JPH0196348A - Corrosion-resistant material - Google Patents
Corrosion-resistant materialInfo
- Publication number
- JPH0196348A JPH0196348A JP25236587A JP25236587A JPH0196348A JP H0196348 A JPH0196348 A JP H0196348A JP 25236587 A JP25236587 A JP 25236587A JP 25236587 A JP25236587 A JP 25236587A JP H0196348 A JPH0196348 A JP H0196348A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- corrosion
- zinc
- alloy
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 63
- 238000005260 corrosion Methods 0.000 title claims abstract description 33
- 230000007797 corrosion Effects 0.000 title claims abstract description 33
- 239000000956 alloy Substances 0.000 claims abstract description 18
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 238000004663 powder metallurgy Methods 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 21
- 229910052725 zinc Inorganic materials 0.000 abstract description 21
- 239000011701 zinc Substances 0.000 abstract description 21
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 11
- 229910052721 tungsten Inorganic materials 0.000 abstract description 8
- 238000005096 rolling process Methods 0.000 abstract description 4
- 238000007670 refining Methods 0.000 abstract description 2
- 150000002739 metals Chemical class 0.000 abstract 2
- 239000008207 working material Substances 0.000 abstract 1
- 238000002844 melting Methods 0.000 description 17
- 230000008018 melting Effects 0.000 description 17
- 230000004580 weight loss Effects 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910001080 W alloy Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、溶融金属に対する耐腐食性に優れた材料に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a material with excellent corrosion resistance to molten metal.
一般に、亜鉛精錬、亜鉛合金鋳造、亜鉛メツキ等には、
亜鉛を溶融する溶融装置が使用されている。また、この
種の溶融装置として、サブマージドメルティングシステ
ム、ブリッジウオールメルティングシステム等が知られ
ている。これらのシステムでは、溶融亜鉛が均一な温度
を保った状態で、槽内を循環するように構成されており
、システム内のポンプ、熱雷付保護管、ローラ軸受、仮
押えの鋼板等の各種部品は溶融亜鉛に接触乃至は溶融亜
鉛に浸漬されることになる。In general, zinc smelting, zinc alloy casting, galvanizing, etc.
Melting equipment is used to melt zinc. Further, as this type of melting apparatus, a submerged melting system, a bridge wall melting system, etc. are known. These systems are configured so that molten zinc circulates inside the tank while maintaining a uniform temperature, and various parts such as pumps, thermal protection tubes, roller bearings, and temporary holding steel plates are used in the system. The parts will come into contact with or be immersed in molten zinc.
一方、このように、溶融亜鉛に接触、浸漬される金属部
品は溶融亜鉛によって腐食されることが知られている。On the other hand, it is known that metal parts that come into contact with and are immersed in molten zinc are corroded by the molten zinc.
溶融亜鉛による腐食を防止するために、例えば、ポンプ
をカーボンによって形成すると共に、熱電対保護管、ロ
ーラ軸受をセラミッりによって形成し、鋼板にセラミッ
クコーティングを施すことが提案されている。In order to prevent corrosion caused by molten zinc, it has been proposed, for example, to form the pump from carbon, form the thermocouple protection tube and roller bearing from ceramic, and apply a ceramic coating to the steel plate.
更に、このような溶融装置の部品を耐熱材料で且つ硬質
材料であるモリブデン(Mo)とタングステン(W)と
の合金によって形成することも提案されている。従来の
この種の合金は重量で70%のMoを含み、残部がWで
ある化学組成を有しており、真空アーク炉を用いた溶解
法により生成されている。Furthermore, it has been proposed that parts of such a melting device be made of an alloy of molybdenum (Mo) and tungsten (W), which are heat-resistant and hard materials. Conventional alloys of this type have a chemical composition of 70% Mo by weight and the balance W, and are produced by a melting method using a vacuum arc furnace.
しかしながら、セラミック及びカーボンは、耐熱材料と
しては優れているが、機械的強度が小さく、耐衝撃性や
耐摩耗性に乏しく、これらを材料とした溶融装置部品は
、短寿命であるという欠点がある。このことは部品のコ
ストを上昇させ、したがって、製品の生産コストをも上
昇させることになる。また、一般に機械的強度の大きな
金属材料は、溶融亜鉛に著しく腐食されるので溶融装置
材料として不適当であり、溶融装置や部品の材料として
は、上記したMoとWとの合金のみが市販されているに
すぎない。しかし、市販されているM。However, although ceramic and carbon are excellent heat-resistant materials, they have low mechanical strength, poor impact resistance and abrasion resistance, and melting equipment parts made of these materials have the disadvantage of short lifespan. . This increases the cost of the parts and therefore the production cost of the product. In addition, generally, metal materials with high mechanical strength are severely corroded by molten zinc, making them unsuitable as materials for melting equipment, and only the above-mentioned alloys of Mo and W are commercially available as materials for melting equipment and parts. It's just that. However, commercially available M.
とWとの合金材料は、溶融亜鉛に対して、他の金属材料
より優れた耐腐食性を示すが、セラミック及びカーボン
に比べると耐腐食性が低いため、市販のMoとWの合金
材料をセラミック等の代りに使用することは困難である
。An alloy material of Mo and W exhibits better corrosion resistance against molten zinc than other metal materials, but its corrosion resistance is lower than that of ceramic and carbon, so commercially available alloy materials of Mo and W are used. It is difficult to use it in place of ceramics, etc.
本発明は、上記欠点を漏みてなされ、機械的強度が大き
く、溶融亜鉛に対して極めて耐腐食性の優れた材料を提
供することを目的とする。The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a material having high mechanical strength and extremely excellent corrosion resistance against molten zinc.
本発明によれば、Moが60〜5重星%で残部がWの化
学組成を有する合金によって形成されていることを特徴
とする耐腐食性材料が得られる。According to the present invention, a corrosion-resistant material is obtained, which is formed of an alloy having a chemical composition of 60 to 5% Mo and the balance is W.
本発明に係る耐腐食性材料は、溶融金属に浸漬される部
品とL7て使用でき、且つ粉末冶金法により、焼結材の
形に、あるいは塑性加工材の形に成形されている。The corrosion-resistant material according to the invention can be used in conjunction with parts that are immersed in molten metal and is formed by powder metallurgy into the form of a sintered material or in the form of a plastically worked material.
本発明における耐腐食性材料は、融点がそれぞれ略26
00℃及び略3400°Cと極めて高いMoとWとの合
金からなっている。The corrosion-resistant materials in the present invention each have a melting point of approximately 26
It is made of an alloy of Mo and W, which has an extremely high temperature of 00°C and approximately 3400°C.
この合金の融点は、化学組成にほぼ比例した2600℃
〜3600℃間の融点を有するので、極めて耐熱性が大
きい。The melting point of this alloy is 2600℃, which is almost proportional to the chemical composition.
It has a melting point of ~3600°C, so it has extremely high heat resistance.
この合金からなる材料を焼結することによって得られた
焼結材は、Mo60〜5重量%、残部Wの化学組成の範
囲内でMo及びWの割合を可変とすると、Wの増加と共
に、引張り強さ28 (kgf/mm2)から38
Cktrf/mm”)まで増加する。また、上記組成の
焼結材を亜鉛溶湯中に浸漬すると、その減量速度はO(
g/rrrhr)であることがT、1!認された。The sintered material obtained by sintering the material made of this alloy has a tensile strength of Strength 28 (kgf/mm2) to 38
Cktrf/mm"). Furthermore, when a sintered material with the above composition is immersed in molten zinc, its weight loss rate is O(
g/rrrhr) is T, 1! It has been certified.
一方上記焼結材以外の化学組成がMo70重量%以上で
は、Moの割合が大きくなるに従って、減量速度が2.
00 (g/nfhr)より大きくなり、また純タング
ステンからなる焼結材の減量速度は、0.05(g/r
dhr)である。いずれにしても、Mo60〜5重量%
残部Wの化学組成の合金が耐腐食性において、優れてい
ることが判明した。On the other hand, when the chemical composition other than the sintered material is 70% by weight or more of Mo, the rate of weight loss decreases by 2.5% as the proportion of Mo increases.
00 (g/nfhr), and the weight loss rate of the sintered material made of pure tungsten is 0.05 (g/nfhr).
dhr). In any case, Mo60-5% by weight
It has been found that an alloy having a chemical composition of W as the balance has excellent corrosion resistance.
また、圧延により形成された圧延材の場合、その組成が
Mo60〜5重景%残部Wであれば、Wの割合が増加す
るに従い引張り強さが、100(kgf/ms”)から
140 (kgf/ar+りまで増加することが判っ
た。In addition, in the case of a rolled material formed by rolling, if the composition is Mo60-5% W, the tensile strength will increase from 100 (kgf/ms) to 140 (kgf/ms) as the proportion of W increases. It was found that the amount increased to /ar+.
また、上記焼結材と同様に亜鉛溶湯中に浸漬されると上
記した組成範囲内の圧延材のN(it速度は、0〜0.
01 (g/mhr)であった。一方、上記組成範囲
外の圧延材、例えば、Moが70重量%以上の圧延材で
は、その原料速度は、0.1105(/rl hr)で
あった。Further, when immersed in molten zinc in the same manner as the sintered material described above, the N(it speed) of the rolled material within the above composition range is 0 to 0.
01 (g/mhr). On the other hand, in a rolled material outside the above composition range, for example, a rolled material containing 70% by weight or more of Mo, the raw material speed was 0.1105 (/rl hr).
従って、Mo60〜5重景%残部Wの化学組成の合金に
よりなる焼結材及び圧延材は、実際の亜鉛溶湯中におい
て、溶融装置部品の耐熱性を高め、機械的強度を増加さ
せ、且つ耐腐食性を向上させるのに役立つ。Therefore, sintered and rolled materials made of alloys with a chemical composition of Mo60 to 5% with the balance W increase the heat resistance and mechanical strength of melting equipment parts in actual molten zinc. Helps improve corrosivity.
次に、本発明の実施例について図面を参照しながら説明
する。Next, embodiments of the present invention will be described with reference to the drawings.
(実施例1)
本発明の実施例1に係る耐腐食性材料はMo W合金
からなる焼結材によって形成される。この場台、まず、
平均粒度約2μmのタングステン粉末と約4μmのモリ
ブデン粉末をMoの化学組成が5゜20.25,30,
50.60重量%となるように秤量し、■型混合機にて
混合した。その後、約3 ton/cJで金型ブレス
により成形し、得られた板状の成形体を約1800℃で
高純度水素雰囲気中にて、30時間焼結を行い、焼結材
として厚さ15龍のインゴットを得た。この焼結材の機
械的強度及び耐腐食性を次のようにして調べた。機械的
強度については上記焼結材の引張り試験がJIS B−
7702(JIS Z−2201) ニ基づく試験片ニ
ツイテ行われ各試験片の引張りの強さ、伸びの測定がな
された。また、耐腐食性については、実際の亜鉛溶融装
置部品例えば、ポンプ等が置かれる条件、すなわち温度
695±10℃にてCd (カドミウム)0.10重量
%、Pb (鉛) 14 ppmからなる2、7鶴/
secの定速で流され、た溶湯に、上記焼結材の試験片
の全表面を506時間浸漬した。その後、溶湯から取り
出された試験片を希硫酸にて洗滌し、試験片に付着して
いる亜鉛を溶解した。そして、溶湯に浸漬前後の試験片
の重量差から減量速度が求められ、耐腐食性の目安とし
た。(Example 1) A corrosion-resistant material according to Example 1 of the present invention is formed of a sintered material made of a Mo 2 W alloy. On this occasion, first of all,
A tungsten powder with an average particle size of about 2 μm and a molybdenum powder with an average particle size of about 4 μm were mixed with a Mo chemical composition of 5°20.25,30,
It was weighed out so that it was 50.60% by weight, and mixed in a ■ type mixer. Thereafter, it was molded using a mold press at approximately 3 ton/cJ, and the resulting plate-shaped molded body was sintered at approximately 1800°C in a high-purity hydrogen atmosphere for 30 hours to form a sintered material with a thickness of 15 mm. Obtained a dragon ingot. The mechanical strength and corrosion resistance of this sintered material were examined as follows. Regarding mechanical strength, the tensile test of the above sintered material was conducted according to JIS B-
7702 (JIS Z-2201), and the tensile strength and elongation of each test piece were measured. Regarding corrosion resistance, the conditions under which actual zinc melting equipment parts such as pumps are placed, i.e. at a temperature of 695 ± 10°C, are 0.10% by weight of Cd (cadmium) and 14 ppm of Pb (lead). , 7 cranes/
The entire surface of the test piece of the sintered material was immersed in the molten metal flowing at a constant rate of 506 hours. Thereafter, the test piece taken out from the molten metal was washed with dilute sulfuric acid to dissolve the zinc adhering to the test piece. Then, the weight loss rate was determined from the difference in weight of the test piece before and after immersion in the molten metal, and was used as a measure of corrosion resistance.
上記引張り試験、及び上記耐腐食性試験の結果を表1に
示す。表中の、Mo70,75,100゜0重量%の材
料、及び硬質黒鉛は、比較の為の参考例である。Table 1 shows the results of the tensile test and the corrosion resistance test. The Mo70, 75, 100% by weight materials and hard graphite in the table are reference examples for comparison.
表 1(IlbMU!L)
Moの重量%が小さくなるにつれ、焼結材の機械的強度
は大きくなる。Table 1 (IlbMU!L) As the weight percent of Mo decreases, the mechanical strength of the sintered material increases.
一方、溶融亜鉛に対する焼結材の耐腐食性は、Mo60
〜5重量%残部重量%酸範囲内で著しく改善されており
、更に焼結材は上記組成範囲内で著しく改善されており
、更に焼結材は上記組成範囲内でカーボンに比べて伸び
については同等であるが5倍〜8倍の引張り強さを示す
ことが判る。On the other hand, the corrosion resistance of sintered material against molten zinc is Mo60
The sintered material is significantly improved within the range of ~5 wt% remaining weight% acid, and the sintered material is significantly improved within the above composition range, and the sintered material has a lower elongation than carbon within the above composition range It can be seen that the tensile strength is equivalent but 5 to 8 times higher.
(実施例2)
本発明の実施例2に係る耐腐食性材料はMo−W合金か
らなる圧延材によって形成される。この場合圧延機は、
実施例1で製造された鋳塊と同様な焼結法により製造さ
れたインゴットを約900〜1500℃で熱間圧延して
、2鰭厚の板に仕上げることにより得られた。この圧延
材の機械的強度については実施例1と同様なJIS B
−7702試験片の引張り試験により、また、耐腐食性
についても実施例1と同様な、温度695℃±10℃の
溶湯に上記圧延材の試片の全表面を浸漬し、重量差を測
定する方法からit速度が求められた。上記引張り試験
及び上記耐食性試験の結果を表2に示す。表中の、Mo
70.75,100.O,重量%の材料及び硬質黒
鉛は、比較の為の参考例である。(Example 2) A corrosion-resistant material according to Example 2 of the present invention is formed of a rolled material made of a Mo-W alloy. In this case, the rolling mill is
An ingot produced by the same sintering method as the ingot produced in Example 1 was hot rolled at about 900 to 1500°C to form a plate with a thickness of two fins. The mechanical strength of this rolled material is based on JIS B, which is the same as in Example 1.
-7702 test piece was subjected to a tensile test, and for corrosion resistance, the entire surface of the above-mentioned rolled material test piece was immersed in molten metal at a temperature of 695°C ± 10°C, as in Example 1, and the weight difference was measured. The IT speed was determined from the method. Table 2 shows the results of the tensile test and the corrosion resistance test. In the table, Mo
70.75,100. O, weight % material and hard graphite are reference examples for comparison.
表 2 (旦iオ)
表2からも明らかな通り、Moの重量%が小さくなるに
つれて、圧延材の機械的強度は大きくなる。Table 2 As is clear from Table 2, the mechanical strength of the rolled material increases as the weight percent of Mo decreases.
一方Mo60〜5重量%、残部Wの化学組成の合金は溶
融亜鉛に対して、実施例1における試験結果と同様に、
極めそ優れた耐腐食性を示し。且つ引張り試験において
1%以上の伸びを示すことが判明した。上記組成範囲内
の化学組成を有する圧延材の引張り強さはカーボンに比
べて20倍〜28倍であった。On the other hand, an alloy with a chemical composition of 60 to 5% by weight of Mo and the balance W was tested against molten zinc, similar to the test results in Example 1.
Shows extremely good corrosion resistance. Moreover, it was found that it exhibited an elongation of 1% or more in a tensile test. The tensile strength of the rolled material having a chemical composition within the above composition range was 20 to 28 times that of carbon.
第1図には焼結材の引張29強さとMoの含有量との関
係が曲線11で示され他方、実施例2の圧延材の引張り
強さとMoの含有量が曲線12で示されている。In FIG. 1, a curve 11 shows the relationship between the tensile strength of the sintered material and the Mo content, while a curve 12 shows the relationship between the tensile strength and the Mo content of the rolled material of Example 2. .
また、第2図には、焼結材の減量速度とMoの含有量と
の関係が曲線I3で示され、更に、圧延材の減量速度と
Moの含有量との関係が曲線14で示されている。減量
速度は耐腐食性を規定する因子であり、減量速度の値が
小さい程、耐腐食性が優れていることを示す。Further, in FIG. 2, the relationship between the weight loss rate of the sintered material and the Mo content is shown by curve I3, and the relationship between the weight loss rate of the rolled material and the Mo content is shown by curve 14. ing. The weight loss rate is a factor that determines corrosion resistance, and the smaller the value of the weight loss rate, the better the corrosion resistance.
上記焼結材及び圧延材は、実施例1番こ、関連して説明
したように、粉末冶金法で製造されているが、エレクト
ロンビームやアーク溶解法により製造された材料につい
ても、機械的強度が大きく、優れた耐腐食性を示す結果
が得られた。The above-mentioned sintered materials and rolled materials are manufactured by the powder metallurgy method, as explained in connection with Example 1, but materials manufactured by the electron beam or arc melting method also have mechanical strength. The results showed that the corrosion resistance was large and the corrosion resistance was excellent.
以上述べたとおり、本発明においては、Mo60〜5重
世%で残部がWの化学組成の合金であれば、製法が粉末
冶金法又は溶解法による焼結物、鋳塊、あるいは鋳塊か
ら鍛造、圧延等の塑性加工された部品すべてに適用でき
る耐腐食性材料が得られる。As described above, in the present invention, if the alloy has a chemical composition of 60 to 5% Mo and the balance is W, the production method is a sintered product by powder metallurgy or melting method, an ingot, or a forged product from an ingot. , a corrosion-resistant material can be obtained that can be applied to all plastically worked parts such as rolling.
この耐腐食性材料は、溶融亜鉛に対する耐腐食性におい
て優れ、さらに機械的特性において極めて優れている。This corrosion-resistant material has excellent corrosion resistance against molten zinc and also has excellent mechanical properties.
したがって亜鉛の精錬、合金鋳造や亜鉛メツキ等の溶融
装置の部品の寿命が長くなり、亜鉛等の金属製品の生産
コストを低減することが可能である。Therefore, the life of parts of melting equipment for zinc refining, alloy casting, galvanizing, etc. can be extended, and it is possible to reduce the production cost of metal products such as zinc.
第1図 本発明の実施例に係る合金の引張り強度を示す
図、
第2図 本発明の実施例に係る合金の減量速度示す図で
ある。
第1図
第2図FIG. 1 is a diagram showing the tensile strength of an alloy according to an example of the present invention. FIG. 2 is a diagram showing a weight loss rate of an alloy according to an example of the present invention. Figure 1 Figure 2
Claims (4)
する合金によって形成されていることを特徴とする耐腐
食性材料。(1) A corrosion-resistant material characterized by being formed of an alloy having a chemical composition of 60 to 5% by weight of Mo and the balance being W.
を特徴とする特許請求の範囲第1項記載の耐腐食性材料
。(2) The corrosion-resistant material according to claim 1, which is used as a part that is immersed in molten metal.
ことを特徴とする特許請求の範囲第1項又は第2項記載
の耐腐食性材料。(3) The corrosion-resistant material according to claim 1 or 2, which is formed into a sintered material by a powder metallurgy method.
る特許請求の範囲第1項記載の耐腐食性材料。(4) The corrosion-resistant material according to claim 1, which is formed into the shape of a plastically worked material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25236587A JPH0196348A (en) | 1987-10-08 | 1987-10-08 | Corrosion-resistant material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25236587A JPH0196348A (en) | 1987-10-08 | 1987-10-08 | Corrosion-resistant material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0196348A true JPH0196348A (en) | 1989-04-14 |
JPH039177B2 JPH039177B2 (en) | 1991-02-07 |
Family
ID=17236281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25236587A Granted JPH0196348A (en) | 1987-10-08 | 1987-10-08 | Corrosion-resistant material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0196348A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0947593A3 (en) * | 1993-12-14 | 1999-12-15 | Kabushiki Kaisha Toshiba | Mo-W material for formation of wiring, Mo-W target and method for production thereof, and Mo-W wiring thin film |
JP2006097068A (en) * | 2004-09-29 | 2006-04-13 | Allied Material Corp | Tungsten alloy having oxidation resistance, and production method therefor |
WO2011125663A1 (en) * | 2010-04-01 | 2011-10-13 | 山陽特殊製鋼株式会社 | Molybdenum alloy and process for producing same |
-
1987
- 1987-10-08 JP JP25236587A patent/JPH0196348A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0947593A3 (en) * | 1993-12-14 | 1999-12-15 | Kabushiki Kaisha Toshiba | Mo-W material for formation of wiring, Mo-W target and method for production thereof, and Mo-W wiring thin film |
US6200694B1 (en) | 1993-12-14 | 2001-03-13 | Kabushiki Kaisha Toshiba | Mo-W material for formation of wiring, Mo-W target and method for production thereof, and Mo-W wiring thin film |
JP2006097068A (en) * | 2004-09-29 | 2006-04-13 | Allied Material Corp | Tungsten alloy having oxidation resistance, and production method therefor |
WO2011125663A1 (en) * | 2010-04-01 | 2011-10-13 | 山陽特殊製鋼株式会社 | Molybdenum alloy and process for producing same |
JP2011214112A (en) * | 2010-04-01 | 2011-10-27 | Sanyo Special Steel Co Ltd | Molybdenum alloy and process for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPH039177B2 (en) | 1991-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4190720B2 (en) | Multi-component alloy | |
JP5852585B2 (en) | Magnesium alloy having excellent ignition resistance and mechanical properties and method for producing the same | |
JP2007284718A (en) | Zn-Al ALLOY HOT-DIP PLATED STEEL SHEET SUPERIOR IN CORROSION RESISTANCE AND WORKABILITY, AND PRODUCTION METHOD THEREFOR | |
JP2022513645A (en) | Magnesium alloy material and its manufacturing method | |
CN110804711A (en) | High-entropy alloy powder and preparation method and application of laser cladding layer | |
CN110578070B (en) | Method for improving oxidation resistance of copper by using authigenic non-metallic oxide composite film | |
CN111057937A (en) | Electrothermal alloy iron-chromium-aluminum wire material and preparation method thereof | |
CN100370051C (en) | High-temperature wear-resistant and corrosion-resistant Fe-Cr-Si iron-based alloy material | |
TWI518183B (en) | Corrosion resistant high nickel alloy and its manufacturing method | |
CN1167823C (en) | High-temperature wear-resistant and corrosion-resistant Cr-Ni-Si metal silicide alloy material | |
WO2019102716A1 (en) | Mold material for casting and copper alloy material | |
CN100385028C (en) | High-temperature wear-resistant and corrosion-resistant Co-Ti-Si intermetallic compound alloy material | |
JPH0196348A (en) | Corrosion-resistant material | |
KR102573665B1 (en) | High-strength and corrosion-resistant magnesium alloy material and manufacturing method thereof | |
JP2002301551A (en) | Mold powder and continuous casting method | |
JPWO2017022597A1 (en) | Thermal spray material and thermal spray coating of aluminum alloy | |
CN111636021A (en) | Rare earth zinc-aluminum-nickel-titanium alloy wire for thermal spraying and preparation method and application thereof | |
JPS58197241A (en) | High-strength, highly conductive Cu alloy with excellent resistance to molten metal erosion | |
JPS62182239A (en) | Cu alloy for continuous casting mold | |
JPS62182238A (en) | Cu alloy for continuous casting molds | |
CN116497290B (en) | Stainless steel material with good machinability and cutting destructiveness | |
JP2536320B2 (en) | Copper alloy casting mold | |
JP2936899B2 (en) | Titanium alloy with excellent corrosion resistance and workability to non-oxidizing acids | |
CN117845079B (en) | Preparation method of high-strength abrasion-resistant copper-tin alloy | |
JP6083521B2 (en) | Method for producing Al-Li alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |