[go: up one dir, main page]

JPH0199609A - Reformed regenerated cellulose membrane and production thereof - Google Patents

Reformed regenerated cellulose membrane and production thereof

Info

Publication number
JPH0199609A
JPH0199609A JP62253724A JP25372487A JPH0199609A JP H0199609 A JPH0199609 A JP H0199609A JP 62253724 A JP62253724 A JP 62253724A JP 25372487 A JP25372487 A JP 25372487A JP H0199609 A JPH0199609 A JP H0199609A
Authority
JP
Japan
Prior art keywords
membrane
regenerated cellulose
acid
blood
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62253724A
Other languages
Japanese (ja)
Other versions
JPH0556174B2 (en
Inventor
Kazuo Imamura
和倫 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62253724A priority Critical patent/JPH0199609A/en
Priority to EP87116444A priority patent/EP0266795B2/en
Priority to DE3785147T priority patent/DE3785147T2/en
Publication of JPH0199609A publication Critical patent/JPH0199609A/en
Priority to US07/488,511 priority patent/US4999110A/en
Publication of JPH0556174B2 publication Critical patent/JPH0556174B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Materials For Medical Uses (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To improve the affinity of a regenerated cellulose membrane for blood without deteriorating the dialyzing performance by bonding ester of aliphat. carboxylic acid anhydride to the surface of the membrane brought into contact with blood. CONSTITUTION:Aliphat. carboxylic acid anhydride such as caproic anhydride and an esterification catalyst such as 4-dimethylaminopyridine are dissolved in a reaction medium such as a solvent mixture of 1,1,2-trichloro-1,2,2- trifluoroethane with acetone to prepare a treating soln. A membrane of hollow regenerated cellulose yarn is immersed in the treating soln. and an esterification reaction is carried out. After the reaction, the treated membrane is washed by immersion in methanol or other method and dried to obtain a polymer membrane of regenerated cellulose having an esterified surface.

Description

【発明の詳现な説明】 〔産業䞊の利甚分野〕 本発明は、人工臓噚等に甚いられる改質された再生セル
ロヌス膜及びその補造法に関する。曎に詳しくは、血液
に察する適合性が改質された再生セルロヌス膜及びその
補造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a modified regenerated cellulose membrane used for artificial organs, etc., and a method for producing the same. More specifically, the present invention relates to a regenerated cellulose membrane with improved blood compatibility and a method for producing the same.

〔埓来の技術〕[Conventional technology]

近幎、人工腎臓、人工肺、血挿分離装眮等の膜を甚いた
人工臓噚が、長歩の発展を遂げおきおいる。呚知のよう
に、特に人工透析療法に斌いお、再生セルロヌス膜、ず
りわけ銅アンモニりム法再生セルロヌス膜は、広く甚い
られ、透析装眮や透析技術の進歩ず共に、腎䞍党患者の
延呜、瀟䌚埩垰に倧きな圹割を果たしおいる。これは、
再生セルロヌス膜が優れた透析性胜や機械的匷床を有す
るずずもに、長幎の実瞟に裏付られた高い安党性を有し
おいるからに他ならない。
In recent years, artificial organs using membranes, such as artificial kidneys, artificial lungs, and plasma separation devices, have made great progress. As is well known, especially in artificial dialysis therapy, regenerated cellulose membranes, especially copper ammonium regenerated cellulose membranes, are widely used, and along with advances in dialysis equipment and dialysis technology, they play a major role in prolonging the lives of renal failure patients and reintegrating them into society. is fulfilled. this is,
This is because regenerated cellulose membranes have excellent dialysis performance and mechanical strength, as well as high safety backed by many years of experience.

しかしながら、透析療法の進歩にもかかわらず、透析に
䌎う皮々の問題がただ未解決で残されおいる。䟋えば、
抗凝固剀が長期倧量投䞎され、そのために生じるず考え
られる皮々の副䜜甚の問題、たた、再生セル巚−ス膜や
その他䞀郚の膜で血液透析を行った堎合の䞀過性の癜血
球枛少や補䜓成分の掻性化の問題等が指摘されおいる。
However, despite advances in dialysis therapy, various problems associated with dialysis still remain unsolved. for example,
There are concerns about the various side effects that may occur due to long-term administration of large doses of anticoagulants, as well as the temporary decrease in white blood cells caused by hemodialysis using regenerated cell giant membranes and some other membranes. Problems with activation of complement components have been pointed out.

埌者の珟象に぀いおは、臚床症状ずの関連、或いは臚床
的意矩は明らかではないが、再生セルロヌス膜の他の優
れた性胜を損なわず、これらの珟象を軜枛するこずが望
たれおいる。
Regarding the latter phenomenon, although the relationship with clinical symptoms or clinical significance is not clear, it is desired to alleviate these phenomena without impairing the other excellent performance of the regenerated cellulose membrane.

かかる問題や珟象に察しお、合成高分子からなる膜が、
比范的軜埮な面があるず提案されおいるが、これらの膜
では機械的匷床が匱くピンホヌルが発生し易いこず、耐
熱性が充分でないため滅菌法が限定されるこず、及び性
胜のバランス、即ち透氎量ず物質透過量のバランスが悪
くその䜿甚方法が特定されるずいった欠点がある。
To solve these problems and phenomena, membranes made of synthetic polymers can
Although it has been proposed that these membranes have relatively minor aspects, the mechanical strength of these membranes is weak and pinholes are likely to occur, the sterilization method is limited due to insufficient heat resistance, and the balance of performance, That is, there is a drawback that the balance between the amount of water permeated and the amount of material permeated is poor, making it difficult to specify how to use it.

䞀方、再生セルロヌス膜の血液芪和性を改質する方法が
皮々提案されおいる。䟋えば、膜衚面をヘパリン化する
こずにより抗血栓性を付䞎する方法が時開−
号公報で提案されおいるが、充分な効果が埗られず、た
たコストも割高になるため実甚化されおいない。たた、
各皮ポリマヌやビタミンを再生セルロヌス膜の衚面にコ
ヌティングする方法も提案されおいるが、被膜の安定性
や滅菌の方法が限定されるなどの問題点がある。たた、
特開昭−号公報に再生セルロヌス膜にむ゜
シアネヌトプレポリマヌを反応させる方法が、特開昭
−号公報にブリッゞ剀を介しおポリマヌ
酞を化孊的に結合させる方法が提案されおいるが、反応
物質安定性、及び反応工皋の耇雑さなどの問題がある。
On the other hand, various methods have been proposed for modifying the blood affinity of regenerated cellulose membranes. For example, a method of imparting antithrombotic properties by heparinizing the membrane surface has been published in Jikai 51-194.
However, it has not been put into practical use because sufficient effects cannot be obtained and the cost is relatively high. Also,
Methods of coating the surface of regenerated cellulose membranes with various polymers and vitamins have also been proposed, but there are problems such as the stability of the coating and limitations on sterilization methods. Also,
JP-A No. 61-8105 discloses a method of reacting an isocyanate prepolymer with a regenerated cellulose membrane.
0-118203 proposes a method of chemically bonding polymeric acids via a bridging agent, but there are problems such as stability of reactants and complexity of the reaction process.

さらに、特開昭−号公報にゞ゚チルア
ミノ゚チルセルロヌス等の改倉セルロヌスを甚いお補膜
した透析膜が提案されおいるが、血液凝固を軜枛する面
での改良は十分ずは蚀えない。
Furthermore, although a dialysis membrane made using modified cellulose such as diethylaminoethyl cellulose has been proposed in JP-A-61-113459, it cannot be said that the improvement in reducing blood coagulation is sufficient.

〔発明が解決しようずする問題点〕[Problem that the invention seeks to solve]

䞊蚘のように、再生セルロヌス膜の血液芪和性を向䞊さ
せる詊みには、䞀長䞀短がある。そこで、本発明の目的
は、再生セルロヌスからなる高分子膜の優れた透析性胜
を損なうこずなく、血液芪和性を向䞊させた、改質され
た再生セルロヌス膜及びその補造法を提䟛するこずにあ
る。
As mentioned above, attempts to improve the blood affinity of regenerated cellulose membranes have advantages and disadvantages. Therefore, an object of the present invention is to provide a modified regenerated cellulose membrane that has improved blood affinity without impairing the excellent dialysis performance of a polymer membrane made of regenerated cellulose, and a method for producing the same. .

問題点を解決するための手段及び䜜甚 再生セルロヌス膜を甚いた堎合生じる補䜓成分の掻性化
や癜血球の䞀過性枛少には、膜衚面の氎酞基が関䞎しお
いるず考えられおいる。䞀方、この膜衚面の氎酞基は皮
々の官胜基ず反応し分子鎖を結合する事ができる。結合
した分子鎖は、膜䞊の氎酞基をマスキングし、補䜓蛋癜
や血球ず氎酞基の盎接の接觊を劚げる。これにより、補
䜓成分の掻性化を抑制できるだけでなく、膜衚面の物理
化孊的性質に圱響を䞎え、他の血液芪和性をも改善でき
る。分子鎖の構造及び官胜基には倚くの組合せが可胜で
あるが、生䜓安党性、生䜓芪和性、経枈性、化孊反応性
などを考慮し、皮々研究を重ねた結果、本発明の完成に
到った。すなわち、本発明では、再生セルロヌス膜の少
なくずも血液ず接觊する膜面に脂肪族カルボン酞無氎物
を゚ステル結合させたこずを特城ずする改質された再生
セルロヌス膜が提䟛され、脂肪族カルボン酞無氎物及び
゚ステル化觊媒を反応媒䜓に溶解たたは分散させた溶液
で再生セルロヌス膜を凊理するこずにより、脂肪族カル
ボン酞無氎物ずの゚ステル化反応を行うこずを特城ずす
る改質された再生セルロヌス膜の補造方法が提䟛される
。
Means and Actions for Solving the Problems It is believed that the hydroxyl groups on the membrane surface are involved in the activation of complement components and the temporary decrease in white blood cells that occur when a regenerated cellulose membrane is used. On the other hand, the hydroxyl groups on the surface of this membrane can react with various functional groups to bond molecular chains. The bound molecular chains mask the hydroxyl groups on the membrane, preventing direct contact between the hydroxyl groups and complement proteins and blood cells. This not only suppresses the activation of complement components, but also affects the physicochemical properties of the membrane surface and improves other blood affinities. Although many combinations of molecular chain structures and functional groups are possible, we have completed the present invention after conducting various studies in consideration of biosafety, biocompatibility, economic efficiency, chemical reactivity, etc. It was. That is, the present invention provides a modified regenerated cellulose membrane characterized in that an aliphatic carboxylic anhydride is ester bonded to at least the surface of the regenerated cellulose membrane that comes into contact with blood. A modified regenerated cellulose membrane characterized in that an esterification reaction with an aliphatic carboxylic acid anhydride is carried out by treating the regenerated cellulose membrane with a solution in which a substance and an esterification catalyst are dissolved or dispersed in a reaction medium. A manufacturing method is provided.

本発明で䜿甚する「再生セルロヌス」ずは、倩然セルロ
ヌスを䞀旊化孊的に或いは物理的に倉化させた埌再生し
たものであっお、䟋えば、銅アンモニりム法再生セルロ
ヌス、ビスコヌスレヌペン、セルロヌス゚ステルを鹞化
したものが含たれるが、透析性胜及び長幎の実瞟により
裏付られた高い安党性等から銅アンモニりム法再生セル
ロヌスが奜んで甚いられる。
The "regenerated cellulose" used in the present invention is natural cellulose that has been chemically or physically changed and then regenerated. However, copper ammonium regenerated cellulose is preferably used due to its dialysis performance and high safety backed by many years of experience.

再生セルロヌスの圢状は、平膜たたは䞭空糞膜等䜕れの
圢状に成型されたものも甚いる事ができるが、䞭空糞膜
が奜たしい。䟋えば、特公昭〇−号公報及
び特開昭−号公報に開瀺されおいるよ
うな、膜厚が数Ό〜Όであり、倖埄がΌ〜数癟
Όの真円圢の暪断面を有する䞭空糞膜等が甚いられる。
The regenerated cellulose may be formed into any shape such as a flat membrane or a hollow fiber membrane, but a hollow fiber membrane is preferred. For example, as disclosed in Japanese Patent Publication No. 50-40168 and Japanese Unexamined Patent Publication No. 59-204912, the film thickness is from several Ό to 60 Ό and the outer diameter is from 10 Ό to several hundred Ό. A hollow fiber membrane having a surface or the like is used.

本発明では、䞊述の再生セルロヌス膜に脂肪族カルボン
酞無氎物を゚ステル結合させ、酞膜の改質を行なう。こ
のような脂肪族カルボン酞ずしお、飜和たたは䞍飜和脂
肪酞、脂肪族ゞカルボン酞等の脂肪族カルボン酞が挙げ
られる。膜䞊の氎酞基のマスキング効果から、脂肪族カ
ルボン酞ずしお、炭玠数個以䞊のものが奜たしく、吉
草酞、カプロン酞、゚ナント酞、カプリル酞、ペラルゎ
ン酞、カプリン酞、りンデシル酞、ラりリン酞、トリデ
シル酞、ミリスチン酞、ペンタデシル酞、パルミチン酞
、ヘプタデシル酞、ステアリン酞、ノナデカン酞、アラ
キン酞、ベヘン酞、リグノセリン酞等の飜和脂肪酞、オ
レむン酞、゚ラむゞン酞、セトレむン酞、゚ルカ酞、ブ
ラシゞン酞、゜ルビン酞、リノヌル酞、リルン酞、アラ
キドン酞等の䞍飜和脂肪酞、及びグルタル酞、アゞピン
酞、ピメリン酞、スペリン酞、アれラむン酞、セバシン
酞等の脂肪族ゞカルボン酞等が甚いられる。
In the present invention, an aliphatic carboxylic acid anhydride is ester bonded to the above-mentioned regenerated cellulose membrane to modify the acid membrane. Examples of such aliphatic carboxylic acids include aliphatic carboxylic acids such as saturated or unsaturated fatty acids and aliphatic dicarboxylic acids. From the masking effect of hydroxyl groups on the film, the aliphatic carboxylic acids preferably have 5 or more carbon atoms, such as valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, and tridecyl. Acids, saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, oleic acid, elaidic acid, cetoleic acid, erucic acid, brassic acid, sorbic acid , unsaturated fatty acids such as linoleic acid, linoleic acid, and arachidonic acid, and aliphatic dicarboxylic acids such as glutaric acid, adipic acid, pimelic acid, superric acid, azelaic acid, and sebacic acid.

このような脂肪族カルボン酞は、毒性も匱く、生䜓内で
代謝されるため蓄積も起らない。したがっお膜に付着し
た未反応物が溶出しお、あるいは䜕らかの操䜜で゚ステ
ル結合が開裂しお、血°液䞭ぞ混入した堎合も安党性が
高い。
Such aliphatic carboxylic acids have low toxicity and are metabolized within the body, so they do not accumulate. Therefore, it is highly safe even if unreacted substances attached to the membrane are eluted or ester bonds are cleaved by some operation and mixed into blood.

本発明で蚀う分子鎖ずは、膜衚面に少なくずもが化孊
結合した有機化合物であり、本発明では、゚ステル結合
した脂肪族カルボン酞残基が盞圓する。たた、䞊蚘のよ
うに官胜基ずなるカルボキシル基及びその酞誘導䜓基が
必ずしも個だけでなく限定されるこずはないが、倚官
胜の脂肪族カルボン酞の堎合、膜衚面の氎酞基ず反応す
る前にカルボン酞同志の反応によりカルボン酞の高分子
化が進み、゚ステル化の反応性䜎䞋が生じるこずがある
。たた、倚官胜のカルボン酞の堎合、䞉箇所以䞊で衚面
に結合したルヌプ状の分子鎖を圢成する可胜性があるが
、埌述するように、分子鎖は、䞀端が衚面に結合しおい
るほうが奜たしく、モノカルボン酞がより奜んで甚いら
れる。
The molecular chain referred to in the present invention is an organic compound in which at least i is chemically bonded to the membrane surface, and in the present invention, it corresponds to an aliphatic carboxylic acid residue having an ester bond. In addition, as mentioned above, the number of carboxyl groups and acid derivative groups serving as functional groups is not limited to just one, but in the case of polyfunctional aliphatic carboxylic acids, before reacting with the hydroxyl groups on the membrane surface, In addition, polymerization of carboxylic acids may progress due to reactions between carboxylic acids, resulting in a decrease in esterification reactivity. In addition, in the case of polyfunctional carboxylic acids, there is a possibility of forming a loop-shaped molecular chain bonded to the surface at three or more places, but as will be explained later, it is better for the molecular chain to have one end bonded to the surface. Preferably, monocarboxylic acids are used.

これらのカルボン酞は、カルボン酞無氎物を甚いお、再
生セルロヌス膜の衚面に゚ステル結合させられる。
These carboxylic acids are ester bonded to the surface of the regenerated cellulose membrane using carboxylic anhydrides.

再生セルロヌス膜の衚面ぞの゚ステル結合は、膜衚面に
存圚する氎酞基ずの゚ステル化反応によっお行われ、公
知の䜎分子のアルコヌルず䜎分子のカルボン酞無氎物ず
の反応が適甚できる。凊理条件ずしお、再生セルロヌス
膜の物性に圱響を䞎えないように、凊理枩床を䜎く抑え
、凊理時間をできるだけ短くする事が奜たしい。これら
の事項は経枈性の面からも有利であり、゚ステル化觊媒
を䜿甚しお゚ステル化を促進するこずが奜たしい。
Ester bonding to the surface of the regenerated cellulose membrane is performed by an esterification reaction with hydroxyl groups present on the membrane surface, and a known reaction between a low-molecular alcohol and a low-molecular carboxylic acid anhydride can be applied. As for the treatment conditions, it is preferable to keep the treatment temperature low and the treatment time as short as possible so as not to affect the physical properties of the regenerated cellulose membrane. These matters are advantageous from an economic point of view, and it is preferable to use an esterification catalyst to promote esterification.

反応を促進させる゚ステル化觊媒ずしお、硫酞、−ト
ル゚ンスルホン酞、塩化亜鉛、酢酞ナトリりム、ピリゞ
ン、−ゞメチルアミノピリゞン、−ピロリゞンピリ
ゞン等が挙げられる。本発明では、これらの觊媒を単独
たたは適宜組合せお甚いるこずができるが、反応を円滑
に進める点や反応埌の陀去の点から、反応媒䜓に可溶の
ものをできるだけ少量䜿甚する事が奜たしい。
Examples of the esterification catalyst that promotes the reaction include sulfuric acid, p-toluenesulfonic acid, zinc chloride, sodium acetate, pyridine, 4-dimethylaminopyridine, and 4-pyrrolidinepyridine. In the present invention, these catalysts can be used alone or in appropriate combinations, but from the viewpoint of smooth reaction and removal after the reaction, it is preferable to use as little as possible of a catalyst that is soluble in the reaction medium.

このような芳点から、カルボン酞無氎物を−ゞメチル
アミノピリゞン及びたたは−ピロリゞノピリゞンで
゚ステル化反応をさせる方法が奜んで甚いられ、沈柱物
を生成する事がない。即ち、膜现孔にずり蟌たれた沈柱
物があるず、透析性胜の䜎䞋を匕き起し、あるいは人工
臓噚ずしおの䜿甚時に、血液䞭ぞ混入の恐れがあり、奜
たしくない。たた、凊理埌は陀菌のため濟過操䜜が普通
に行なわれるが、沈柱物はこの操䜜を困難なものずする
。
From this point of view, a method of esterifying a carboxylic acid anhydride with 4-dimethylaminopyridine and/or 4-pyrrolidinopyridine is preferably used, and does not generate a precipitate. That is, if there is a precipitate trapped in the membrane pores, it may cause a decrease in dialysis performance or may be mixed into blood when used as an artificial organ, which is not preferable. Further, after treatment, a filtration operation is normally carried out for sterilization, but the precipitate makes this operation difficult.

反応媒䜓ずしおは、脂肪族カルボン酞無氎物ず反応しな
いこず、゚ステル化觊媒を倱掻させないこず、再生セル
ロヌス膜からなる高分子膜に倧きな圢態倉化を生じせし
めないこずが必芁である。
The reaction medium must not react with the aliphatic carboxylic acid anhydride, do not deactivate the esterification catalyst, and do not cause any major morphological changes in the polymer membrane made of regenerated cellulose membrane.

埓っお、反応媒䜓ずしお、䞊蚘の芁件を満たし、脂肪族
カルボン酞無氎物及び゚ステル化觊媒を分散たたは溶解
させる溶剀は、党お甚いられる。反応の均䞀性、円滑性
及び反応埌の陀去から、脂肪族カルボン酞無氎物及び゚
ステル化觊媒を溶解させる溶剀が奜たしい、このような
反応媒䜓ずしお、䟋えば、−ヘキサン、−ぞブタン
、シクロヘキサン、石油゚ヌテル、石油ベンゞン、ベン
れン、トル゚ン等の炭化氎玠類、アセトン、メチル゚チ
ルケトン等のケトン類、酢酞メチル、酢酞゚チル、酢酞
プロピル等の゚ステル類、゚チル゚ヌテル、む゜プロピ
ル゚ヌテル、ゞオキサン等の゚ヌテル類、、−
−ゞクロロ−−トリフルオロ゚タン、トリ
クロロフルオロメタン、■。
Therefore, any solvent that satisfies the above requirements and that can disperse or dissolve the aliphatic carboxylic acid anhydride and the esterification catalyst can be used as the reaction medium. A solvent that dissolves the aliphatic carboxylic acid anhydride and the esterification catalyst is preferred from the viewpoint of reaction uniformity, smoothness, and post-reaction removal. Examples of such a reaction medium include n-hexane, n-hebutane, and cyclohexane. , hydrocarbons such as petroleum ether, petroleum benzine, benzene and toluene, ketones such as acetone and methyl ethyl ketone, esters such as methyl acetate, ethyl acetate and propyl acetate, ethers such as ethyl ether, isopropyl ether and dioxane, l , 1.2-
1-dichloro-1,2,2-trifluoroethane, trichlorofluoromethane, ■.

−テトラクロロ−−ゞフルオロ゚タン
等の塩化北化炭化氎玠等が挙げられる。これらの反応媒
䜓は、単独たたは混合しお䜿甚できる。生䜓ぞの安党性
や反応埌の陀去の芳点から、塩化北化炭化氎玠、特に
−トクロロ−−リフルオロ゚
タンを含む反応媒䜓が奜たしく、−リクロ
ロヌ゜−トリフルオロ゚タンずアセトンの混合
溶媒が奜んで甚いられる。
Examples include chlorofluorinated hydrocarbons such as 1.2.2-tetrachloro-1,2-difluoroethane. These reaction media can be used alone or in mixtures. From the viewpoint of biological safety and post-reaction removal, chlorinated fluorinated hydrocarbons, especially 1
, 1.2-trichloro-1,2,2-)trifluoroethane is preferred, and a mixed solvent of 1.1.2-)lichloro-1.2゜2-trifluoroethane and acetone is preferred. It is used in

再生セルロヌス膜を凊理する方法ずしおは皮々の方法が
ある。即ち、脂肪族カルボン酞無氎物及び゚ステル化觊
媒を反応媒䜓に分散たたは溶解させた凊理液に、再生セ
ルロヌス膜を投入し攪拌する方法、凊理液を充填した浞
挬槜内に高分子膜を浞挬させる方法、高分子膜を充填し
た凊理槜に凊理液に埪環する方法が採甚できる。さらに
、再生セルロヌスからなる高分子膜を透析噚等に組み立
おた埌、少なくずも血液を流通させる偎に、凊理液を埪
環させるたたは充填しお攟眮させる方法も圓然採甚でき
る。
There are various methods for treating regenerated cellulose membranes. That is, a method in which a regenerated cellulose membrane is added to and stirred in a treatment solution in which an aliphatic carboxylic acid anhydride and an esterification catalyst are dispersed or dissolved in a reaction medium, and a polymer membrane is immersed in an immersion tank filled with the treatment solution. Alternatively, a method may be adopted in which the processing solution is circulated through a processing tank filled with a polymer membrane. Furthermore, after assembling a polymer membrane made of regenerated cellulose into a dialyzer or the like, it is naturally possible to adopt a method in which a treatment liquid is circulated or filled at least on the side through which blood flows and left to stand.

゚ステル化反応終了埌、再生セルロヌス膜を凊理液ず分
離され、反応詊薬、゚ステル化觊媒たたは副反応生成物
等が膜に残留しない堎合には省略されるが、通垞これら
を陀去するため掗浄が行われる。この掗浄操䜜には、反
応に䜿甚した溶媒、たたはメチルアルコヌル、゚チルア
ルコヌルなど再生セルロヌス膜に倧きな圢態倉化を起こ
させない溶媒を甚い、浞挬抜出、たたは゜ックスレヌ抜
出が行われる。最埌に、枛圧也燥、送颚也燥等により残
留溶媒の陀去が行われる。
After the esterification reaction is completed, the regenerated cellulose membrane is separated from the processing solution and is omitted if no reaction reagents, esterification catalysts, or side reaction products remain in the membrane, but washing is usually performed to remove these. be exposed. In this washing operation, immersion extraction or Soxhlet extraction is performed using the solvent used in the reaction or a solvent that does not cause a major change in the form of the regenerated cellulose membrane, such as methyl alcohol or ethyl alcohol. Finally, residual solvent is removed by vacuum drying, blow drying, or the like.

このようにしお膜衚面が゚ステル化された再生セルロヌ
スからなる高分子膜では、実斜䟋に瀺されるように甚い
る高分子膜の優れた透析性胜が損なわれるこずなく、補
䜓成分の掻性化䜜甚が抑制され、癜血球䞀過性枛少が軜
埮になる。このような効果は、本発明に斌いお゚ステル
化反応が高分子膜衚面でのみ起こり、膜内郚の化孊的及
び物理的構造が維持されおいるためず考えられる。たた
、衚面に゚ステル化される量が、衚面の物理化孊的及び
生物化孊的性質を改良するに十分な量であるが、氎や物
質の透過に悪圱響を䞎えない皋床の極であるためず
考えられる。
A polymer membrane made of regenerated cellulose whose membrane surface has been esterified in this manner has the ability to activate complement components without impairing the excellent dialysis performance of the polymer membrane used, as shown in the examples. suppressed, and the transient decrease in white blood cells becomes slight. This effect is thought to be due to the fact that in the present invention, the esterification reaction occurs only on the surface of the polymer membrane, and the chemical and physical structure inside the membrane is maintained. In addition, the amount of esterification on the surface is sufficient to improve the physicochemical and biochemical properties of the surface, but is so small that it does not adversely affect the permeation of water or substances. Conceivable.

膜衚面の物理化孊的及び生物化孊的性質の改良の効果は
、他の血液芪和性にも指摘できる。即ち脂肪酞を゚ステ
ル結合させた疏氎性分子鎖の堎合、血挿タンパクのうち
アルブミンが遞択的に吞着される。アルブミンは、血液
䞭で脂肪酞のキャリアヌずしお働き、分子軞䞭心に疏氎
性のポケットを有しおいるずいわれおいる。このポケッ
トに、疏氎性の分子鎖が、結合するため遞択的な吞着が
起こるず考えられる。このようにアルブミンが遞択吞着
する血液接觊衚面では、血液凝固が起こり難いず考えら
れおいる。その理論的根拠ずしお、フィブリノヌゲンや
免疫グロブリンのような糖鎖を有する蛋癜質は、この糖
鎖を介しお血小板ず結合するが、アルブミンは、このよ
うな糖鎖を持たず、血小板ずの特異的な結合を起こさな
いため、血液䞭からアルブミンを優先的に吞着する血液
接觊衚面では血液凝固が起こり難いず考えられおいる。
The effects of improving the physicochemical and biochemical properties of the membrane surface can also be noted on other blood affinities. That is, in the case of a hydrophobic molecular chain in which a fatty acid is ester bonded, albumin among plasma proteins is selectively adsorbed. Albumin functions as a carrier of fatty acids in the blood and is said to have a hydrophobic pocket at the center of its molecular axis. It is thought that selective adsorption occurs because hydrophobic molecular chains bind to this pocket. It is thought that blood coagulation is unlikely to occur on blood contact surfaces where albumin is selectively adsorbed in this manner. The rationale for this is that proteins with sugar chains such as fibrinogen and immunoglobulin bind to platelets via these sugar chains, but albumin does not have such sugar chains and has a unique bond with platelets. Since no binding occurs, it is thought that blood coagulation is unlikely to occur on blood contact surfaces that preferentially adsorb albumin from blood.

䞊蚘のようなアルブミンの遞択吞着には、分子鎖が䞉箇
所以䞊で高分子膜衚面に結合し、鎖の運動が抑制された
状態よりも、端が結合し他の末端が自由に運動できる
ほうが奜たしい。これは自由な分子鎖のほうが、膜の実
質衚面を遮蔜し、実質衚面でのその他の蛋癜質の吞着が
抑制されるためず考えられる。たた同じ効果により補䜓
蛋癜の再生セルロヌス膜ずの盎接接觊が劚害され、その
掻性化が抑制される。
For the selective adsorption of albumin as described above, the molecular chains are bound to the polymer membrane surface at three or more places, and rather than the state where chain movement is suppressed, one end is bound and the other end can move freely. That's preferable. This is thought to be because free molecular chains shield the real surface of the membrane, suppressing adsorption of other proteins on the real surface. The same effect also prevents the direct contact of complement proteins with the regenerated cellulose membrane, suppressing their activation.

治療に䜿甚する前に滅菌操䜜が必芁であるが、本発明の
再生セルロヌス膜は、各皮の滅菌法を利甚するこずがで
きる。即ち、組み蟌んだ透析噚を、そのたた也燥状態で
滅菌する、゚チレンオキサむドガス滅菌、高圧蒞気滅菌
、及びガンマ−線滅菌等が利甚でき、たたは組み蟌んだ
透析噚に氎たたは生理食塩氎などを充填した埌滅菌する
、高圧蒞気滅菌、たたはガンマ−線滅菌などが利甚でき
る。
Although sterilization is required before use for treatment, the regenerated cellulose membrane of the present invention can be sterilized using various sterilization methods. That is, the incorporated dialyzer can be sterilized in a dry state, ethylene oxide gas sterilization, high-pressure steam sterilization, gamma ray sterilization, etc., or the incorporated dialyzer can be sterilized with water or physiological saline, etc. Sterilization, high pressure steam sterilization, gamma ray sterilization, etc. can be used.

このような滅菌操䜜によっお、改良された血液芪和性が
倉化するこずはない。
Such sterilization procedures do not alter the improved hemocompatibility.

次に、実斜䟋により本発明の内容をさらに詳现に述べる
。
Next, the content of the present invention will be described in more detail with reference to Examples.

なお以䞋の実斜䟋䞭に蚘茉されおいる枬定項目は、各々
次の方法で枬定したものである。
Note that the measurement items described in the following examples were measured by the following methods.

透氎量 本の䞭空繊維の束の䞡端を接着剀で固定したモゞ
ュヌルを䜜り、䞭空郚に氎を満たした埌、片端を閉じ、
開口郚よりの圧力をかけながら氎を入れ
、単䜍時間圓たりの透氎量を枬定する。䞭空繊維の膜面
積は、内埄、及びモゞュヌルの有効長を枬っお蚈算によ
り求める。
(1) Water permeability: Make a module by fixing both ends of a bundle of 100 hollow fibers with adhesive, fill the hollow part with water, close one end,
Water is poured through the opening while applying a pressure of 200 mmHg, and the amount of water permeation per unit time is measured. The membrane area of the hollow fiber is calculated by measuring the inner diameter and the effective length of the module.

クリアランス ず同様のモゞュヌルを䜜り、氎の代わりに
の尿玠氎溶液、たたはのビタミン
−” □氎溶液を甚いお、ず同
様の方法で透析液䞭の濃床を、吞光床から求めお、次匏
よりクリアランスを蚈算する。
(2) Make a module similar to Clearance (1), and use 110 ml instead of water.
Using a 00pp urea aqueous solution or a 1100pp vitamin B-1''2 (VBI□) aqueous solution, determine the concentration in the dialysate from the absorbance in the same manner as in (1), and calculate the clearance using the following formula. .

クリアランス 透析液䞭の濃床×分間光たりの透析液量
補䜓消費率 血枅圓たりの衚面積になるよう
に再生セルロヌス膜を投入し、℃で時間振盪した
埌、血枅䞭に残存する補䜓化をメむダヌ等の方法ε
   
       。
Clearance = (concentration in dialysate) x (volume of dialysate per minute) (3
) Complement consumption rate After adding a regenerated cellulose membrane to a surface area of 80 cIll per serum ITII+ and shaking at 37°C for 1 hour, the remaining complement in the serum was determined by the method of Mayer et al. (εx
peripheral immunochemistry
try+ p 1 3 3.

、   により溶血補䜓
䟡で求め、コントロヌルからの䜎䞋を補䜓消費率で衚し
た。
Thomas, 1961), the hemolytic complement value was determined as 50%, and the decrease from the control was expressed as the complement consumption rate.

 酵玠免疫枬定法 䞭空繊維内にりサギ血挿を充填し、℃で時間むン
キュベヌトする。その埌りサギ血霋を抌し出し、
バッファヌで数回掗浄する。この䞭空繊維内衚面に血挿
を吞着させたサンプル内にそれぞれアルブミン、むムノ
グロブリン・ゞヌ、フィブリノヌゲンに察す
るペルオキシダヌれ暙識抗䜓カペル瀟補を充填し、
吞着しおいる蛋癜質ず抗原抗䜓反応させる。バッ
ファヌで充分掗浄した埌、䞭空繊維を長に现断し
、ポリ゚チレン管に入れる。このポリ゚チレン管にペル
オキシダヌれの基質である−−ヒドロキシフェニ
ルプロピオン酞及び過酞化氎玠氎を加え、酵玠反応を
時間行わしめお、生成する酞化物を螢光分光で枬定す
る。
(4) EIA (Enzyme Immunoassay) Method Fill the hollow fiber with rabbit plasma and incubate at 37°C for 1 hour. Afterwards, extrude the rabbit blood and add PBS.
Wash several times with buffer. Peroxidase-labeled antibodies (manufactured by Capel) against albumin, immunoglobulin G (IgG), and fibrinogen were filled into the samples with plasma adsorbed on the inner surface of the hollow fibers.
Antigen-antibody reaction occurs with the adsorbed protein. After thorough washing with PBS buffer, the hollow fibers are cut into pieces of 2 mm length and placed in a polyethylene tube. 3-(p-hydroxyphenyl)propionic acid, which is a substrate for peroxidase, and aqueous hydrogen peroxide are added to this polyethylene tube, the enzymatic reaction is allowed to proceed for 1 hour, and the produced oxide is measured by fluorescence spectroscopy.

実斜䟋 −トリクロロ−−トリフルオロ゚
タン−アセトン混合溶媒アセトン
に、無氎カプロン酞 及び−ゞ
メチルアミノピリゞン を加え、凊理液を調
合した。この凊理液に再生セルロヌス䞭空糞膜内埄
Ό、膜厚Ό、長さ玄を玄
本を垂盎に時間時々䞊䞋に動かしながら浞挬した。凊
理した䞭空糞膜をメタノヌル䞭に䞀昌倜浞挬した埌宀枩
で枛圧也燥し、再生セルロヌス䞭空糞膜を埗た。埗られ
た䞭空糞膜の補䜓消費率の結果を第衚に瀺す。
Example 1 1.1.2-Trichloro-1,2,2-trifluoroethane-acetone mixed solvent (acetone 12.5 wt%) 2
0.047 g of caproic anhydride and 0.01 g of 4-dimethylaminopyridine were added to 50 ml to prepare a treatment liquid. This treatment solution was added to a regenerated cellulose hollow fiber membrane (inner diameter 2
00ÎŒm, film thickness 13ÎŒm, length approximately 20an) to approximately 600ÎŒm
The books were soaked vertically for 2 hours with occasional up and down movements. The treated hollow fiber membrane was immersed in methanol overnight and then dried under reduced pressure at room temperature to obtain a regenerated cellulose hollow fiber membrane. Table 1 shows the results of the complement consumption rate of the hollow fiber membranes obtained.

実斜䟋 無氎カプロン酞の代わりに各皮脂肪族カルボン酞無氎物
を甚いた以倖は実斜䟋ず同様な方法で゚ステル化し、
各皮再生セルロヌス䞭空糞膜を埗た。第衚に甚いた脂
肪族カルボン酞無氎物ずその䜿甚量、及び゚ステル化さ
れた再生セルロヌス䞭空糞膜の補䜓消費率の結果を瀺す
。
Example 2 Esterification was carried out in the same manner as in Example 1 except that various aliphatic carboxylic acid anhydrides were used instead of caproic anhydride,
Various regenerated cellulose hollow fiber membranes were obtained. Table 1 shows the aliphatic carboxylic acid anhydrides used, their usage amounts, and the results of the complement consumption rate of the esterified regenerated cellulose hollow fiber membrane.

第衚 実斜䟋 実斜䟋〜の再生セルロヌス䞭空糞膜に぀いお
法の枬定を実斜した。結果を第衚に瀺す。すなわち、
抗アルブミン抗䜓を甚いた堎合の蛍光匷床、抗むム
ノグロブリン・ゞヌ抗䜓を甚いた堎合の蛍光匷床、
抗フィブリノヌゲン抗䜓を甚いた堎合の蛍光匷床、
 ずしたずき、    の倀及び  
  倀を、未凊理䞭空糞膜での倀で陀しお、それ
ぞれ及びずしお
瀺した。このようにしお埗られた倀は、よりも
倧きく、これらの䞭空糞膜では、未凊理䞭空糞膜よりも
アルブミンを遞択吞着しおいる。        以
䞋䜙癜第衚 実斜䟋 無氎カプロン酞、−ゞメチルアミノピリゞ
ン 及び−トリクロロ−゜
−トリフルオロ゚タン−アセトン混合溶媒アセトン
を加え凊理液を調合した。
Table 1 Example 3 EIA for regenerated cellulose hollow fiber membranes of Examples 1 and 2
The method measurements were carried out. The results are shown in Table 2. That is,
Fluorescence intensity 1a when using anti-albumin antibody, fluorescence intensity It when using anti-immunoglobulin G antibody,
Fluorescence intensity If when using anti-fibrinogen antibody,
Then, the value of I a / I i and I a /
The IfO value was divided by the value for the untreated hollow fiber membrane and expressed as (Alb/IgG) and (Alb/Fib), respectively. The value thus obtained is greater than 1.00, indicating that these hollow fiber membranes adsorb albumin more selectively than untreated hollow fiber membranes. (Margins below) Table 2 Example 4 0.44 g of caproic anhydride, 0.02 g of 4-dimethylaminopyridine, and 1.2 g of 1,1.2-trichloro-1°2.
A treatment solution was prepared by adding 700 ml of a 2-trifluoroethane-acetone mixed solvent (acetone 12.5 wt%).

この凊理液に再生セルロヌス䞭空糞膜内埄Ό
、膜厚Ό、長さの束本数玄
本を、時々䞊䞋しながら分間垂盎に浞挬した。
This treatment solution was added to a regenerated cellulose hollow fiber membrane (inner diameter 200 ÎŒm).
, film thickness 13 ÎŒm, length 30 cm) (approximately 7,00 pieces)
0) was immersed vertically for 30 minutes with occasional up and down movement.

凊理埌の再生セルロヌス䞭空糞膜束をメチルアルコヌル
䞭に䞀昌倜浞挬した埌、宀枩で枛圧也燥するこずによっ
お゚ステル化された䞭空糞膜束を埗た。
The treated regenerated cellulose hollow fiber membrane bundle was immersed in methyl alcohol for a day and night, and then dried under reduced pressure at room temperature to obtain an esterified hollow fiber membrane bundle.

第衚に埗られた䞭空糞膜に぀いお透析性胜及び補䜓消
費率の枬定結果を瀺す。
Table 3 shows the measurement results of the dialysis performance and complement consumption rate of the hollow fiber membranes obtained.

次に、この䞭空糞膜を透析噚に組蟌み、犬による䜓倖埪
環を行った。犬は䜓重玄のピヌグル倧を甚い、
頚郚に造蚭したシャントからの血流
をずっお透析噚血液偎に流した。なお䜓倖埪環に先だっ
お、生理食塩氎で透析噚内を掗浄した埌、ヘパリン
含有の生理食塩氎で透析噚及び血液回路内
を充填し、その埌血液を流した。透析噚入口郚で血液を
採取し癜血球数を枬定した。透析盎前の癜血球数を
ずした時、透析埌分及び分の䟡は、それぞれ
及びであった。
Next, this hollow fiber membrane was installed in a dialyzer, and extracorporeal circulation was performed using a dog. The dog used was a peagle-sized dog weighing approximately 10 kg.
Blood flow at a rate of 100 ml/min was taken from a shunt created in the neck and flowed to the blood side of the dialyzer. Prior to extracorporeal circulation, after washing the inside of the dialyzer with physiological saline, heparin 6.
The inside of the dialyzer and blood circuit were filled with physiological saline containing 0 OOU/L, and then blood was allowed to flow. Blood was collected at the inlet of the dialyzer and the number of white blood cells was measured. White blood cell count just before dialysis to 10
When set to 0, the values 15 minutes and 30 minutes after dialysis were 78 and 82, respectively.

第衚 参考䟋 第衚に未凊理の再生セルロヌス䞭空糞膜に぀いお透析
性胜及び補䜓消費率の枬定結果を瀺す。
Table 3 Reference Example Table 3 shows the measurement results of dialysis performance and complement consumption rate for untreated regenerated cellulose hollow fiber membranes.

次に実斜䟋ず同様に犬による䜓倖埪環を実斜したずこ
ろ、透析盎前の癜血球数をずした時、透析埌
分及び分の䟡は、それぞれ及びであった。
Next, when extracorporeal circulation was performed using a dog in the same manner as in Example 4, it was found that when the white blood cell count immediately before dialysis was 100, the number of white blood cells after dialysis was 15.
The minute and 30 minute values were 13 and 45, respectively.

実斜䟋 −の栓付䞉角フラスコに、カプロン酞無氎物
■、−ゞメチルアミノピリゞン曙、− 
トリクロロ−−トリフルオロ゚タン−アセト
ン混合溶媒アセトンを加
え、凊理液を調合した。宀枩で時間攟眮埌、〜 
  長に现断した再生セルロヌス䞭空糞膜膜厚
Ό、内埄Ό  を凊理液に投
入し、栓をしお、℃の氎溶䞭で分振ずうした。
Example 5 In a 200-mm Erlenmeyer flask with a stopper, 35 ml of caproic anhydride was added.
■, 4-dimethylaminopyridine 4 Akebono, 1.1.2-
100 ml of trichloro-1,2,2-trifluoroethane-acetone mixed solvent (acetone 12.5 wt%) was added to prepare a treatment liquid. After leaving it at room temperature for 2 hours, 2-3
4.5 g of a regenerated cellulose hollow fiber membrane (membrane thickness: 13 Όm, inner diameter: 200 Όm) cut into pieces of m/m length was added to the treatment solution, the membrane was stoppered, and the membrane was shaken in an aqueous solution at 30° C. for 30 minutes.

その埌䞭空糞膜をずり出し、メチルアルコヌル䞭に䞀昌
倜浞挬した埌、䞭空糞膜を濟別し、宀枩で枛圧也燥した
。同様にしお、調合埌時間宀枩で攟眮
した凊理液に぀いおも実斜し、それぞれ䞭空糞膜を埗た
。
Thereafter, the hollow fiber membrane was taken out and immersed in methyl alcohol for a day and night, then filtered off and dried under reduced pressure at room temperature. In the same manner, treatment solutions that had been left at room temperature for 4, 6, and 8.16 hours after preparation were also tested to obtain hollow fiber membranes, respectively.

補䜓消費率枬定の結果を第衚に瀺すが、時間の攟
眮埌も凊理液の反応性は倉わらず、時間ず同様な補䜓
消費率を瀺す。
The results of measuring the complement consumption rate are shown in Table 4, and the reactivity of the treatment solution did not change even after being left for 16 hours, showing the same complement consumption rate as after 2 hours.

第衚 凊理液の攟眮時間     補䜓消費率      
                                                      〔発明の効果〕 以䞊の説明から明らかなように、脂肪族カルボン酞無氎
物を再生セルロヌス膜に゚ステル結合させるこずにより
、再生セルロヌス膜の優れた透析性胜を維持したたた、
補䜓成分の掻性化が抑制され癜血球の䞀過性枛少が軜枛
される。たた、アルブミンが遞択吞着され血液に察する
適合性が改良される。
Table 4: Leaving time of treatment solution Complement consumption rate 2
14% 4 14% 6 12% 8 13% 16 14% [Effects of the invention] As is clear from the above explanation, the superiority of the regenerated cellulose membrane can be improved by ester bonding the aliphatic carboxylic acid anhydride to the regenerated cellulose membrane. While maintaining the dialysis performance,
The activation of complement components is suppressed and the transient decrease in white blood cells is alleviated. In addition, albumin is selectively adsorbed and compatibility with blood is improved.

特蚱出願人 旭化成工業株匏䌚瀟Patent applicant: Asahi Kasei Industries, Ltd.

Claims (2)

【特蚱請求の範囲】[Claims] 再生セルロヌス膜の少なくずも血液ず接觊する膜
面に脂肪族カルボン酞無氎物を゚ステル結合させたこず
を特城ずする改質された再生セルロヌス膜
(1) A modified regenerated cellulose membrane characterized in that an aliphatic carboxylic acid anhydride is ester-bonded to at least the surface of the regenerated cellulose membrane that comes into contact with blood.
脂肪族カルボン酞無氎物及び゚ステル化觊媒を反
応媒䜓に溶解たたは分散させた溶液で再生セルロヌス膜
を凊理するこずにより、脂肪族カルボン酞無氎物ず膜衚
面の氎酞基ずの゚ステル化反応を行うこずを特城ずする
改質された再生セルロヌス膜の補造方法
(2) By treating the regenerated cellulose membrane with a solution in which an aliphatic carboxylic acid anhydride and an esterification catalyst are dissolved or dispersed in a reaction medium, the esterification reaction between the aliphatic carboxylic anhydride and the hydroxyl groups on the membrane surface is carried out. A method for producing a modified regenerated cellulose membrane, characterized by carrying out
JP62253724A 1986-11-07 1987-10-09 Reformed regenerated cellulose membrane and production thereof Granted JPH0199609A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62253724A JPH0199609A (en) 1987-10-09 1987-10-09 Reformed regenerated cellulose membrane and production thereof
EP87116444A EP0266795B2 (en) 1986-11-07 1987-11-06 Improved regenerated cellulose membrane and process for preparation thereof
DE3785147T DE3785147T2 (en) 1986-11-07 1987-11-06 Regenerated cellulose membrane and process for its manufacture.
US07/488,511 US4999110A (en) 1986-11-07 1990-02-28 Regenerated cellulose membrane and processes for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62253724A JPH0199609A (en) 1987-10-09 1987-10-09 Reformed regenerated cellulose membrane and production thereof

Publications (2)

Publication Number Publication Date
JPH0199609A true JPH0199609A (en) 1989-04-18
JPH0556174B2 JPH0556174B2 (en) 1993-08-18

Family

ID=17255261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62253724A Granted JPH0199609A (en) 1986-11-07 1987-10-09 Reformed regenerated cellulose membrane and production thereof

Country Status (1)

Country Link
JP (1) JPH0199609A (en)

Also Published As

Publication number Publication date
JPH0556174B2 (en) 1993-08-18

Similar Documents

Publication Publication Date Title
US4999110A (en) Regenerated cellulose membrane and processes for preparation thereof
US5496637A (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
US4800016A (en) Extracorporeal blood de-heparinization system
US5187010A (en) Membrane having high affinity for low density lipoprotein-cholesterol from whole blood
US5236644A (en) Process of making membrane for removal of low density lipoprotein-cholesterol from whole blood
JPH04241873A (en) Method and apparatus for removing heparin
JPH022848A (en) Improved regenerated cellulose membrane and its production
JPH0199609A (en) Reformed regenerated cellulose membrane and production thereof
JPS63236539A (en) Immunoglobulin selective adsorbent
JPH0468009B2 (en)
JPH0470047B2 (en)
JP2002113097A (en) Adsorbent and in vitro circulation column
Lin et al. Preparation of modified polysulfone material decorated by sulfonated citric chitosan for haemodialysis and its haemocompatibility
JP4032465B2 (en) Thrombogenic substance adsorbent and extracorporeal circulation column
JPH01297103A (en) Improved regenerated cellulose film and its manufacture
JPH0536065B2 (en)
JP2575487B2 (en) Blood treatment material and blood purifier
US5073265A (en) Methods of manufacturing nucleophilic material modified for improved biocompatibility
JP4196570B2 (en) Hollow fiber membrane for plasma separation membrane or artificial kidney and module using the same
KR930002210B1 (en) Blood Compatible Polymer Substituted with Sulfonated Polyethylene Oxide
JPS63238869A (en) Blood compatible cellulosic dialytic membrane and its production
Huang et al. Robust fabrication of poly (lactic acid) membrane with good hemocompatibility over heparin‐mimetic graphene‐based nanosheets
JP4830181B2 (en) Hollow fiber membrane for lipid peroxide adsorption and module using the same
JP2002102692A (en) Manufacturing method for lipoperoxide-adsorbing material
Irfan et al. Polyurethane/N-3-(triethoxysilyl) propylamine grafted MCM41 membranes: hemocompatibility and dialysis evaluations

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees