[go: up one dir, main page]

JPH02100273A - Manufacture of electrode plate of zinc-bromine cell - Google Patents

Manufacture of electrode plate of zinc-bromine cell

Info

Publication number
JPH02100273A
JPH02100273A JP63253121A JP25312188A JPH02100273A JP H02100273 A JPH02100273 A JP H02100273A JP 63253121 A JP63253121 A JP 63253121A JP 25312188 A JP25312188 A JP 25312188A JP H02100273 A JPH02100273 A JP H02100273A
Authority
JP
Japan
Prior art keywords
carbon
manufacture
pellets
kneaded
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63253121A
Other languages
Japanese (ja)
Inventor
Yukio Tagami
幸雄 田上
Akihiko Hirota
広田 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63253121A priority Critical patent/JPH02100273A/en
Publication of JPH02100273A publication Critical patent/JPH02100273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To prevent increase in electric resistance by putting an element mixture of carbon plastics in a pressure kneader device for manufacturing carbon plastics for being kneaded under a specific condition in order to manufacture pellets for using these. CONSTITUTION:A carbon black element mixture is kneaded for a required time above about 10min within about 60min by a pressure kneader device for carbon plastic manufacture in order to manufacture pellets to manufacture an electrode plate using this. That is, a material of polyethylene 50wt.%, carbon black 15wt.% and graphite 35wt.% in a material composition ratio is put in for manufacturing pellets at a temperature 150 deg.C for a kneading time above about 10min within 60min. Then, kneaded pellets are heat-pressed so as to form a carbon plastic electrode in the shape of a thin plate. Within about 10min of kneading time each material is not well kneaded, while above 60min specific resistance of the carbon plastic electrode increases. Thereby, an increase in electric resistance can be prevented.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は、亜鉛−臭素電池のカーボンプラスチック電
極板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a method for manufacturing carbon plastic electrode plates for zinc-bromine batteries.

B1発明の概要 本発明は、亜鉛−臭素電池のカーボンプラスチック電極
板の製造工程において、 カーボンプラスチックの各種素材を加圧ニーダ装置に入
れ、約10分から約60分までの間の所要時間混練して
ベレットを製造し、これをもとに電極板を製造するよう
にすることにより、この加圧ニーダ装置の混練過程で導
電性が損失されるのを防止し、良好な電極板を製造でき
るようにしたものである。
B1 Overview of the Invention The present invention, in the manufacturing process of carbon plastic electrode plates for zinc-bromine batteries, involves putting various carbon plastic materials into a pressure kneader and kneading them for a period of time from about 10 minutes to about 60 minutes. By manufacturing pellets and manufacturing electrode plates based on the pellets, it is possible to prevent conductivity from being lost during the kneading process of this pressurized kneader device, and to manufacture good electrode plates. This is what I did.

C1従来の技術 近時、電池電力貯蔵システムの開発が促進されており、
その−環として第2図に例示する如き電解液循環型金属
ハロゲン積層二次電池が開発されている。
C1 Conventional technology Recently, the development of battery power storage systems has been promoted.
As a part of this, an electrolyte circulation type metal halogen stacked secondary battery as illustrated in FIG. 2 has been developed.

これは、第2図の構成原理図に示すように、電池本体l
をイオン交換膜または多孔質膜からなるセパレータ2で
陽極室3と陰極室4とに区画し、この両極室にそれぞれ
電解液を循環させるための送液管5.6と返液管7.8
により接続された電解液タンク9.10を設け、臭化亜
鉛(ZnBrt)の電解液をそれぞれの電極室に循環さ
れるようにしたものである。また、図で11はカーボン
プラスチック製の陽極、12はやはりカーボンプラスチ
ック製の陰極、13.14は共に送液ポンプである。
As shown in the structural principle diagram in Fig. 2, this
is divided into an anode chamber 3 and a cathode chamber 4 by a separator 2 made of an ion exchange membrane or a porous membrane, and a liquid sending tube 5.6 and a liquid return tube 7.8 are used to circulate the electrolytic solution to both electrode chambers, respectively.
Electrolyte tanks 9 and 10 are connected to each other, and a zinc bromide (ZnBrt) electrolyte is circulated to each electrode chamber. Further, in the figure, 11 is an anode made of carbon plastic, 12 is a cathode also made of carbon plastic, and 13 and 14 are both liquid feeding pumps.

しかして、充電時には、電解液が図の矢印の方向に循環
し、陰極12ではZn” ” + 2e−−*Zn。
Thus, during charging, the electrolyte circulates in the direction of the arrow in the figure, and at the cathode 12, Zn"" + 2e--*Zn.

陽極11では2Br−→Br”+2eの反応を生じ、陽
極11で生成された臭素は分子となり、電解液中に混じ
り、一部溶解し、大部分は陽極液中の錯化剤によって錯
化物となり、陽極室側の電解液タンク10内に沈澱して
蓄積される。又、放電時には、電解液が循環した状態で
各電極11.12ではそれぞれ前記反応式と逆の反応を
生じ、析出物(Zn、Brt)が各電極11.12上で
消費(酸化、還元)され、電気エネルギーが放出される
ようにしたものである。
At the anode 11, a reaction of 2Br-→Br''+2e occurs, and the bromine generated at the anode 11 becomes molecules, mixes in the electrolyte, partially dissolves, and mostly becomes a complex due to the complexing agent in the anolyte. , is precipitated and accumulated in the electrolyte tank 10 on the anode chamber side.In addition, during discharge, while the electrolyte is circulating, a reaction opposite to the above reaction formula occurs at each electrode 11, 12, and the precipitate ( Zn, Brt) is consumed (oxidized, reduced) on each electrode 11, 12, and electrical energy is released.

また、上述のような亜鉛−臭素電池では、その電極11
.12は、電解液におかされることなく、かつ導電性が
良く、電気的抵抗が小さいものであることが必要である
。このため、従来よりこれらの電極’11.12は、次
のように構成していた。すなわち、ポリエチレン(50
wt%)、カーボンブラック(15wt%)及びグラフ
ァイト(35wt%)の素材を、まず、一般に用いられ
ている加圧ニーダで、150℃の温度で混練し、この混
合素材を、約直径31m、高さ3+amの円柱状ペレッ
トに形成する。
In addition, in the zinc-bromine battery as described above, the electrode 11
.. 12 must not be exposed to the electrolytic solution, have good conductivity, and have low electrical resistance. For this reason, these electrodes '11 and 12 have conventionally been constructed as follows. That is, polyethylene (50
First, materials of carbon black (15 wt%), graphite (35 wt%) were kneaded at a temperature of 150°C in a commonly used pressure kneader, and this mixed material was mixed into a mold with a diameter of approximately 31 m and a high height. Form into cylindrical pellets with a diameter of 3+am.

次に、これらペレットを、ヒートプレスして薄板状のカ
ーボンプラスチック電極を構成していた。
Next, these pellets were heat pressed to form thin plate-like carbon plastic electrodes.

D9発明が解決しようとする課題 上述のような手段で構成する従来のカーボンプラスチッ
ク電極は、その製造に当たり、素材であるポリエチレン
、カーボンブラック及びグラファイトを平均的に混合す
るため、加圧ニーダで長時間混練していたが、このよう
に長時間混練すると本来あるべき構造が破壊され、カー
ボンプラスチック電極に構成したとき、その電気的抵抗
が増大してしまうという問題があった。
D9 Problems to be Solved by the Invention Conventional carbon plastic electrodes constructed using the above-mentioned method require a long time in a pressure kneader in order to evenly mix the raw materials polyethylene, carbon black, and graphite. However, there was a problem in that kneading for such a long time destroys the original structure and increases the electrical resistance when formed into a carbon plastic electrode.

本発明は上述の点に鑑み、カーボンプラスチック電極の
素材を加圧ニーダで適度に混練し、電気的抵抗の小さな
電極を製造する方法を提供することを目的とする。
In view of the above-mentioned points, an object of the present invention is to provide a method for appropriately kneading a material for a carbon plastic electrode using a pressure kneader and manufacturing an electrode with low electrical resistance.

86課題を解決するための手段 本発明の亜鉛−臭素電池の電極板製造方法は、カーボン
プラスチックを製造するための加圧ニーダ装置で、カー
ボンプラスチックの素材混合物を、約10分以上で、約
60分以内の所要時間混練してペレットを製造し、これ
を用いて電極板を製造することを特徴とする。
86 Means for Solving the Problems The method for manufacturing an electrode plate for a zinc-bromine battery of the present invention uses a pressure kneader device for manufacturing carbon plastic to heat a carbon plastic material mixture for about 60 minutes or more. The method is characterized in that pellets are produced by kneading for a time of less than 1 minute, and the pellets are used to produce electrode plates.

F1作用 上述のような製造方法によることにより、加圧ニーダ装
置による素材混練過程で、カーボンプラスチックの導電
性が損失しないようにするという作用を奏する。
F1 Effect: By using the manufacturing method as described above, there is an effect that the conductivity of the carbon plastic is prevented from being lost during the material kneading process using the pressure kneader device.

G、実施例 以下、本発明の亜鉛−臭素電池の電極板製造方法の一実
施例を、第1図によって説明する。
G. Example Hereinafter, an example of the method for manufacturing an electrode plate for a zinc-bromine battery according to the present invention will be described with reference to FIG.

本実施例の製造方法は、カーボンプラスチック製のバイ
ポーラ電極板の製造工程の一部である、ベレット製造の
ために加圧ニーダ装置で素材を混練する工程における、
加圧ニーダ混練時間の最適条件を求めるものである。
The manufacturing method of this example is a part of the manufacturing process of a bipolar electrode plate made of carbon plastic, in which materials are kneaded using a pressure kneader device to manufacture pellets.
The purpose is to find the optimum conditions for the pressure kneader kneading time.

このため、一般に用いられている加圧ニーダ装W1(森
山製作所製で混練樹脂の処理荷重25kgのもの)に、
材料組成比で、ポリエチレン50wt%、カーボンブラ
ックtswt%、グラファイト35wt%の材料を入れ
、温度150℃で混練する条件の下に、その混練時間を
変化させて、各時間ごとのサンプルのベレットを製造す
る。そして、各混練時間におけるペレットを、それぞれ
ヒートプレスして薄板状のカーボンプラスチック電極を
成形し、各々の表面の比抵抗を測定し、その結果を第1
図に示した。
For this reason, the commonly used pressure kneader W1 (manufactured by Moriyama Seisakusho, with a processing load of 25 kg for kneaded resin),
Materials with a material composition ratio of 50 wt% polyethylene, TSwt% carbon black, and 35 wt% graphite were added and kneaded at a temperature of 150°C, and the kneading time was varied to produce sample pellets for each time. do. Then, the pellets at each kneading time were heat-pressed to form thin carbon plastic electrodes, the specific resistance of each surface was measured, and the results were used for the first
Shown in the figure.

この線図より、加圧ニーダ装置での混練時間を多くとる
ほど、カーボンプラスチック電極の比抵抗が増加するの
で、この混練時間は、約60分以内にしなけばならない
ことが判明した。
From this diagram, it was found that the longer the kneading time in the pressure kneader, the more the specific resistance of the carbon plastic electrode, so the kneading time should be within about 60 minutes.

また、混練時間が約10分以内では、各材料が良く混練
されておらず、カーボンプラスデック電極としての機能
を果たし得ない不安定なものとなってしまうことが判明
した。
Furthermore, it has been found that if the kneading time is less than about 10 minutes, each material is not well kneaded, resulting in an unstable product that cannot function as a carbon plus deck electrode.

また、第1図の線図より、好ましくは、加圧ニーダ装置
による混練時間を約15分〜25分の間であると思われ
る。
Furthermore, from the diagram in FIG. 1, it appears that the kneading time using the pressure kneader is preferably between about 15 and 25 minutes.

H1発明の効果 以上詳述したように本発明の亜鉛−臭素電池の電極板製
造方法によれば、カーボンプラスチック電極製造の際、
その素材を加圧ニーダ装置に入れ、約10分以上、約6
0分以内の所要時間混練してペレットを製造し、このベ
レットをヒートプレスして電極板を成形するので、加圧
ニーダ装置による混練過程で、カーボンプラスチックの
導電性が摘果することを防止でき、良好な機能をもつ電
極板を提供できるという効果がある。
H1 Effects of the Invention As detailed above, according to the method for manufacturing an electrode plate for a zinc-bromine battery of the present invention, when manufacturing a carbon plastic electrode,
Put the material into a pressure kneader device and press it for about 10 minutes or more, about 6 minutes.
The pellets are produced by kneading for a time of less than 0 minutes, and the pellets are heat-pressed to form electrode plates, so that the conductivity of the carbon plastic can be prevented from being thinned during the kneading process using a pressure kneader device. This has the effect of providing an electrode plate with good functionality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の亜鉛−臭素電池の電極板製造方法の一
実施例を説明するための説明線図、第2図は従来の亜鉛
−臭素電池の原理を示す概略構成説明線図である。 11・・・陽極、12陰極、 第1図 説明線図 Mixed Time (Min)
FIG. 1 is an explanatory diagram for explaining one embodiment of the method for manufacturing an electrode plate for a zinc-bromine battery according to the present invention, and FIG. 2 is an explanatory diagram for schematically explaining the principle of a conventional zinc-bromine battery. . 11... Anode, 12 Cathode, Figure 1 explanatory diagram Mixed Time (Min)

Claims (1)

【特許請求の範囲】[Claims] (1)カーボンプラスチックの素材混合物を、加圧ニー
ダ装置に入れ、約10分以上で、約60分以内の所要時
間混練して、ペレットを製造し、これを用いて電極板を
成形することを特徴とする亜鉛−臭素電池の電極板製造
方法。
(1) Put the carbon plastic material mixture into a pressure kneader and knead it for about 10 minutes or more, but not more than about 60 minutes, to produce pellets, and use this to mold an electrode plate. A method for producing an electrode plate for a zinc-bromine battery.
JP63253121A 1988-10-07 1988-10-07 Manufacture of electrode plate of zinc-bromine cell Pending JPH02100273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63253121A JPH02100273A (en) 1988-10-07 1988-10-07 Manufacture of electrode plate of zinc-bromine cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63253121A JPH02100273A (en) 1988-10-07 1988-10-07 Manufacture of electrode plate of zinc-bromine cell

Publications (1)

Publication Number Publication Date
JPH02100273A true JPH02100273A (en) 1990-04-12

Family

ID=17246791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63253121A Pending JPH02100273A (en) 1988-10-07 1988-10-07 Manufacture of electrode plate of zinc-bromine cell

Country Status (1)

Country Link
JP (1) JPH02100273A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158544A (en) * 2010-03-15 2010-07-22 Panasonic Corp Puncturing needle cartridge
JP2010172709A (en) * 2010-03-15 2010-08-12 Panasonic Corp Puncturing needle cartridge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158544A (en) * 2010-03-15 2010-07-22 Panasonic Corp Puncturing needle cartridge
JP2010172709A (en) * 2010-03-15 2010-08-12 Panasonic Corp Puncturing needle cartridge
JP4585041B2 (en) * 2010-03-15 2010-11-24 パナソニック株式会社 Puncture needle cartridge

Similar Documents

Publication Publication Date Title
US3639174A (en) Voltaic cells with lithium-aluminum alloy anode and nonaqueous solvent electrolyte system
CN101308923B (en) Carbon-plastic conductive composite bipolar plate for liquid flow energy storage battery and preparation thereof
CN103337624B (en) A kind of lead-acid accumulator negative pole lead paste suppressing liberation of hydrogen and preparation method
CN105680102B (en) A kind of lead-acid accumulator graphene electrolyte and preparation method thereof
JPH09508487A (en) Solid state electrochemical battery
US3098770A (en) Anhydrous electric battery
US3194685A (en) Method of manufacturing storage battery electrode active material
CN107611407A (en) A kind of positive pole of lithium manganese battery formula and preparation method
JPH02100273A (en) Manufacture of electrode plate of zinc-bromine cell
US4610811A (en) Iodine-containing conductive resin composition
JPH061698B2 (en) Lithium primary battery, anode active material thereof, and method for producing manganese dioxide used in the anode active material
CN113675477A (en) Asymmetric layered polymer-based composite solid electrolyte suitable for 4.5V all-solid-state battery, preparation method and application
US3446671A (en) Fuel cell employing an acidic catholyte containing hydrogen peroxide and a pyrophosphate
US3507701A (en) Process of using fuel cell including tungsten oxide catalyst
US11444335B2 (en) High voltage rechargeable Zn—MnO2 battery
US4892629A (en) Electrochemical preparation of silver oxide electrodes having high thermal stability
US3502509A (en) Silver catalyzed fuel cell electrode
CN118213537B (en) Application of furfuryl isocyanate in lithium ion battery
CN115763748B (en) A lead-acid battery negative electrode active material and preparation method thereof
CN104282904B (en) A kind of method improving lithium iron phosphate positive material processing characteristics and cycle performance
RU2803292C1 (en) Method for producing an electrolyte for a vanadium flow redox battery
CN112164832B (en) Preparation method of electrolyte and zinc-nickel battery using same
JPH0367461A (en) Manufacture of electrode for laminated battery
CN119490219A (en) Preparation method of biscationic positive electrode material
CN113611829A (en) V-shaped groove2O5-carbon material composite material, preparation method and application