JPH02101186A - Production of nd-fe alloy or metallic nd - Google Patents
Production of nd-fe alloy or metallic ndInfo
- Publication number
- JPH02101186A JPH02101186A JP25157388A JP25157388A JPH02101186A JP H02101186 A JPH02101186 A JP H02101186A JP 25157388 A JP25157388 A JP 25157388A JP 25157388 A JP25157388 A JP 25157388A JP H02101186 A JPH02101186 A JP H02101186A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- cathode
- metal
- electrolysis
- ndf3
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は溶融塩電解法により希土類金属又は希土類合金
を製造する方法に係り、より詳しくは、特に最近高性能
磁石として注目されているNd−Fe−B系磁石用材料
に適したNd金属又はNd−Fe合金を製造する方法に
関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing rare earth metals or rare earth alloys by molten salt electrolysis, and more particularly relates to a method for producing rare earth metals or rare earth alloys by molten salt electrolysis. The present invention relates to a method for manufacturing Nd metal or Nd-Fe alloy suitable for Fe-B magnet materials.
(従来の技術)
Nd金属又はNd−Fe合金の製造方法としては主に以
下のような方法が知られている。(Prior Art) The following methods are mainly known as methods for producing Nd metal or Nd-Fe alloys.
(1)金属Ca等の活性金属により不活性ガス雰囲気で
Nd化合物から還元してNd金属又はNd〜Fe合金を
回収する方法。(1) A method of recovering Nd metal or Nd-Fe alloy by reducing a Nd compound in an inert gas atmosphere with an active metal such as metal Ca.
(2) Nd酸化物を不活性ガス雰囲気で溶融塩電解
し、
■陰極に鉄、陽極に黒鉛を用いて、陰極に使用した鉄と
合金化してNd−Fe合金を製造する方法(E 、 M
orrice外著、Bureau of Mines
。(2) A method of manufacturing Nd-Fe alloy by subjecting Nd oxide to molten salt electrolysis in an inert gas atmosphere, using iron for the cathode and graphite for the anode, and alloying it with the iron used for the cathode (E, M
Author: Bureau of Mines
.
“Report of I nvestigati
ons” Ha 7146.1968年)。“Report of Investigati
ons” Ha 7146.1968).
■陰極にタングステン、陽極に黒鉛を用いてNd金属を
製造する方法(E 、 Morrjce外著、Bure
au of Mjnes、 ”Report of
Investigat−jons” Na 6 9
5 7 、 1967年)。■Method of manufacturing Nd metal using tungsten for the cathode and graphite for the anode (E, Morrjce et al., Bure
au of Mjnes, ”Report of
Investigat-jons” Na 6 9
5 7, 1967).
(3) Nd弗化物を不活性ガス雰囲気で溶融塩電解
し、陰極に鉄、陽極に黒鉛を用いて、陰極に使用した鉄
と合金化してNd−Fe合金を製造する方法(特公昭6
3−1.2947号)。(3) A method of manufacturing Nd-Fe alloy by subjecting Nd fluoride to molten salt electrolysis in an inert gas atmosphere, using iron for the cathode and graphite for the anode, and alloying it with the iron used for the cathode (Tokyo Publications No. 6).
3-1.2947).
(発明が解決しようとする課題)
しかし乍ら、前述の(1)〜(3)の方法はいずれも、
不活性ガス雰囲気で還元するため、設備費用がかかる他
に、取り扱いが煩雑になる欠点があり、特に溶融塩電解
の場合、工業的に連続操業登前提としているので、経済
的損失が大きいことになる。(Problem to be solved by the invention) However, all of the above methods (1) to (3)
Reduction is carried out in an inert gas atmosphere, which has the disadvantage of requiring equipment costs and being complicated to handle.In particular, in the case of molten salt electrolysis, continuous operation is assumed for industrial use, which can result in large economic losses. Become.
また、前述の(1)〜(3)の方法のそれぞれについて
比較すると、第1の方法(])は、還元剤として高価な
Ca等の金属を使用し、旧つバッチ製造であるため、経
済性が悪く、且つ生産性に劣る。In addition, when comparing the methods (1) to (3) above, the first method (]) uses expensive metals such as Ca as a reducing agent and is an old batch manufacturing method, so it is economical. poor performance and poor productivity.
また、第2の方法(2)は、酸化物(Nd酸化物)の溶
融塩に対する溶解度が小さいため、溶解度以」二に供給
された酸化物の混合物があると、溶融塩下方、すなわち
、析出したメタル中に酸化物が混入し、メタルと溶融塩
と酸化物の混合体となり、高品位のメタルの回収が困難
となる。In addition, in the second method (2), since the solubility of the oxide (Nd oxide) in the molten salt is low, if there is a mixture of oxides supplied below the solubility, the oxide is deposited below the molten salt, that is, the precipitation occurs. Oxides get mixed into the metal, forming a mixture of metal, molten salt, and oxide, making it difficult to recover high-grade metal.
更に、第3の方法(3)は、弗化物(Nd弗化物)と溶
融塩であるLiFとの溶解が共晶状態をつくり、溶解範
囲が広いため、酸化物電解のような1〜ラブルが発生す
ることなくメタルを回収できる優れた方法であると云え
るものの、Nd−Fe合金は回収できるが、Nd金属は
回収することができないという欠点がある。Furthermore, in the third method (3), the dissolution of fluoride (Nd fluoride) and LiF, which is a molten salt, creates a eutectic state and the dissolution range is wide. Although this method can be said to be an excellent method for recovering metal without generation, it has the disadvantage that it can recover Nd-Fe alloy but cannot recover Nd metal.
本発明は、上記従来技術の欠点を解消し、溶融塩電解法
によりNd−Fe合金及びNd金属を効率的且つ経済的
に製造し得る方法を提供することを目的とするものであ
る。An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a method for efficiently and economically producing Nd-Fe alloys and Nd metal by molten salt electrolysis.
(課題を解決するための手段)
前記目的を達成するため、本発明者は、特に前述の特公
昭63−12947号に開示された方法について横割し
、更に効率的、経済的なNd−Fe合金及びNd金属の
製造法を見い出すべく鋭意研究を重ねた。(Means for Solving the Problems) In order to achieve the above object, the present inventors have developed a more efficient and economical Nd-Fe alloy by specifically reviewing the method disclosed in Japanese Patent Publication No. 63-12947. and conducted extensive research to find a method for producing Nd metal.
その結果、本発明者の研究によると、特公昭63−12
94.7号に開示された方法はNd−Fe合金を工業的
に生産する方法に限定しても、以下のような問題があり
、経済的に生産する方法とは云い難いことが判明した。As a result, according to the research of the present inventor,
Even if the method disclosed in No. 94.7 is limited to a method for industrially producing Nd-Fe alloys, it has been found that it has the following problems and cannot be called an economical method for producing it.
すなわち、特公昭63−12947号に開示された方法
は、L i Fを主体とした電解浴をNd弗化物が35
〜7’6wt%になるように維持し、電解温度を770
−950℃に維持してNd−Fe合金を析出せしめる方
法と云える。That is, in the method disclosed in Japanese Patent Publication No. 12947/1983, an electrolytic bath mainly composed of LiF is mixed with 35% of Nd fluoride.
~7'6wt% and the electrolysis temperature was 770%.
This can be said to be a method of maintaining the temperature at -950°C to precipitate the Nd-Fe alloy.
原料化合物であるNd弗化物を35〜76tgt%に維
持するのは、LiF−NdF、の状態図(第6図)より
共晶状態であって、LiFの融点が約850℃、共晶点
がNd F3が約66wt%の場合で約730℃、Nd
F3(71融点が1300’C以上の3点より、融点が
約840℃以下の組成を目標にしたLiF=4
−NdF3組成であると考えられる(R,E 、 T
homa、Progress in 5cience
and Technology of theRare
Earths、 Vo Q 、 2、p、110、P
ergalIIon Press、 New Yor
k、1966年、参照)。The reason why Nd fluoride, which is a raw material compound, is maintained at 35 to 76 tgt% is in a eutectic state according to the LiF-NdF phase diagram (Figure 6), and the melting point of LiF is about 850°C and the eutectic point is When Nd F3 is about 66wt%, about 730℃, Nd
F3 (71) From the three points with a melting point of 1300'C or higher, it is thought that the LiF=4-NdF3 composition is aimed at a composition with a melting point of about 840°C or lower (R, E, T
homa, Progress in 5science
and Technology of theRare
Earths, Vo Q, 2, p, 110, P
ergal IIon Press, New Year
K., 1966).
一般に溶融塩電解法で金属を得るには電解温度が低い方
が望ましく、そのため溶融塩組成も低融点であるところ
で操業することが以下■〜■の理由で望ましいと考えら
れており、」―記組成範囲はこの点より選定されたもの
と考えられる。In general, in order to obtain metals by molten salt electrolysis, it is desirable to have a low electrolysis temperature, and therefore it is considered desirable to operate in a place where the molten salt composition has a low melting point for the following reasons. It is believed that the composition range was selected based on this point.
■低温で操業した方が電解槽材料の損傷が少なく、また
電解浴の揮発損失も少ない。■Operation at low temperatures causes less damage to the electrolytic cell materials and reduces volatilization loss of the electrolytic bath.
■低温で操業した方が省エネルギー効果がある。■It is more energy efficient to operate at low temperatures.
■溶融塩電解の場合、−旦析出したメタルが再度、金属
層となって浴中成分と反応し、原料に戻る反応が高温に
なる程多くなる現象があり、この収支より算出した理論
値に対する実メタル回収量の比率、つまり電流効率が高
温になる径小さいと考えられる。■In the case of molten salt electrolysis, there is a phenomenon in which the precipitated metal becomes a metal layer again and reacts with the components in the bath, and the reaction that returns to the raw material increases as the temperature increases, and the theoretical value calculated from this balance increases. It is thought that the ratio of the actual metal recovery amount, that is, the current efficiency, is the smaller the diameter where the temperature is.
しかし、本発明者が種々研究したところ、弗化物電解に
は、今迄に知られている酸化物、塩化物電解とは異なり
、複雑なメカニズムにより反応が進行しており、前述し
た理由により特公昭6312947号における組成が経
済的に望ましい組1戊でないことが判明したものである
。However, as a result of various research conducted by the present inventor, fluoride electrolysis, unlike the oxide and chloride electrolysis known up to now, proceeds through a complex mechanism, and is particularly It has been found that the composition in Publication No. 6312947 is not an economically desirable composition.
つまり、溶融塩電解でメタルを経済的に生産する場合、
大きな因子は、以下の理由により2点が特に大きな影響
を及ぼすのである。In other words, when producing metal economically by molten salt electrolysis,
Two major factors have a particularly large influence for the following reasons.
1、 電゛ が大きいこと
溶融塩電解では、電極単位面積当たりの電流を増加させ
ていくと陽極効果として特有な現象が発生し、正常な電
気分解ができなくなる。したがって、通常の安定した電
解を行うためには、この臨界電流密度以下で運転する必
要がある。1. Large electric current In molten salt electrolysis, as the electric current per unit area of the electrode is increased, a peculiar phenomenon occurs as an anode effect, and normal electrolysis is no longer possible. Therefore, in order to perform normal and stable electrolysis, it is necessary to operate below this critical current density.
しかし、臨界電流密度が小さいと一定電流を流すために
は電極面積を大きくしなければならない。However, if the critical current density is small, the electrode area must be increased in order to pass a constant current.
そうすると炉は大型になり、設備費が増加すると共に高
価な溶融塩が大量に必要となるため、経済的でなくなる
。In this case, the furnace becomes large, equipment costs increase, and a large amount of expensive molten salt is required, making it uneconomical.
したがって、経済的にメタルを生産するためには臨界電
流密度が大きい点で運転することが望ましいが、上記臨
界電流密度は種々の因子で決まるため、技術的に種々検
討を加えて実験を行い、最適条件を決める必要があるが
、前述した特公昭63−12947号の方法ではせいぜ
い0.60A/cIn2でしか運転できない。Therefore, in order to economically produce metal, it is desirable to operate at a point where the critical current density is high, but since the critical current density is determined by various factors, we conducted various technical studies and experiments. Although it is necessary to determine the optimum conditions, the method disclosed in Japanese Patent Publication No. 63-12947 can only operate at 0.60 A/cIn2 at most.
2、電ゞ が大きいこと
前述したように、電解により生産できるメタル量はファ
ラデーの法則により算出した理論値に電流効率を掛けた
値となる。2. Large electric current As mentioned above, the amount of metal that can be produced by electrolysis is the value calculated by multiplying the theoretical value calculated by Faraday's law by the current efficiency.
電流効率がiJXさいと、メタルの生産量はいくら電流
を加えても少ないので、電流効率が大きい程望ましい。If the current efficiency is low, the amount of metal produced will be small no matter how much current is applied, so the higher the current efficiency is, the more desirable it is.
この電流効率は上述した臨界電流密度と同様に種々の因
子で決まるため、技術的に種々検討を加えて実験を行い
、最適条件を決める必要がある。Since this current efficiency is determined by various factors like the critical current density mentioned above, it is necessary to perform various technical studies and experiments to determine the optimum conditions.
以上の1〜2の観点より、本発明者は、経済的にメタル
を生産する方法を種々検討し、研究を繰り返した結果、
極めて経済的にNd金属及びNdFe合金を製造できる
方法を発明するに至ったものである。From the above points 1 and 2, the inventor has considered various ways to economically produce metal, and as a result of repeated research,
This led to the invention of a method for producing Nd metal and NdFe alloy very economically.
すなわち、本発明に係るNd−Fe合金の製造方法は、
溶融塩電解法によりNd−Fe合金を製造するに際し、
陽極に炭素電極、陰極に鉄陰極を用い、原料化合物とし
てNdF3を用いると共に、かかる弗化物を含む溶融塩
電解浴が実質的に5〜34wt%のNdF3と95−6
6w1:%のLiFにより構成されるようにl整し、得
られた希土類合金製溶融塩下方に析出させることを特徴
とするものである。That is, the method for manufacturing an Nd-Fe alloy according to the present invention is as follows:
When producing Nd-Fe alloy by molten salt electrolysis method,
A carbon electrode is used as an anode, an iron cathode is used as a cathode, NdF3 is used as a raw material compound, and the molten salt electrolytic bath containing the fluoride contains substantially 5 to 34 wt% NdF3 and 95-6
It is characterized in that it is composed of 6w1:% LiF and is precipitated below the obtained rare earth alloy molten salt.
また、本発明に係るNd金属の製造方法は、溶融塩電解
法によりNd金属を製造するに際し、陽極に炭素電極、
陰極に炭素電極又はTa、Pt等のNdと合金を作らな
い材料の電極を用い、原料化合物としてNdF3を用い
ると共に、かかる弗化物を含む溶融塩電解浴が実質的に
5〜8Qwt%のNdF3と95〜20臀t%のLiF
により構成されるように調整し、得られた希土類金属を
溶融塩下方に析出させることを特徴とするものである。Further, in the method for producing Nd metal according to the present invention, when producing Nd metal by molten salt electrolysis, a carbon electrode is used as an anode,
A carbon electrode or an electrode made of a material that does not form an alloy with Nd, such as Ta or Pt, is used as the cathode, and NdF3 is used as the raw material compound, and the molten salt electrolytic bath containing such fluoride contains substantially 5 to 8 Qwt% of NdF3. 95-20t% LiF
It is characterized by adjusting the molten salt so that it is composed of the following: and precipitating the obtained rare earth metal below the molten salt.
以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.
(作用)
Nd−FeA金の パ
本発明者は、先に、希土類金属又は希土類合金を溶融塩
電解法で製造する方法として、酸化性雰囲気で電解する
方法(特願昭62−204879号)を提案し、また板
状の陰極、S極を用いて小さな電解槽で効率よくメタル
を生産する方法(特願昭62〜220893号)を提案
した。(Function) The present inventor previously proposed a method of electrolyzing in an oxidizing atmosphere (Japanese Patent Application No. 62-204879) as a method for producing rare earth metals or rare earth alloys by molten salt electrolysis. He also proposed a method for efficiently producing metal in a small electrolytic cell using a plate-shaped cathode and S pole (Japanese Patent Application No. 1982-220893).
かSる方法を用い、NdF3を原料としてNd−Fe合
金を製造する実験を行ったところ、特公昭63−129
47号で対象としていない範囲の電解浴組成、つまり、
NdF3が5−34wt%でLiFが95〜66wt%
のLiF−NdF3系の電解浴組成において、後述の実
施例に示す如く電流効率及び臨界電流密度とも大幅に向
上できることを見い出したものである。When we conducted an experiment to manufacture Nd-Fe alloy using NdF3 as a raw material using the S method, we found that
Electrolytic bath composition in the range not covered by No. 47, that is,
NdF3 is 5-34wt% and LiF is 95-66wt%
In the LiF-NdF3-based electrolytic bath composition, it has been found that both current efficiency and critical current density can be significantly improved as shown in Examples below.
この傾向は、前述したBureau of Mjnes
のレポート及び特公昭63−12947号で示された方
法、つまり、不活性ガス雰囲気で丸棒状電極を用い、N
dF3を原料とし、LiF−NdF、系の電解浴を用い
てNd−Fe合金を製造する方法につぃて実験を行った
ときも、効率は低下するが、同じ傾向の結果を得たもの
である。This trend is reflected in the Bureau of Mjnes mentioned above.
report and Japanese Patent Publication No. 63-12947, that is, N
When we conducted an experiment on a method for manufacturing Nd-Fe alloy using dF3 as a raw material and a LiF-NdF system electrolytic bath, we obtained results with the same tendency, although the efficiency was lower. be.
因に、本発明法によれば、電流効率は60〜90%、臨
界電流密度は1.、O−2,7A/c+n2になり、電
解温度は800〜950℃の範囲が望ましい。Incidentally, according to the method of the present invention, the current efficiency is 60 to 90%, and the critical current density is 1. , O-2,7A/c+n2, and the electrolysis temperature is preferably in the range of 800 to 950°C.
なお、本発明における電解浴組成はI、jF−NdF3
系を基本としているが、これに適量のCaF2、BaF
、及びCeF3を適時加えても良いことは云うまでもな
い。In addition, the electrolytic bath composition in the present invention is I,jF-NdF3
system, but it also contains appropriate amounts of CaF2 and BaF.
, and CeF3 may be added at appropriate times.
第1図(a)(断面図)、(b)(平面図)は上記方法
によりNd−Fe合金を製造するのに適した装置の一例
を示している。本装置は以下のような構成となっている
。FIGS. 1(a) (cross-sectional view) and (b) (plan view) show an example of an apparatus suitable for producing a Nd--Fe alloy by the above method. This device has the following configuration.
発熱体2を備えた外熱炉1に電解浴3を保持するための
電解槽4を取り付け、その間は、絶縁のためと、ガス化
した電解浴の一部が侵入して発熱体2を損傷するのを防
止する役目をもった絶縁体5によりシールされている。An electrolytic bath 4 for holding an electrolytic bath 3 is attached to an external heating furnace 1 equipped with a heating element 2, and during that time, a part of the gasified electrolytic bath enters and damages the heating element 2. It is sealed with an insulator 5 which has the role of preventing this.
電解浴中には鉄製板状陰極6を中心に黒鉛製板状陽極7
を2枚互いに対向配置し、これら電極は電極取付台8に
より保持され、電極昇降機9と極間距離調整機10によ
り電極を最適位置に電解中でも調整することができるよ
うになっている。In the electrolytic bath, there is an iron plate cathode 6 and a graphite plate anode 7.
Two electrodes are arranged facing each other, and these electrodes are held by an electrode mounting base 8, and the electrodes can be adjusted to the optimum position even during electrolysis using an electrode elevator 9 and an interelectrode distance adjuster 10.
生成したNdは、陰極の鉄と反応し、Nd−Fe合金液
滴11となって、内側にTa等による内張り12を有す
る合金受器13の中に入って析出する。The generated Nd reacts with the iron of the cathode, becomes Nd-Fe alloy droplets 11, enters an alloy receiver 13 having a lining 12 made of Ta, etc., and precipitates therein.
電解浴3の温度は、電解浴中にセットした熱電対14に
より検出され、最適温度になるように外熱炉ヒータ−2
により制御される。この電解は作業性、設備コスト、製
品の純度、電流効率及び臨界電流密度を良くするため、
酸化性雰囲気で行われる。The temperature of the electrolytic bath 3 is detected by a thermocouple 14 set in the electrolytic bath, and the external furnace heater 2 is adjusted to the optimum temperature.
controlled by This electrolysis improves workability, equipment cost, product purity, current efficiency, and critical current density.
It is carried out in an oxidizing atmosphere.
また、生成した合金が陰極の底点より液滴11となって
滴下するように陰極下端後テーパー状にするのが望まし
い。電解を連続的に行う時にはこの装置に原料の連続供
給装置及びメタルの汲み出し装置及びその他付属装置を
つけて実施するのは当然である。Further, it is desirable that the lower end of the cathode be tapered so that the produced alloy drips as droplets 11 from the bottom point of the cathode. When electrolysis is carried out continuously, it is natural that this apparatus is equipped with a continuous raw material supply device, a metal pumping device, and other accessory devices.
また、板状電極の厚さは次の電極交換までの間隔で決め
れば良く、−船釣には電極交換時にメタルを汲み出すと
効果的である。Further, the thickness of the plate electrode may be determined based on the interval until the next electrode replacement; - For boat fishing, it is effective to pump out the metal when replacing the electrode.
Nd:&iゆ4逍
次トこ、NdF3を原料としてNd金属を製造する方法
について説明する。Nd:&iyu4 Shoji Toko, a method for producing Nd metal using NdF3 as a raw material will be explained.
この方法は、以下(])〜(2)のような場合には、N
d−Fe合金として回収せずにNd金属として回収する
方がより望ましく、適している。This method is applicable to cases such as (]) to (2) below.
It is more desirable and suitable to recover the Nd metal instead of the d-Fe alloy.
(1)磁性材料として用いられる場合、他の希土類金属
、例えば、Sm系と合金化して用いられることがあり、
この場合には、必ずしもFeを含んだ組成のものだけが
使用されるわけではないので、Feを含まない希土類金
属のみで回収した方が利用範囲が多いこと。(1) When used as a magnetic material, it may be alloyed with other rare earth metals, such as Sm.
In this case, since it is not necessarily the case that only those with a composition containing Fe are used, the range of use is greater if only rare earth metals that do not contain Fe are recovered.
(2)光磁気材料としてNd金属の使用が研究されてお
り、この場合には、Feを含まない組成で利用されるこ
とが多いこと。(2) The use of Nd metal as a magneto-optical material is being studied, and in this case, it is often used in a composition that does not contain Fe.
したがって、Fe合金でないNd金属を溶融塩電解法で
生産する技術を確立する必要がある。Therefore, it is necessary to establish a technology for producing Nd metal other than Fe alloy by molten salt electrolysis.
一般に希土類金属を溶融塩電解法で製造する場合には、
酸化物を原料とし、陽極に黒鉛を用い、陰極にW、Mo
等が使用され、且つ陰極の高温での酸化を防止したり、
できたメタルの酸化を防止するために不活性ガス雰囲気
で電解されている( E 、 M orrj ce外著
、Bureau of Mines、 ”Repor
t of Investigations” Nn 6
957.1967年)。Generally, when producing rare earth metals by molten salt electrolysis,
The raw material is oxide, graphite is used for the anode, and W and Mo are used for the cathode.
etc. are used to prevent oxidation of the cathode at high temperatures,
In order to prevent oxidation of the resulting metal, it is electrolyzed in an inert gas atmosphere.
of Investigations” Nn 6
957.1967).
本発明者は、前述の如く酸化性雰囲気での電解を提案し
ており、この方法で希土類金属を製造するには、弗化物
を原料とし、陽極に炭素電極を用い、陰極にも炭素電極
を用いることを発明したものである。また、この陰極材
料としては炭素の他に、電解浴中では酸化物を使用しな
いから酸化反応は伴わないので、陰極表面にTa、Pt
等のNdと合金を作らない金属も使用することができる
。The present inventor has proposed electrolysis in an oxidizing atmosphere as described above, and in order to produce rare earth metals by this method, fluoride is used as a raw material, a carbon electrode is used as an anode, and a carbon electrode is also used as a cathode. It was invented to use. In addition to carbon, this cathode material does not involve oxidation reactions because no oxides are used in the electrolytic bath, so Ta and Pt are used on the cathode surface.
Metals that do not form alloys with Nd, such as Nd, can also be used.
酸化性雰囲気で陽極に炭素、陰極に炭素を用いて電解し
た場合、前述したNd−Fe合金を製造する場合とは次
のように異なる。When electrolyzing is performed in an oxidizing atmosphere using carbon as an anode and carbon as a cathode, the difference from the case of manufacturing the Nd-Fe alloy described above is as follows.
Nd−Fe合金を陽極に炭素、陰極に鉄を用いて製造す
る場合の反応は、
NdF3→Nd”+3F
陽極では、
nC+mF −+CnFm+me
陰極では、
Fe+Nd”+3e−→Nd−Fe合金である。したが
って、陰極と陽極ともに消耗電極となる。When producing a Nd-Fe alloy using carbon for the anode and iron for the cathode, the reaction is as follows: NdF3→Nd''+3F At the anode, nC+mF −+CnFm+me At the cathode, Fe+Nd''+3e-→Nd-Fe alloy. Therefore, both the cathode and the anode become consumable electrodes.
一方、Nd金属を陽極に炭素、陰極に炭素を用いて製造
する場合の反応は、
NdF3→Nd”+ 3 F
陽極では、
nC+mF −+CnFm+me
陰極では、
Nd”+3e −+Nd金属
である。したがって、陽極は消耗電極となるが、陰極は
非消耗電極となる。On the other hand, when manufacturing Nd metal using carbon for the anode and carbon for the cathode, the reaction is NdF3→Nd"+3F at the anode, nC+mF-+CnFm+me, and Nd"+3e-+Nd metal at the cathode. Therefore, the anode becomes a consumable electrode, while the cathode becomes a non-consumable electrode.
酸化性雰囲気で炭素を電極として使用した場合は、電解
浴上部の酸化性雰囲気で覆われた電極部分は酸化消耗す
るが、この部分を醸化防止剤でコーティングしても良い
し、また炭素は安価な材料であるので使い棄てにしても
よい。また、陰極にMo、W等の高融点材料を使用する
とNdとの合金を作り、陰極材料が数百〜数千ppm混
入するが、Ta、Pd等を使用した場合には、これらは
このようなことがないので、安心して使用できる。When carbon is used as an electrode in an oxidizing atmosphere, the part of the electrode covered in the oxidizing atmosphere at the top of the electrolytic bath will be oxidized and consumed, but this part may be coated with a fermentation inhibitor, and carbon Since it is an inexpensive material, it can be disposable. Furthermore, when high melting point materials such as Mo and W are used for the cathode, they form an alloy with Nd, resulting in several hundred to several thousand ppm of cathode material being mixed in, but when Ta, Pd, etc. are used, these There are no problems, so you can use it with confidence.
Taを使用した陰極の酸化防止対策としては、黒鉛電極
の電解浴中の反応面をTaコーティングしたり、またN
d−Fe合金を製造する時と同じく鉄陰極を作り、その
反応面のみをTaコーティングしたりしても良い。Measures to prevent oxidation of cathodes using Ta include coating the reaction surface of graphite electrodes with Ta in the electrolytic bath, and coating them with N.
An iron cathode may be made in the same way as when producing a d-Fe alloy, and only the reaction surface thereof may be coated with Ta.
Ndの融点は約1020℃であるので、電解温度は、融
点以上の温度でNdを融体として析出させても良いし、
また電解温度を融点以下にして陰極上で固体で析出させ
ても良い。Since the melting point of Nd is about 1020°C, the electrolytic temperature may be set at a temperature higher than the melting point to precipitate Nd as a melt,
Alternatively, the electrolytic temperature may be set to below the melting point, and the solid may be deposited on the cathode.
後者の場合、電解温度をNd金属の融点以下の温度で電
解すると、陰極上に針状になって析出するが、この析出
した針状のNd金属が陽極に達するまで成長すると、−
時的に陽陰極間に大電流が流れてNd金属が溶けて下方
に析出することになる。In the latter case, if electrolysis is performed at a temperature below the melting point of Nd metal, it will precipitate in the form of needles on the cathode, but when the precipitated needle-shaped Nd metal grows until it reaches the anode, -
At times, a large current flows between the anode and the cathode, causing the Nd metal to melt and precipitate downward.
かSる方法を用いて、NdF3を原料として溶融塩電解
法によりNd金属を製造する実験を行ったところ、Nd
F3が5〜80wt%でLiFが95〜2Qwt%のL
iF−NdF3を主体とした電解浴組成により、後述の
実施例に示す如く電流効率及び臨界電流密度ともに望ま
しく、経済的に生産できることが判ったものである。When we conducted an experiment to produce Nd metal using the molten salt electrolysis method using NdF3 as a raw material, we found that Nd
L with F3 from 5 to 80 wt% and LiF from 95 to 2 Qwt%
It has been found that an electrolytic bath composition mainly composed of iF-NdF3 has desirable current efficiency and critical current density, and can be produced economically, as shown in Examples below.
この傾向は、不活性ガス雰囲気で丸棒状黒鉛電極を用い
てNd金属を製造する実験を行った時も効率は低下する
が、同じ傾向の結果を得たが、本発明方法の方が経済的
製造方法であることは容易に理解されよう。This tendency was also observed in an experiment in which Nd metal was manufactured using a round rod-shaped graphite electrode in an inert gas atmosphere. Although the efficiency decreased, the same tendency was obtained, but the method of the present invention was more economical. It is easy to understand that this is a manufacturing method.
因に、本発明法によれば、電流効率は50〜80%、臨
界電流密度は1.5〜2.6A/cm2になり、電解温
度は800〜1050℃の範囲が望ましい。According to the method of the present invention, the current efficiency is 50 to 80%, the critical current density is 1.5 to 2.6 A/cm2, and the electrolysis temperature is preferably in the range of 800 to 1050°C.
なお、電解浴組成はLiF−NdF3系を用いるが、こ
れに適量のCaF2、BaF2及びCeF3を適時加え
ても良いことは云うまでもない。Although the electrolytic bath composition uses a LiF-NdF3 system, it goes without saying that appropriate amounts of CaF2, BaF2 and CeF3 may be added thereto at any time.
−16=
上記方法によりNd金属を製造するのに適した装置は、
第1図(a)、(b)に示した装置とほぼ同様であるが
、基本的には陰極材料として炭素やTa、Pd等のNd
と合金を作らない高融点材料とする点が異なる。-16= Apparatus suitable for producing Nd metal by the above method is:
It is almost the same as the device shown in Fig. 1 (a) and (b), but basically the cathode material is carbon, Ta, Pd, etc.
The difference is that it is a high melting point material that does not form an alloy.
また、生成したNdは陰極の黒鉛に析出するが、電解浴
温度がNdの融点よりも高い時は液滴となって析出し、
電解浴温度がNdの融点よりも低い時には針状結晶とな
って陰極に析出する。後者の場合、この針状結晶が大き
くなり陰極まで達すると陰極と陽極の間に一時的に大電
流が流れて溶解して下方に析出することもある。In addition, the generated Nd precipitates on the graphite of the cathode, but when the electrolytic bath temperature is higher than the melting point of Nd, it precipitates in the form of droplets.
When the electrolytic bath temperature is lower than the melting point of Nd, it forms needle-shaped crystals and deposits on the cathode. In the latter case, when the needle-like crystals grow larger and reach the cathode, a large current may temporarily flow between the cathode and the anode, causing them to dissolve and precipitate downward.
また、メタル受器13は、Ndの融点よりも高い電解浴
温度で運転する場合には、そのまま有効であるが、Nd
の融点よりも低い温度で運転する場合は必ずしも必要で
ない。連続運転で行う場合には、融点以下で電解する時
には定期的に陰極を引き上げてNdを回収し、融点以上
で電解する時には溶融メタル(Nd)を真空吸引すれば
良い。In addition, the metal receiver 13 is effective as is when operating at an electrolytic bath temperature higher than the melting point of Nd, but
This is not necessary when operating at temperatures below the melting point of In the case of continuous operation, the cathode may be periodically pulled up to recover Nd when electrolysis is carried out below the melting point, and the molten metal (Nd) may be vacuum-suctioned when electrolysis is carried out above the melting point.
(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.
太遣j1−
LiF−NdF3の混合物の組成を変化させて臨界電流
密度に及ぼす組成比と電解温度の関係を調査した。製造
したメタルはNd−Fe合金である。The relationship between the composition ratio and electrolysis temperature on the critical current density was investigated by changing the composition of the LiF-NdF3 mixture. The metal produced is a Nd-Fe alloy.
なお、使用した装置は第1図(a)、(b)に示した装
置であり、本実験は大気中で実施した。The apparatus used was the apparatus shown in FIGS. 1(a) and 1(b), and this experiment was conducted in the atmosphere.
上記構成の装置を使用してNd−Fe合金を製造した場
合の種々の電解温度における臨界電流密度と電解浴組成
の関係を第2図に示す。また、第3図には電解浴温度を
900°Cと一定にした時の電解浴組成と電流効率との
関係を示す。FIG. 2 shows the relationship between critical current density and electrolytic bath composition at various electrolysis temperatures when Nd--Fe alloys were produced using the apparatus configured as described above. Further, FIG. 3 shows the relationship between the electrolytic bath composition and current efficiency when the electrolytic bath temperature was kept constant at 900°C.
第2図及び第3図より、臨界電流密度が大きく電流効率
が大きくて生産効率の良い電解浴組成はNdF3:5〜
34 wt%であることが判る。From Figures 2 and 3, the electrolytic bath composition with high critical current density, high current efficiency, and good production efficiency is NdF3:5 ~
34 wt%.
ハ刻−4
LiF−NdFl]の混合物の組成を変化させて、臨界
電流密度に及ぼす組成比と温度の関係を調査した。製造
したメタルはNd金属である。The relationship between the composition ratio and temperature on the critical current density was investigated by changing the composition of the mixture of LiF-NdFl]. The manufactured metal is Nd metal.
使用した装置は、実施例1とほぼ同じであるが以下の点
が若干異なっている。The apparatus used was almost the same as in Example 1, but the following points were slightly different.
すなわち、電解浴3中に配置した電極は、Fe合金を製
造する時には鉄製板状陰極6を中心に炭素製板状陽極7
を2枚互いに対向配置したが、鉄製板状陰極の代りに炭
素製板状陰極6を配置した。In other words, when producing an Fe alloy, the electrodes arranged in the electrolytic bath 3 include a plate-shaped iron cathode 6 and a carbon plate-shaped anode 7.
Two sheets of the carbon cathode 6 were arranged facing each other, but a carbon plate cathode 6 was arranged instead of the iron plate cathode.
上記構成の装置を使用してNd金属を製造した場合の臨
界電流密度と電解浴組成と電解温度の関係を第4図に示
す。また、第5図には種々の電解温度における電解浴組
成と電流効率との関係を示す。FIG. 4 shows the relationship between critical current density, electrolytic bath composition, and electrolysis temperature when Nd metal is manufactured using the apparatus having the above configuration. Further, FIG. 5 shows the relationship between electrolytic bath composition and current efficiency at various electrolysis temperatures.
第4図及び第5図より、臨界電流密度が大きく電流効率
が大きくて生産効率の良い電解浴組成はNdF3:5〜
80wt%であることが判る。From Figures 4 and 5, the electrolytic bath composition with high critical current density, high current efficiency, and good production efficiency is NdF3:5 ~
It turns out that it is 80wt%.
失胤且y
Nd−Fe合金を第1図(a)、(b)に示した装置を
用いて製造した。電極は鉄製板状陰極を中心に2枚の黒
鉛陰極を配置した。溶融塩はNdF、:20wt%−L
iF:80讐t%とし、電解によりNdF3が消費され
た分を電解槽に供給し、電解浴組成を一定に維持した。A Nd-Fe alloy was produced using the apparatus shown in FIGS. 1(a) and 1(b). The electrodes consisted of two graphite cathodes arranged around an iron plate cathode. Molten salt is NdF: 20wt%-L
iF: 80%, and the amount of NdF3 consumed by electrolysis was supplied to the electrolytic bath to maintain the electrolytic bath composition constant.
他の電解条件は第1表に示した。Other electrolysis conditions are shown in Table 1.
電解の結果は、第1表に示したとおりであり。The results of electrolysis are shown in Table 1.
極めて効率的にNd−Fe合金が回収され、合金中の不
純物である酸素、炭素も少ないことが判る。It can be seen that the Nd-Fe alloy was recovered extremely efficiently and that the impurities in the alloy, such as oxygen and carbon, were also small.
特に電流密度が大きく、高電流効率であることが判る。In particular, it can be seen that the current density is high and the current efficiency is high.
失雁貫を
実施例3と同様の実験を行ってNd−Fe合金を製造し
た。但し、溶融塩組成をNdF3:30wt%LiFニ
ア0νt%に変更して実験した。An experiment similar to that in Example 3 was conducted using the missing wild goose to produce a Nd-Fe alloy. However, the experiment was conducted by changing the molten salt composition to NdF3:30wt%LiFnear 0vt%.
実験の結果は第1表に示すとおり、良い結果が得られた
。As shown in Table 1, good results were obtained from the experiment.
尖皇胴1
Nd金属を第1図に示した装置を用いて製造した。電極
は黒鉛製板状電極を中心に2枚の黒鉛陰極を対向して配
置した。溶融塩はNdF3:30wt%−LiFニア0
wt%で、900℃で電解した。その際、NdF3が消
費された分を電解槽に供給し、電解浴組成を一定に維持
した。メタルは陰極表面に析出した。その他の電解条件
は第1表に示した条件である。Sennodou 1 Nd metal was manufactured using the apparatus shown in FIG. The electrodes were a graphite plate electrode with two graphite cathodes facing each other. The molten salt is NdF3:30wt%-LiFNia0
wt% and electrolyzed at 900°C. At that time, the consumed amount of NdF3 was supplied to the electrolytic bath to maintain the electrolytic bath composition constant. Metal was deposited on the cathode surface. Other electrolysis conditions are shown in Table 1.
実験の結果は第1表に示すとおり、良い結果が得られた
。As shown in Table 1, good results were obtained from the experiment.
実施例6 実施例5と同様の方法でNd金属を製造した。Example 6 Nd metal was produced in the same manner as in Example 5.
但し、電解温度を1050℃とNdの融点以上にし、溶
融塩組成をNd F a : 50 wt%−LiF:
50讐t%に変更し、電解した。メタルは溶融状態で溶
融塩下方に析出した。その他の電解条件は第1表に示し
た条件である。However, the electrolysis temperature was set to 1050°C, which was higher than the melting point of Nd, and the molten salt composition was changed to NdFa: 50 wt%-LiF:
The concentration was changed to 50% and electrolyzed. The metal precipitated under the molten salt in a molten state. Other electrolysis conditions are shown in Table 1.
実験の結果は第1表に示すとおり、良い結果が得られた
。As shown in Table 1, good results were obtained from the experiment.
【以下余白1
(発明の効果)
以上詳述したように、本発明によれば、溶融塩電解法に
よりNd−Fe合金及びNd金属を製造することができ
、以下のような優れた効果が得られる。[Blank 1 (Effects of the Invention) As detailed above, according to the present invention, Nd-Fe alloys and Nd metals can be produced by molten salt electrolysis, and the following excellent effects can be obtained. It will be done.
1、電流密度が大きく電流効率が大きいので、小さな設
備で多量のメタルを効率的、経済的に製造することがで
きる。1. Since the current density and current efficiency are high, a large amount of metal can be produced efficiently and economically using small equipment.
2、陰極材料を交換するだけでNd−Fe合金及びNd
金属を簡単に製造できる。2. Nd-Fe alloy and Nd by simply replacing the cathode material
Metals can be manufactured easily.
3、磁性材料として性能を悪化させる酸素、炭素の少な
いメタルを製造することができる。3. It is possible to produce metals that are low in oxygen and carbon, which degrade performance as magnetic materials.
4、保護ガス密閉装置が不要になるので、設備の建設費
及び維持費が低減できると共に原料、副原料、製品の供
給及び取り出しが容易になる。4. Since a protective gas sealing device is not required, construction costs and maintenance costs for the equipment can be reduced, and raw materials, auxiliary raw materials, and products can be easily supplied and taken out.
第1図(a)、(b)は本発明の実施に使用する装置の
一例を説明するための図で、(a)は断面図、(b)は
平面図であり、
第2図と第3図はNd−Fe合金を本発明の溶融塩電解
法で電解した時の種々の電解温度における電解浴組成と
臨界電流密度及び電流効率の関係を示す図であり、
第4図と第5図はNd金属を本発明の溶融塩電解法で電
解した時の電解浴組成と臨界電流密度効率及び電流効率
の関係を示す図であり、第6図はLiF−NdF3系状
態図(wt%表示)である。
1・・・外熱炉、2・・・発熱体、3・・・電解浴、4
・電解槽、5・・・絶縁体、6・・・陰極、7・・・陽
極、8・・・電極取付台、9・・・電極昇降機、10・
・・極間距離調整機、11・・・液滴、12・・・受器
内張り、13・・・Nd金属又はNd合金受器、14・
・・熱電対、15・・・大気・
特許出願人 昭和電工株式会社
代理人弁理士 中 村 尚
第
図
(b)
NdF3(wt%)
第
図
NdF3
(wt%)
第
図
NdF3(wt%)
手続補正書FIGS. 1(a) and 1(b) are diagrams for explaining an example of an apparatus used for carrying out the present invention, in which (a) is a cross-sectional view, and (b) is a plan view. Figure 3 is a diagram showing the relationship between electrolytic bath composition, critical current density, and current efficiency at various electrolysis temperatures when Nd-Fe alloy is electrolyzed by the molten salt electrolysis method of the present invention. is a diagram showing the relationship between electrolytic bath composition, critical current density efficiency, and current efficiency when Nd metal is electrolyzed by the molten salt electrolysis method of the present invention, and Figure 6 is a LiF-NdF3 system phase diagram (wt% display). It is. 1... External heat furnace, 2... Heating element, 3... Electrolytic bath, 4
・Electrolytic cell, 5... Insulator, 6... Cathode, 7... Anode, 8... Electrode mounting base, 9... Electrode elevator, 10.
... Distance adjustment device between poles, 11... Droplet, 12... Receiver lining, 13... Nd metal or Nd alloy receiver, 14.
・・Thermocouple, 15...Atmosphere・ Patent applicant Hisashi Nakamura, patent attorney representing Showa Denko K.K. Figure (b) NdF3 (wt%) Figure NdF3 (wt%) Figure NdF3 (wt%) Procedure amendment
Claims (3)
際し、陽極に炭素電極、陰極に鉄陰極を用い、原料化合
物としてNdF_3を用いると共に、かかる弗化物を含
む溶融塩電解浴が実質的に5〜34wt%のNdF_3
と95〜66wt%のLiFにより構成されるように調
整し、得られた希土類合金を溶融塩下方に析出させるこ
とを特徴とするNd−Fe合金の製造方法。(1) When producing a Nd-Fe alloy by the molten salt electrolysis method, a carbon electrode is used as an anode, an iron cathode is used as a cathode, NdF_3 is used as a raw material compound, and the molten salt electrolytic bath containing such fluoride is 5-34wt% NdF_3
and 95 to 66 wt% of LiF, and the resulting rare earth alloy is precipitated below the molten salt.
陽極に炭素電極、陰極に炭素電極又はTa、Pt等のN
dと合金を作らない材料の電極を用い、原料化合物とし
てNdF_3を用いると共に、かかる弗化物を含む溶融
塩電解浴が実質的に5〜80wt%のNdF_3と95
〜20wt%のLiFにより構成されるように調整し、
得られた希土類金属を溶融塩下方に析出させることを特
徴とするNd金属の製造方法。(2) When producing Nd metal by molten salt electrolysis method,
Carbon electrode for the anode, carbon electrode for the cathode, or N such as Ta, Pt, etc.
Using an electrode made of a material that does not form an alloy with d, NdF_3 is used as a raw material compound, and a molten salt electrolytic bath containing such a fluoride contains substantially 5 to 80 wt% of NdF_3 and 95%.
Adjusted to be composed of ~20wt% LiF,
A method for producing Nd metal, characterized in that the obtained rare earth metal is precipitated below a molten salt.
項1又は2に記載の方法。(3) The method according to claim 1 or 2, wherein the electrode is plate-shaped and the electrolysis is carried out in the atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63251573A JP2761002B2 (en) | 1988-10-05 | 1988-10-05 | Method for producing Nd-Fe alloy or Nd metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63251573A JP2761002B2 (en) | 1988-10-05 | 1988-10-05 | Method for producing Nd-Fe alloy or Nd metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02101186A true JPH02101186A (en) | 1990-04-12 |
JP2761002B2 JP2761002B2 (en) | 1998-06-04 |
Family
ID=17224825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63251573A Expired - Fee Related JP2761002B2 (en) | 1988-10-05 | 1988-10-05 | Method for producing Nd-Fe alloy or Nd metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2761002B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5188711A (en) * | 1991-04-17 | 1993-02-23 | Eveready Battery Company, Inc. | Electrolytic process for making alloys of rare earth and other metals |
JP2006183096A (en) * | 2004-12-27 | 2006-07-13 | Neomax Co Ltd | Rare earth alloy manufacturing method |
WO2011092516A1 (en) | 2010-02-01 | 2011-08-04 | National Nuclear Laboratory Limited | Novel method for steel production |
KR101983999B1 (en) * | 2017-11-29 | 2019-05-30 | 한국생산기술연구원 | Molten salt electrorefiner |
US11401617B2 (en) | 2017-11-29 | 2022-08-02 | Korea Institute Of Industrial Technology | Molten salt electrorefiner |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102149210B1 (en) * | 2020-06-02 | 2020-08-28 | 한국지질자원연구원 | Recovery method of high purity neodymium using electrolytic refining |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6077944A (en) * | 1983-10-03 | 1985-05-02 | Sumitomo Special Metals Co Ltd | Manufacture of raw material alloy for rare earth magnet |
JPS6312947A (en) * | 1986-07-04 | 1988-01-20 | Sord Comput Corp | Thermal conduction detector |
JPS63166987A (en) * | 1986-12-27 | 1988-07-11 | Asahi Chem Ind Co Ltd | Production of rare-earth metal |
JPS63169397A (en) * | 1986-12-29 | 1988-07-13 | Asahi Chem Ind Co Ltd | Production of rare earth metal |
-
1988
- 1988-10-05 JP JP63251573A patent/JP2761002B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6077944A (en) * | 1983-10-03 | 1985-05-02 | Sumitomo Special Metals Co Ltd | Manufacture of raw material alloy for rare earth magnet |
JPS6312947A (en) * | 1986-07-04 | 1988-01-20 | Sord Comput Corp | Thermal conduction detector |
JPS63166987A (en) * | 1986-12-27 | 1988-07-11 | Asahi Chem Ind Co Ltd | Production of rare-earth metal |
JPS63169397A (en) * | 1986-12-29 | 1988-07-13 | Asahi Chem Ind Co Ltd | Production of rare earth metal |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5188711A (en) * | 1991-04-17 | 1993-02-23 | Eveready Battery Company, Inc. | Electrolytic process for making alloys of rare earth and other metals |
JP2006183096A (en) * | 2004-12-27 | 2006-07-13 | Neomax Co Ltd | Rare earth alloy manufacturing method |
JP4649591B2 (en) * | 2004-12-27 | 2011-03-09 | 日立金属株式会社 | Rare earth alloy manufacturing method |
WO2011092516A1 (en) | 2010-02-01 | 2011-08-04 | National Nuclear Laboratory Limited | Novel method for steel production |
KR101983999B1 (en) * | 2017-11-29 | 2019-05-30 | 한국생산기술연구원 | Molten salt electrorefiner |
US11401617B2 (en) | 2017-11-29 | 2022-08-02 | Korea Institute Of Industrial Technology | Molten salt electrorefiner |
Also Published As
Publication number | Publication date |
---|---|
JP2761002B2 (en) | 1998-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU758931C (en) | Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt | |
JP2863058B2 (en) | Heat-resistant metal alloy that can be processed into a homogeneous and pure ingot and a method for producing the alloy | |
US7879219B2 (en) | Electrochemical processing of solid materials in fused salt | |
JPS63262493A (en) | Metal electrolytic manufacturing method | |
US5000829A (en) | Process for preparing praseodymium metal or praseodymium-containing alloy | |
JPH02101186A (en) | Production of nd-fe alloy or metallic nd | |
CN101103141A (en) | A method for electrolytic production of aluminum | |
JPH06146049A (en) | Molten salt electrolytic sampling method for high-fusion-point active metal such as titanium | |
CN108220640A (en) | Method for manufacturing zinc alloy for hot dipping by using zinc slag | |
JP2596976B2 (en) | Method for producing neodymium or neodymium alloy | |
CN1087136A (en) | Make the electrolytic process of the alloy of rare earth metal and other metal | |
US5091065A (en) | Process for preparation of neodymium or neodymium-iron alloy | |
JPS6312947B2 (en) | ||
JP2749756B2 (en) | Rare earth metal electrolytic reduction production method | |
JPS63266086A (en) | Production of rare earth metal or alloy thereof | |
JPH0517317B2 (en) | ||
JPS62146291A (en) | Method for refining rare earth metal | |
JPH03140490A (en) | Rare earth metal and production of rare earth alloy | |
Xianghua et al. | Plasma Arc Remelting | |
Tripathy et al. | Preparation of high purity vanadium metal by silicothermic reduction of oxides followed by electrorefining in a fused salt bath | |
JPH05140785A (en) | Production of samarium alloy | |
JPH0541715B2 (en) | ||
JPH0561357B2 (en) | ||
JPH0569918B2 (en) | ||
JPH03153894A (en) | Method and apparatus for producing neodymium-iron alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |