歯車2の歯形の一例である。The radius of the circular arc forming the recess and the radius of the circle connecting the centers of the circular arcs can be arbitrarily selected, and when these are selected and the tooth profile of the rigid gear 1 is determined, the tooth profile of the flexible gear 2 is determined by the above analysis method. Figure 7 shows 22 arc-shaped recesses,
That is, this is an example of the tooth profile of a flexible gear 2 having 20 teeth that meshes with a rigid gear 1 having 22 teeth.
〔実施例3〕
第8図は剛歯車1が内周面に円弧形状の凹凸面が連続し
て設けられた部材からなる内歯車として形成された波動
歯車装置の例を示す。[Embodiment 3] FIG. 8 shows an example of a wave gear device in which the rigid gear 1 is formed as an internal gear made of a member whose inner peripheral surface is continuously provided with an arc-shaped uneven surface.
本実施例は実施例1のピンの凸部と実施例20円弧状凹
部とを組合わせたものに相当する。This example corresponds to a combination of the convex portion of the pin of Example 1 and the arc-shaped concave portion of Example 20.
剛歯車1の凸部円弧半径d1および該凸部円弧の中心を
結ぶ円の半径D10組または剛歯車1の凹部円弧半径d
2および該凹部円弧の中心を結ぶ円の半径D2の組は任
意に選定でき、それらが選定されると、凸部と凹部とが
滑らかにつながるようにそれぞれd2およびD2の組ま
たはd、およびり、の組が選定される。こうして、剛歯
車1の歯形が決定すると柔歯車2の歯形は前記解析法に
よって求められる。第8図は22個の歯数を有する剛歯
車1と噛み合う歯数20の柔歯車2の歯形の一例である
。A convex arc radius d1 of the rigid gear 1 and a radius D10 of a circle connecting the centers of the convex arc, or a concave arc radius d of the rigid gear 1
2 and the radius D2 of the circle connecting the centers of the concave arcs can be arbitrarily selected, and once they are selected, the set of d2 and D2 or d and , are selected. Once the tooth profile of the rigid gear 1 is determined in this way, the tooth profile of the flexible gear 2 can be determined by the above analysis method. FIG. 8 is an example of a tooth profile of a flexible gear 2 having 20 teeth that meshes with a rigid gear 1 having 22 teeth.
(発明の効果)
剛歯車を円弧形状を応用した歯形を備える内歯車として
形成することにより、内歯車に直線歯形やインボリュー
ト歯形を用いたものよりも工作加工が容易になるととも
に様々な有用性を期待できる。(Effects of the invention) By forming the rigid gear as an internal gear with a tooth profile applying an arcuate shape, machining becomes easier than using a linear tooth profile or an involute tooth profile for the internal gear, and various usefulness can be achieved. You can expect it.
特に、実施例1に示したピンを用いたものは最適の実用
例である。In particular, the one using the pin shown in Example 1 is an optimal practical example.
すなわち、直線歯形等の一般によく用いられる歯形より
もピンは工作が容易であり、かつ高精度に加工できるの
でピンを真円とすることが可能となり形状誤差が小さく
なる。また表面研削が可能になるので面の粗度も小さく
なる。In other words, pins are easier to machine than commonly used tooth profiles such as linear tooth profiles, and can be machined with high precision, making it possible to form pins into perfect circles and reducing shape errors. Furthermore, since surface grinding becomes possible, surface roughness is also reduced.
さらに、ピンを回転可能に支持すれば、外歯と内歯との
噛合がころがり接触となり、摩擦力が減少し、耐摩耗性
およびトルクの伝達効率が向上する。Furthermore, if the pin is rotatably supported, the external teeth and internal teeth engage in rolling contact, reducing frictional force and improving wear resistance and torque transmission efficiency.
実施例2に示した円弧状凹部を設けた部材は砥石による
凹部の研削が可能になり加工工作が容易になるとともに
、コスト低減も可能になる。In the member provided with the arcuate recess shown in Example 2, the recess can be ground with a grindstone, making machining easier and reducing costs.
実施例3に示した歯形はトルクの伝達効率を大幅に向上
できる。The tooth profile shown in Example 3 can significantly improve torque transmission efficiency.
第1図は波動歯車装置の一部を示す断面図、第2図は柔
歯車の座標を示す説明図、
第3図は歯形ところがり接触板との関係を示す説明図、
第4図は柔歯車の一つの歯の運動を示す説明図、第5図
(a)、 (b)は剛歯車と柔歯車のそれぞれのころが
り接触板の一例を示す説明図、
第6図はピンを用いた実施例の側面図、第7図は円弧状
凹部を設けた部材を用いた実施例の側面図、
第8図は円弧形状の凹凸面を設けた部材を用いた実施例
の側面図である。
(符号の説明)
1・・・剛歯車 2・・・柔歯車3・・・波動発
生器 4・・・ピン
5・・・ピン支持部材
第
目
図
第
図
CG)
第
図
第
図
第
図
(b)
第
図
第
図Figure 1 is a sectional view showing a part of the wave gear device, Figure 2 is an explanatory diagram showing the coordinates of the flexible gear, Figure 3 is an explanatory diagram showing the relationship between the tooth profile and the rolling contact plate, and Figure 4 is the flexible gear. An explanatory diagram showing the movement of one tooth of a gear, Figures 5 (a) and (b) are explanatory diagrams showing an example of rolling contact plates for rigid gears and flexible gears, and Figure 6 is an example of implementation using a pin. FIG. 7 is a side view of an example using a member provided with an arc-shaped concave portion, and FIG. 8 is a side view of an example using a member provided with an arc-shaped uneven surface. (Explanation of symbols) 1...Rigid gear 2...Flexible gear 3...Wave generator 4...Pin 5...Pin support member (Figure CG) Figure Figure Figure ( b) Diagram diagram
Claims (3)
もに他方を波状の運動をする可撓性の柔歯車とし、その
柔歯車に波動運動を発生させる波動発生器により剛歯車
と柔歯車とをその複数の波状凸部で噛み合わせ、このと
き隣接する凸部と凸部との間の剛歯車と柔歯車との歯数
に差を設けることにより噛合部の移動に伴う剛歯車と柔
歯車との間の相対的移動を可能にした波動歯車装置にお
いて、剛歯車が、複数のピンにより内歯が形成され、該
ピンはそれらの軸線が互いに平行になるようにかつ該ピ
ンの中心が任意半径の円の円周上にあるように等間隔に
配置された内歯車として形成され、柔歯車が、互いに噛
み合う剛歯車と柔歯車との一対の歯のそれぞれと同じ相
対運動を行う仮想接触板の形状を歯の相対運動の瞬間中
心がそれぞれの歯に固定した平面上に描く軌跡として設
定し、歯の噛合点における両歯形の共通法線が上記仮想
接触板の接触点を通るという条件のもとに設定された歯
形を有する外歯車として形成されたことを特徴とする増
減速駆動機用歯車。(1) One is a rigid gear made of a rigid body that does not deform, and the other is a flexible gear that moves in a wave-like manner.The rigid gear and the flexible gear are connected by a wave generator that generates wave motion in the flexible gear. The plurality of wavy convex portions mesh together, and at this time, by providing a difference in the number of teeth between the rigid gear and the flexible gear between adjacent convex portions, the rigid gear and the flexible gear are In a strain wave gearing device, a rigid gear has internal teeth formed by a plurality of pins, and the pins are arranged so that their axes are parallel to each other and the centers of the pins have an arbitrary radius. The virtual contact plate is formed as internal gears arranged at equal intervals on the circumference of a circle, and the flexible gears perform the same relative motion as each of the teeth of a pair of mutually meshing rigid and flexible gears. The shape is set as a trajectory drawn by the instantaneous center of the relative movement of the teeth on a plane fixed to each tooth, and the condition is that the common normal of both tooth profiles at the meshing point of the teeth passes through the contact point of the virtual contact plate. A gear for an increasing/decelerating drive machine, characterized in that it is formed as an external gear having a tooth profile set to.
もに他方を波状の運動をする可撓性の柔歯車とし、その
柔歯車に波動運動を発生させる波動発生器により剛歯車
と柔歯車とをその複数の波状凸部で噛み合わせ、このと
き隣接する凸部と凸部との間の剛歯車と柔歯車との歯数
に差を設けることにより噛合部の移動に伴う剛歯車と柔
歯車との間の相対的移動を可能にした波動歯車装置にお
いて、剛歯車が、円形内周面を有する部材であって、そ
の円形内周面に複数の円弧状凹部がその円周方向に沿っ
て等間隔に設けられている部材からなる内歯車として形
成され、柔歯車が、互いに噛み合う剛歯車と柔歯車との
一対の歯のそれぞれと同じ相対運動を行う仮想接触板の
形状を歯の相対運動の瞬間中心がそれぞれの歯に固定し
た平面上に描く軌跡として設定し、歯の噛合点における
両歯形の共通法線が上記仮想接触板の接触点を通るとい
う条件のもとに設定された歯形を有する外歯車として形
成されたことを特徴とする増減速駆動機用歯車。(2) One is a rigid gear made of a rigid body that does not deform, and the other is a flexible gear that moves in a wave-like manner, and the rigid gear and the flexible gear are connected by a wave generator that generates wave motion in the flexible gear. The plurality of wavy convex portions mesh together, and at this time, by providing a difference in the number of teeth between the rigid gear and the flexible gear between adjacent convex portions, the rigid gear and the flexible gear are In the strain wave gear device, the rigid gear is a member having a circular inner circumferential surface, and the circular inner circumferential surface has a plurality of arc-shaped recesses arranged equally along the circumferential direction. The virtual contact plate is formed as an internal gear consisting of members provided at intervals, and the flexible gear makes the same relative movement as each of a pair of teeth of a rigid gear and a flexible gear that mesh with each other. The tooth profile is set as a locus whose instantaneous center is drawn on a plane fixed to each tooth, and the common normal of both tooth profiles at the meshing point of the teeth passes through the contact point of the virtual contact plate. A gear for an increasing/decelerating drive machine, characterized in that it is formed as an external gear.
もに他方を波状の運動をする可撓性の柔歯車とし、その
柔歯車に波動運動を発生させる波動発生器により剛歯車
と柔歯車とをその複数の波状凸部で噛み合わせ、このと
き隣接する凸部と凸部との間の剛歯車と柔歯車との歯数
に差を設けることにより噛合部の移動に伴う剛歯車と柔
歯車との間の相対的移動を可能にした波動歯車装置にお
いて、剛歯車が、内周面に円弧形状の凹凸面が連続して
設けられた部材からなる内歯車として形成され、柔歯車
が、互いに噛み合う剛歯車と柔歯車との一対の歯のそれ
ぞれと同じ相対運動を行う仮想接触板の形状を歯の相対
運動の瞬間中心がそれぞれの歯に固定した平面上に描く
軌跡として設定し、歯の噛合点における両歯形の共通法
線が上記仮想接触板の接触点を通るという条件のもとに
設定された歯形を有する外歯車として形成されたことを
特徴とする増減速駆動機用歯車。(3) One is a rigid gear made of a rigid body that does not deform, and the other is a flexible gear that moves in a wave-like manner, and the rigid gear and the flexible gear are connected by a wave generator that generates wave motion in the flexible gear. The plurality of wavy convex portions mesh together, and at this time, by providing a difference in the number of teeth between the rigid gear and the flexible gear between adjacent convex portions, the rigid gear and the flexible gear are In a wave gear device that enables relative movement between the two, the rigid gear is formed as an internal gear made of a member whose inner peripheral surface is continuously provided with an arc-shaped uneven surface, and the flexible gears mesh with each other. The shape of a virtual contact plate that makes the same relative movement as each of a pair of teeth of a rigid gear and a soft gear is set as a locus drawn on a plane where the instantaneous center of the relative movement of the teeth is fixed to each tooth, and the meshing of the teeth is determined. A gear for an accelerating/decelerating drive machine, characterized in that it is formed as an external gear having a tooth profile set under the condition that a common normal line of both tooth profiles at a point passes through a contact point of the virtual contact plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25224488A JPH02102948A (en) | 1988-10-06 | 1988-10-06 | Gears for increasing/decelerating drive machines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25224488A JPH02102948A (en) | 1988-10-06 | 1988-10-06 | Gears for increasing/decelerating drive machines |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02102948A true JPH02102948A (en) | 1990-04-16 |
Family
ID=17234522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25224488A Pending JPH02102948A (en) | 1988-10-06 | 1988-10-06 | Gears for increasing/decelerating drive machines |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02102948A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016003764A (en) * | 2014-06-16 | 2016-01-12 | 上銀科技股▲分▼有限公司 | Higher harmonic wave reduction gear |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59170549A (en) * | 1983-03-18 | 1984-09-26 | Hitachi Ltd | Reduction gear |
JPS61228142A (en) * | 1985-03-30 | 1986-10-11 | Agency Of Ind Science & Technol | Gear for accelerating/decelerating driving machine |
JPS63130949A (en) * | 1986-11-21 | 1988-06-03 | Sumitomo Heavy Ind Ltd | Speed increase/reduction gear for harmonic drive utilizing tooth form of planetary gear |
-
1988
- 1988-10-06 JP JP25224488A patent/JPH02102948A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59170549A (en) * | 1983-03-18 | 1984-09-26 | Hitachi Ltd | Reduction gear |
JPS61228142A (en) * | 1985-03-30 | 1986-10-11 | Agency Of Ind Science & Technol | Gear for accelerating/decelerating driving machine |
JPS63130949A (en) * | 1986-11-21 | 1988-06-03 | Sumitomo Heavy Ind Ltd | Speed increase/reduction gear for harmonic drive utilizing tooth form of planetary gear |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016003764A (en) * | 2014-06-16 | 2016-01-12 | 上銀科技股▲分▼有限公司 | Higher harmonic wave reduction gear |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5247847A (en) | Cam gear assembly | |
US6602115B2 (en) | Tool and method for precision grinding of a conical face gear that meshes with a conical involute pinion | |
EP3130822A1 (en) | Point contact gear based on conjugate curves, meshing pair and machining tool therefor | |
CN111120622B (en) | Modified wave cam and design method thereof, wave generator and wave reducer | |
US5022802A (en) | System for generating a tooth profile used in a differential speed reduction apparatus | |
CN102626809B (en) | Method for determining geometrical data of bevel pinion and bevel pinion drive with the bevel gear | |
CN107081678B (en) | A kind of cycloidal wheel forming grinding grinding wheel dressing method | |
Kondo et al. | Study on tooth profiles of the harmonic drive | |
JPH0775917A (en) | Method for precision machining of gear surface of gear-like workpiece by tool with internal gear, tool with internal gear suitable for said method and finish working of said tool | |
JPS60143263A (en) | Rotary reversible indexing mechanism | |
US6129793A (en) | Face-gear forging method | |
JP3132777B2 (en) | Flexible mesh gear | |
JPH02102948A (en) | Gears for increasing/decelerating drive machines | |
US4378660A (en) | Method of and means for grinding pairs of gear wheels as spiral or curved toothed bevel gear wheels | |
JPH03149178A (en) | Superfinishing method for gothic arc groove | |
US5092720A (en) | Method for determination of longitudinal and profile modification of tool gear tooth surface | |
CN104613134A (en) | Synchronous cycloid speed reducing device | |
CN110848332A (en) | Intersecting-axis non-circular-face gear transmission mechanism | |
US11572941B2 (en) | Wave generator for reducer of harmonic drive structure | |
WO2021233211A1 (en) | Synchronous adjustment device | |
JPS6259201B2 (en) | ||
US2861502A (en) | Devices for cutting and generating hypocycloidal gears | |
JPS60197316A (en) | Compaction chamfering tool for cylindrical gears | |
WO2022149997A1 (en) | Method for increasing the efficiency of non-centroidal cycloidal engagement | |
EP0161072A1 (en) | Mechanical reduction gear system |