JPH0194284A - Quantification of radioactivity in radioactive waste packed in container - Google Patents
Quantification of radioactivity in radioactive waste packed in containerInfo
- Publication number
- JPH0194284A JPH0194284A JP25299787A JP25299787A JPH0194284A JP H0194284 A JPH0194284 A JP H0194284A JP 25299787 A JP25299787 A JP 25299787A JP 25299787 A JP25299787 A JP 25299787A JP H0194284 A JPH0194284 A JP H0194284A
- Authority
- JP
- Japan
- Prior art keywords
- container
- radioactivity
- gamma ray
- gamma
- slice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002901 radioactive waste Substances 0.000 title claims description 22
- 238000011002 quantification Methods 0.000 title description 6
- 230000005251 gamma ray Effects 0.000 claims abstract description 74
- 238000001514 detection method Methods 0.000 claims abstract description 26
- 238000005259 measurement Methods 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 27
- 230000004044 response Effects 0.000 claims description 20
- 239000002699 waste material Substances 0.000 abstract description 3
- 230000001066 destructive effect Effects 0.000 abstract description 2
- 230000002285 radioactive effect Effects 0.000 abstract 5
- 230000000630 rising effect Effects 0.000 abstract 1
- 238000004458 analytical method Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002247 constant time method Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、原子力施設で発生する容器(例えばドラム
缶等)詰め放射性廃棄物中の放射能を、容器外に設置し
たガンマ線検出器で、廃棄物中の放射能から放出される
ガンマ線を計測することにより非破壊で定量する方法に
関するものである。[Detailed Description of the Invention] [Field of Industrial Application] This invention detects radioactivity in radioactive waste packed in containers (such as drums) generated at nuclear facilities, and detects the waste by using a gamma ray detector installed outside the container. This relates to a non-destructive method of quantifying gamma rays emitted from radioactivity in objects.
容器詰め放射性廃棄物中の放射能を容器外に設置された
ガンマ線検出器を用いて容器から放出されるガンマ線を
計測し定量する方法が一般に使われているが、この方法
は次の理由により時として大きな定量評価誤差を生じる
O
■ 容器内に於ける放射能分布が不均一でかつ不明の場
合
ガンマ線放出点からガンマ線検出器までの距離が異なシ
、同一放射能量であってもガンマ線検出器の応答が異な
ってくる。又、ガンマ線検出器と容器との間にコリメー
ターを採用していれば、コリメーター開口部と、ガンマ
線放出点の相対的位置関係によりガンマ線検出器の応答
が異なってくる。A commonly used method is to quantify the radioactivity in containerized radioactive waste by measuring the gamma rays emitted from the container using a gamma ray detector installed outside the container, but this method is time-consuming for the following reasons. ■ If the radioactivity distribution in the container is uneven and unknown, the distance from the gamma ray emission point to the gamma ray detector may be different, and even if the amount of radioactivity is the same, the gamma ray detector may The responses will be different. Furthermore, if a collimator is employed between the gamma ray detector and the container, the response of the gamma ray detector will differ depending on the relative positional relationship between the collimator opening and the gamma ray emission point.
■ 容器内の密度分布が不均一かつ不明の場合ガンマ線
放出点位置が既知であってもその周囲の容器内充填物質
の密度分布が異なると、容器外に透過してくるガンマ線
フラックスは吸収効果の違いのため異なってくる。従っ
てガンマ線検出器応答も異なってくる・
これらの不均一性に伴う定量誤差を低減させる方法とし
て、CT’(Computer Tomography
)法がある。■ When the density distribution inside the container is uneven and unknown Even if the position of the gamma ray emission point is known, if the density distribution of the surrounding filling material in the container is different, the gamma ray flux that passes through the outside of the container will be affected by the absorption effect. They are different because of their differences. Therefore, the gamma ray detector response also differs. As a method to reduce quantitative errors associated with these non-uniformities, CT' (Computer Tomography)
) There is a law.
この方法は例えば特開昭61−107188号公報に示
されておシ、第2図に示す様に容器を軸方向に複数個の
スライスSl〜Snに分割し、lスライスの水平方向断
面については、第2図(a) 、 (b)に示す様に扇
形又は矩形に領域分割し、との分割単位毎にまず密度分
布を求め、得られた密度分布を既知として今度は分割単
位毎に放射能量を求める。これを合計し1スライス当夛
の放射能量とし、全クライヌについて同様のことを繰フ
返し合計する・以下、この方法を詳述するが、ここでは
簡単の為に何らかの方法で密度分布は得られているもの
として、ヌライス当りの放射能分布を求める方法に限定
して第8図に基づき説明する。This method is disclosed, for example, in Japanese Patent Application Laid-Open No. 107188/1988, in which the container is divided into a plurality of slices Sl to Sn in the axial direction, as shown in FIG. As shown in Figure 2 (a) and (b), the area is divided into sectors or rectangles, the density distribution is first determined for each division unit, and the density distribution obtained is known and the radiation is calculated for each division unit. Find capacity. Add up this amount to determine the amount of radioactivity per slice, and repeat the same process for all Kleine.This method will be explained in detail below, but for the sake of simplicity, the density distribution will not be obtained by some method. Based on FIG. 8, the explanation will be limited to the method of determining the radioactivity distribution per null rice.
第8図において、(1)は容器水平断面を表わす・ここ
では矩形分割の場合で図中i方向、j方向共に6分割す
る場合について示しである。(2)は容器外に設置した
ガンマ線検出器で、図では1例として、6台設置する場
合を示す・(3)はガンマ線検出器と容器の間に設置す
るガンマ線用の水平方向のコリメータである。垂直方向
のコリメータについては説明には不要なので図では省略
しである。5組のガンマ線検出器(2)と水平方向コリ
メーター(3)はそれぞれ容器断面の異なる部分をコリ
メーター開口部を通して見込む様に配置されている。尚
、容器は回転・昇降機構の上に設置されておシ、容器の
中心軸(第8図の円の中心)の周シに回転出来るが、図
ではこの機構は明示していない。In FIG. 8, (1) represents a horizontal cross section of the container. Here, in the case of rectangular division, the case where the container is divided into six in both the i direction and the j direction in the figure is shown. (2) is a gamma ray detector installed outside the container; the figure shows an example where six units are installed. (3) is a horizontal collimator for gamma rays installed between the gamma ray detector and the container. be. The collimator in the vertical direction is not necessary for the explanation and is therefore omitted from the figure. Five sets of gamma ray detectors (2) and horizontal collimators (3) are arranged so that different parts of the cross section of the container can be seen through the collimator openings. The container is installed on a rotating/elevating mechanism and can be rotated around the central axis of the container (the center of the circle in FIG. 8), but this mechanism is not clearly shown in the figure.
次にこの様な分割方法を採った場合に必要となる計測方
法とその理由について説明する。第8図の様な分割方法
をとった場合、放射能量も各分割領域毎に求める必要が
ち力、第8図を例にとると、分割領域数が田であるから
少くとも、36個以上の互いに独立なガンマ線検出器(
2)による計測データがなければ、分割領域毎の放射能
量を求めることは出来ない。第8図の例ではガンマ線検
出器(2)数が5台であるから、1台のガンマ線検出器
当シ、少くとも8個以上の互いに独立なデーターを得る
必要が出てくる・これを実行する為に容器を矢印(4)
方向にΔθ回転させる毎に、ガンマ線検出器(2)で容
器からのガンマ線を一定時間Tだけ計測する6通常Δθ
は、等間隔にとるため、この場合860’ +8 ==
45゜となる。Next, the measurement method required when such a division method is adopted and the reason thereof will be explained. When using the division method as shown in Figure 8, the amount of radioactivity also needs to be determined for each divided area. mutually independent gamma ray detectors (
Without measurement data from 2), it is not possible to determine the amount of radioactivity for each divided area. In the example shown in Figure 8, the number of gamma ray detectors (2) is five, so it is necessary to obtain at least eight or more mutually independent data from one gamma ray detector. Arrow the container to (4)
Every time the container is rotated by Δθ in the direction, the gamma ray detector (2) measures gamma rays from the container for a certain period of time T.6 Normally Δθ
are taken at equal intervals, so in this case 860' +8 ==
It becomes 45°.
この様にして得られるガンマ線検出器(2)による計測
データーのセットをR(k、w)とする。ここで、kは
複数個のガンマ線検出器(2)を区別する為の番号(こ
の例ではに=1〜5)、wは容器の回転位置を区別する
為の番号(この例では例えばw=1〜8)、従って、R
(k、w)は容器がwXΔθだけ回転した時のに番目の
ガンマ線検出器で、1秒間計測した時の計測データ(例
えば計数率)である。The set of measurement data obtained by the gamma ray detector (2) in this manner is assumed to be R(k, w). Here, k is a number for distinguishing between multiple gamma ray detectors (2) (in this example, 1 to 5), and w is a number for distinguishing the rotational position of the container (for example, in this example, w= 1-8), therefore, R
(k, w) is the measurement data (for example, counting rate) when the container is rotated by wXΔθ and the gamma ray detector measures for 1 second.
次にR(k、w)から各分割領域毎の放射能量を求める
方法について述べる。分割領域を第8図のi方向とj方
向の分割領域番号で指定することにし、これを(i・j
)と記す0分割領域(1*j)における放射能量をQ(
i、j)とすると、計測データーセラ) R(k、w)
から、第8図の円断面内の全領域についてQ(Lj)を
求めることが課題となる。Next, a method for determining the amount of radioactivity for each divided region from R(k, w) will be described. We decided to specify the divided areas using the divided area numbers in the i direction and j direction in Fig. 8, and this is expressed as (i・j
) is the amount of radioactivity in the 0-division area (1*j) written as Q(
i, j), measurement data cella) R(k, w)
Therefore, the task is to find Q(Lj) for the entire area within the circular cross section of FIG.
Q(i、j)は、次の2乗誤差−を最小にする様に、繰
)返し計算によ多その値を修正しながら求める。Q(i, j) is obtained by repeatedly calculating and modifying its value so as to minimize the following squared error -.
−=Σ Σ(R(k、w) −Res (k、w) )
”w=1 k−1
Res(k、w);あるQ(i、j)分布に対して、容
器がW×Δθ回転した時のに番目のガ
ンマ線検出器の応答計算値であシ、
次式で求める。−=Σ Σ(R(k, w) −Res (k, w) )
”w=1 k−1 Res(k, w); For a certain Q(i, j) distribution, this is the calculated response value of the gamma ray detector when the container is rotated by W×Δθ. Next Find it using the formula.
f(klw;++j) ;検出効率、分割領域(i・j
)にのみ単位量の放射能が存在した時
に、容器がw×Δθ回転した時のに
番目のガンマ線検出器の応答。f(klw;++j) ;Detection efficiency, divided area (i・j
) The response of the gamma-ray detector when the container is rotated by w×Δθ when a unit amount of radioactivity is present only at ).
繰シ返し計算の手法については、一般に使われている手
法なのでここでは省略する。The iterative calculation method is a commonly used method, so it will be omitted here.
従来のCT法による容器詰め放射性廃棄物の放射能定量
法は以上の様な測定及び解析手法を用いて行なわれてお
シ、第2図に示す矩形又は扇形分割領域毎に、放射能量
を求めていくという立場をとっている為、密度分布の均
一性がどうであっても前記測定方法は変わらず、次の様
な問題点があった。The conventional method for quantifying radioactivity in containerized radioactive waste using the CT method is performed using the measurement and analysis methods described above. Therefore, regardless of the uniformity of the density distribution, the measurement method remains the same, and there are the following problems.
領域分割数が多く必然的に測定点数が増える。As the number of region divisions increases, the number of measurement points inevitably increases.
■ 従って少数のガンマ線検出器で測定するには、容器
をΔθ毎に回転させて測定する必要が生じ回転駆動系及
びその制御ソフトウェアが複雑にな夛信頼性、経済性共
に低下する。(2) Therefore, in order to perform measurements with a small number of gamma ray detectors, it is necessary to rotate the container every Δθ and perform measurements, which complicates the rotational drive system and its control software, which reduces both reliability and economic efficiency.
■ 1測定点当りの測定時間を一定とすれば、測定点数
の増加により容器1体当りの計測時間が増大し、測定装
置としての処理能力が低下する。(2) If the measurement time per measurement point is constant, the increase in the number of measurement points increases the measurement time per container, reducing the throughput of the measuring device.
■ 逆に容器1体当りの計測時間を一定にすれば測定点
数が増えることにより1測定点当りの測定時間が小さく
なシ、測定データーの統計誤差が増え定量精度が劣化す
る・
■ 扱うデーター量が増えることによ〕解析時間が増大
すると共に使用する計算機の容量も太きくなる。■ Conversely, if the measurement time per container is kept constant, the number of measurement points increases, which reduces the measurement time per measurement point, increases statistical errors in the measurement data, and deteriorates quantitative accuracy. ■ The amount of data handled increases. Due to this increase, the analysis time increases and the capacity of the computer used also increases.
この発明は上記の様な問題点を解消するためになされた
もので、容器内の密度分布がある一定の条件を満たせば
測定点を大幅に低減でき、回転駆動系及びその制御ソフ
トウェアも簡略化でき、計測時間の短縮化又は定量の高
精度化を図ることができ、解析に要する時間の短縮化及
び計算機容量の縮約が出来る容器詰め放射性廃棄物中の
放射能定量法を得ることを目的とする。This invention was made to solve the above-mentioned problems.If the density distribution inside the container satisfies certain conditions, the number of measurement points can be significantly reduced, and the rotation drive system and its control software can also be simplified. The purpose of this study is to obtain a method for quantifying radioactivity in containerized radioactive waste that can shorten measurement time or increase the accuracy of quantification, shorten the time required for analysis, and reduce computer capacity. shall be.
この発明に係る容器詰め放射性廃棄物中の放射能定量法
は、円筒型容器詰め放射性廃棄物の外側に複数個のガン
マ線検出器を設置し、上記容器を上記ガンマ線検出器に
対して相対的に上記容器の中心線を軸として回転させ、
上記中心線に沿って昇降させて上記容器内の放射性廃棄
物から放出されるガンマ線を上記ガンマ線検出器で測定
することにより、与えられる放射性廃棄物の密度分布情
報を使って、上記容器内の放射性廃棄物の放射能分布を
求めることにより放射能を定量する方法において、
■ 上記円筒型容器を中心線に垂直で所定厚さの複数個
のスライスに分割し、
■ 上記スフイスの放射能分布を把握する為の領域分割
形式を上記スライスの中心線を中心とする複数個の同心
円により形成される複数個の円環(中心部分の円を含む
)としくただし、上記円環数は上記ガンマ線検出器数と
等しいか小さくとるものとする)、
■ あらかじめ与えられる上記円環毎の密度値から、上
記円環に放射能が存在した場合の上記複数個のガンマ線
検出器の円環内放射能から放出されるガンマ線に対する
検出効率を、上記円環毎、ガンマ線検出器毎にあらかじ
め計算してこれを検出効率データ群とし、
■ 上記複数個のガンマ線検出器により、上記容器が昇
降しないでn回(n:整数)回転する間に容器内放射性
廃棄物から放出されるガンマ線を計測し、その間の上記
ガンマ線検出器の応答を検出器毎に積算してこれを計測
データ群とし、■ 上記検出効率データ群と計測データ
群より上記円環毎の放射能量を演算により求め、■ 上
記スライスの上記円環毎の放射能量を合計してスライス
当りの放射能量とし、
■ 上記円筒状容器を昇降させて複数個に分割したスラ
イス毎に以上の作業を繰シ返し、■ 上記容器のスライ
ス毎の放射能量を合計して容器1個当力の放射能量とす
るものである。The method for quantifying radioactivity in radioactive waste packed in a container according to the present invention includes installing a plurality of gamma ray detectors outside the radioactive waste packed in a cylindrical container, and positioning the container relative to the gamma ray detector. Rotate the center line of the container as an axis,
By measuring the gamma rays emitted from the radioactive waste in the container by moving it up and down along the center line with the gamma ray detector, the density distribution information of the radioactive waste provided is used to detect the radioactivity in the container. In the method of quantifying radioactivity by determining the radioactivity distribution of waste, ■ Divide the above cylindrical container into multiple slices of a predetermined thickness perpendicular to the center line, ■ Ascertain the radioactivity distribution of the above-mentioned sphuis. The area division format for this purpose is a plurality of rings (including the center circle) formed by a plurality of concentric circles centered on the center line of the slice. (shall be equal to or smaller than the number), ■ Based on the density value for each ring given in advance, if radioactivity exists in the ring, the radioactivity emitted from the plurality of gamma ray detectors within the ring. The detection efficiency for gamma rays detected is calculated in advance for each ring and each gamma ray detector, and this is used as a detection efficiency data group. : Integer) Measure the gamma rays emitted from the radioactive waste inside the container while it rotates, integrate the responses of the gamma ray detectors for each detector during that time, and make this a measurement data group, ■ The above detection efficiency data group Calculate the amount of radioactivity for each ring from the measured data group, ■ Add up the amount of radioactivity for each ring of the slice to obtain the amount of radioactivity per slice, and ■ Raise and lower the cylindrical container to collect multiple pieces. The above operations are repeated for each slice divided into 2. The amount of radioactivity for each slice of the container is summed to obtain the amount of radioactivity per container.
この発明においては、円筒容器の中心線に垂直な面上の
密度分布が同心円環状に分布しているか、その特殊ケー
スとしてはソー様に分布している場合を対象としている
。この場合は円環内の放射能からのガンマ線の検出効率
は、容器が1回転する間のガンマ線検出器の応答積算値
で考える限シ、近似的に円環内の位置に依存しない。従
って領域分割形状を円環とし、これに容器が1回転又は
その整数倍の回転する間のガンマ線計測とを組み合わせ
れば、分割領域の数及び測定点数が大幅に削減できる。This invention deals with the case where the density distribution on the plane perpendicular to the center line of the cylindrical container is distributed in a concentric ring shape, or as a special case, it is distributed in a saw shape. In this case, the detection efficiency of gamma rays from the radioactivity within the annular ring does not approximately depend on the position within the annular ring, as long as it is considered as the integrated response value of the gamma ray detector during one rotation of the container. Therefore, by making the area division shape a ring and combining this with gamma ray measurement while the container rotates once or an integral multiple thereof, the number of divided areas and the number of measurement points can be significantly reduced.
以下、この発明の一実施例を図について説明する。第1
図a+bにおいて、(1)〜(3)の機器の構成は従来
と同様である。異なる点は解析において容器のスライス
(1)の領域分割形状を点0(中心軸)を中心とする同
心円により円環形状(図1では■〜■の8分割)に分割
し、容器(1)は同一高さでn回一定速度で連続回転し
、容器(1)の周囲に配置された複数個(この場合は5
台)のガンマ線検出器(2)は容器(1)がn回転する
間、連続して容器(1)からのガンマ線をコリメータ(
3)を通して計測する。An embodiment of the present invention will be described below with reference to the drawings. 1st
In Figures a+b, the configurations of devices (1) to (3) are the same as the conventional one. The difference is that in the analysis, the region division shape of the container slice (1) is divided into annular shapes (8 divisions from ■ to ■ in Figure 1) by concentric circles centered on point 0 (central axis), and the container (1) rotates continuously at a constant speed n times at the same height, and multiple (in this case 5
The gamma ray detector (2) on the collimator (stand) continuously detects gamma rays from the container (1) while the container (1) rotates n times.
3).
今、例えば円環領域■の中に点Pt、 P、 、 P、
に放射能が存在する場合の各ガンマ線検出器(2)の応
答を考えてみる。ここで、PlとPlは容器中心軸Oか
らの距離が等しくその長さをaとする。R3は容器中心
軸0からの距離がaとは異なりbとする。(例えばa
) bとする。)k番目(k=1〜5)のガンマ線検出
器のP、、P、に位置する放射能に対する応答は、互い
に幾何学的配置が異なるので、当然異なったものとなる
。Now, for example, in the circular area ■, there are points Pt, P, , P,
Let us consider the response of each gamma ray detector (2) when radioactivity is present. Here, Pl and Pl have the same distance from the container center axis O, and their length is a. R3 has a distance from the center axis 0 of the container, which is different from a, and is set to b. (For example a
) b. ) The responses of the kth (k=1 to 5) gamma ray detectors to the radioactivity located at P, , P, are naturally different because their geometrical arrangements are different from each other.
しかし、R8,P、をそれぞれ点0の周シに1回転させ
た時のガンマ線検出器の応答の各々の積分値はP、 、
P、については等しくなる。これはP、 、 P、共
点0からの距離が等しいことによる。R3についてはa
〜bの為、上記の様に回転させた時のガンマ線検出器の
応答の各々の積分値は厳密にはP、 、 P。However, when R8 and P are each rotated once around point 0, the integral values of the responses of the gamma ray detector are P, ,
They are equal for P. This is because P, , P are equal in distance from the common point 0. For R3 a
~b, strictly speaking, each integral value of the response of the gamma ray detector when rotated as described above is P, , P.
の場合と異なるが、aとbの差が小さければ両応答の差
も小さい。今、■の領域について言えば、■の円環領域
の境界を形成する半径R1とR2の円の半径の大きさの
違いが小さければそれに応じて、■の領域内の半径方向
の位置の違いによる放射能に対するガンマ線検出器の応
答の違いも小さくなる。(第1図では円環8領域に分割
した例を示したが、これは、半径方向の領域の長さとい
う点では、従来の第8図の6×6領域と同等であシ、領
領内での放射能の位置の違いによるガンマ線検出器の応
答の違いという点でも同等である。)以上のことから、
円環領域を適切に分割形成することによ勺、容器を1回
転させる時のガンマ線検出器の応答は円環内放射能の量
が同じであれば各円環内の分布によらず、はぼ一定であ
る。各円環毎の密度値が既知とするとm番目の円環に単
位量の放射能が存在した時に容器が1回転した時のに番
目のガンマ線検出器の応答(効率) f(k、m)は、
簡単な計算で求めることができる。Although this is different from the case of , if the difference between a and b is small, the difference between both responses is also small. Now, regarding the area of ■, if the difference in the size of the radius of the circles with radii R1 and R2 forming the boundary of the annular area of ■ is small, the difference in the radial position within the area of ■ is correspondingly small. Differences in the response of gamma ray detectors to radioactivity due to radiation are also reduced. (Figure 1 shows an example of division into 8 annular areas, but this is equivalent to the conventional 6 x 6 area in Figure 8 in terms of the length of the area in the radial direction. (This is also true in terms of the difference in the response of the gamma ray detector due to the difference in the position of the radioactivity.) From the above,
By appropriately dividing the annular region, the response of the gamma ray detector when the container is rotated once is independent of the distribution within each annular ring, as long as the amount of radioactivity within each annular region is the same. It is almost constant. Assuming that the density value for each ring is known, the response (efficiency) of the gamma ray detector when the container rotates once when a unit amount of radioactivity is present in the mth ring is f (k, m) teeth,
It can be determined by simple calculation.
ここでkはガンマ線検出器(2)の番号(1〜5)。Here, k is the number (1 to 5) of the gamma ray detector (2).
mは円環領域番号(■〜■)である。m is the circular region number (■ to ■).
このようfζ、円筒容器の中心線に垂直な面での密度分
布が同心円環状に分布している場合には、次のような効
果が得られる。When the density distribution fζ in the plane perpendicular to the center line of the cylindrical container is distributed in a concentric ring shape, the following effects can be obtained.
(1)分割領域数を大幅に減らしても、放射能分布によ
る放射能の定量誤差を第8図に示す従来のCT法に比べ
同等以下にすることが出来る。(1) Even if the number of divided regions is significantly reduced, the error in quantifying radioactivity due to radioactivity distribution can be made equal to or lower than that of the conventional CT method shown in FIG.
(2)分割領域数の低減に伴い必要な測定点数も比例的
に減少させることが出来る。これから■ 容器1個当り
の計測時間を一定にとると、従来CT法に比べて1測定
当りの計測時間を長くとることが出来る為、統計誤差が
減シ、微弱放射能計測時の高感度化が図れる。(2) As the number of divided regions is reduced, the number of required measurement points can also be reduced proportionally. From now on■ By keeping the measurement time per container constant, it is possible to take a longer measurement time per measurement than with conventional CT methods, which reduces statistical errors and increases sensitivity when measuring weak radioactivity. can be achieved.
@ 1測定点当りの計測時間を一定にとると、従来CT
法に比べて容器1個当ルの計測時間の大幅な短縮化が図
れる。@ If the measurement time per measurement point is kept constant, conventional CT
Compared to the method, the measurement time per container can be significantly shortened.
(3) 容器の回転制御系が連続回転の場合従来CT
法より簡略化される◇又、計測/回転系の制御S/Wの
簡略化が図れ、コスト低減が可能である。(3) Conventional CT when the container rotation control system is continuous rotation
◇Also, the measurement/rotation system control S/W can be simplified and costs can be reduced.
(4) 領域毎の放射能量を求める為に要する計算機
負荷が計算処理時間及び必要なメモリ容量共に低減化さ
れる。これは、コヌト低減化と共に、計測処理能力の向
上にも資する。(4) The computer load required to determine the amount of radioactivity for each area is reduced, as is the calculation processing time and required memory capacity. This contributes to not only reducing conuts but also improving measurement processing capacity.
尚、上記実施例ではm番目の円環領域に単位量の放射能
が存在した時に、容器が1回転した時のに番目のガンマ
線検出器(2)の応答f(k・m)は、円環毎の密度が
既知であれば簡単な計算により求めるとしたが、言い換
えれば、円環毎の密度が変わればすなわち容器又はスラ
イスが変わればその都度計算する必要が生じる。しかし
、密度が各スライス内では均一と見なせる場合は、あら
かじめbくつかの密度値に対して上記f(k、m)の値
を計算しておき、各スライス又は各容器毎に別途与えら
れる密度値に対するf(k、m)の値を密度値で内・外
挿してより簡単な計算で求めてもよい。すなわち、スラ
イス毎に密度が均一と見なせる場合については、検出効
率データ群は、
■ あらかじめ円環分割条件を定めておき、円環毎、ガ
ンマ線検出器毎に密度をノくラメータとしたガンマ線検
出効率をあらかじめ計算してデータテープμとし、
■ 容器詰め放射性廃棄物の上記スライス毎の密度情報
より上記データテーブルのガンマ線検出効率を内挿まだ
は外挿して所定の密度に対するガンマ線検出効率を上記
円環毎、ガンマ線検出器毎に求める
また、上記実施例では各円環領域毎に得られた放射能量
を合計してスライス当りの放射能量を求める方法をとっ
たが、複数個のガンマ線検出器での検出対象としてはし
ていなかった放射性核種の放射能量についても絶対量は
異なるものの放射能の相対的分布状況は、既に求めた分
布と同様と見なしてよい場合がある。この様な場合には
、前記複数個のガンマ線検出器とは別の、多核種からの
ガンマ線を計測できる様に構成されたガンマ線検出器1
台を容器周辺に、容器からのガンマ線を見込む様な形で
配置し、この検出器から得られる目的とする放射性核種
からのガンマ線に対する計数率値からその放射性核種の
量を求める為に必要な検出効率(容器内の単位量の放射
能に対する検出器の応答)を、この相対分布に基づいて
計算する。In the above example, when a unit amount of radioactivity exists in the mth annular region, the response f (k m) of the gamma ray detector (2) when the container rotates once is If the density of each ring is known, it is determined by a simple calculation, but in other words, if the density of each ring changes, that is, if the container or slice changes, it will be necessary to calculate it each time. However, if the density can be considered uniform within each slice, calculate the value of f(k, m) above for several density values in advance, and then calculate the density separately for each slice or container. The value of f(k, m) for each value may be interpolated/extrapolated using the density value to obtain a simpler calculation. In other words, in the case where the density can be considered uniform for each slice, the detection efficiency data group is: ■ The ring division conditions are determined in advance, and the gamma ray detection efficiency is calculated by dividing the density into a parameter for each ring and each gamma ray detector. Calculate in advance and use it as a data tape μ, ■ Interpolate or extrapolate the gamma ray detection efficiency in the data table above from the density information for each slice of containerized radioactive waste, and calculate the gamma ray detection efficiency for a given density using the above circular ring. Furthermore, in the above example, the amount of radioactivity obtained per slice was calculated by summing the amount of radioactivity obtained for each annular region, but Regarding the amount of radioactivity of radionuclides that were not targeted for detection, although the absolute amount is different, the relative distribution of radioactivity may be considered to be the same as the distribution already determined. In such a case, a gamma ray detector 1 configured to be able to measure gamma rays from multiple nuclides, separate from the plurality of gamma ray detectors, is used.
A table is placed around the container in such a way that gamma rays from the container can be seen, and the detection necessary to determine the amount of the target radionuclide from the count rate value for gamma rays from the target radionuclide obtained from this detector. The efficiency (response of the detector to a unit amount of radioactivity in the container) is calculated based on this relative distribution.
こうすることにより代表核種についての分布を把握すれ
ば、それと、同一分布と見なすことが出来る全核種につ
いての検出効率を計算することが出来、結果として多核
種の定量が可能になる。この発明の円環領域分割に基づ
く定量法でもこの様な方法で、多核種の定量を行うこと
が可能である。By doing this, once the distribution of the representative nuclide is understood, the detection efficiency can be calculated for that and all nuclides that can be considered to have the same distribution, and as a result, it becomes possible to quantify multiple nuclides. The quantification method based on the annular region division of the present invention also makes it possible to quantify multiple nuclides using such a method.
なお、円環数はガンマ線検出器数と等しいか小さくする
ものとする。すなわち円環数とガンマ線検出器数とが等
しい場合には検出効率は連立方程式によ)求められ、円
環数がガンマ線検出器数より小さい場合には例えば最小
2乗法を使った繰多返し計算により求められることは一
般に知られている通力である・
〔発明の効果〕
以上のように、この発明によれば、
■ 円筒型容器を中心線に垂直で所定厚さの複数個のス
フイヌに分割し、
■ 上記スライスの放射能分布を把握する為の領域分割
形式を上記スライスの中心線を中心とする複数個の同心
円によ〕形成される複数個の円環(中心部分の円を含む
)としくただし、上記円環数は上記ガンマ線検出器数と
等しいか小さくとるものとする)、
■ あらかじめ与えられる上記円環毎の密度値から、上
記円環に放射能が存在した場合の上記複数個のガンマ線
検出器の円環内放射能から放出されるガンマ線に対する
検出効率を、上記円環毎、ガンマ線検出器毎にあらかじ
め計算してこれを検出効率データ群とし、
■ 上記複数個のガンマ線検出器により、上記容器が昇
降しないでn回(n:整数)回転する間に容器内放射性
廃棄物から放出されるガンマ線を計測し、その間の上記
ガンマ線検出器の応答を検出器毎に積算してこれを計測
データ群とし、■ 上記検出効率データ群と計測データ
群より上記円環毎の放射能量を演算により求め、■ 上
記スフイヌの上記円環毎の放射能lを合計してスライス
当力の放射能量とし、
■ 上記円筒状容器を昇降させて複数個に分割したスラ
イス毎に以上の作業を繰フ返し、■ 上記容器のスライ
ス毎の放射能量を合計して容器1個当りの放射能量とす
る
ので、円筒容器の中心線に垂直な面での密度分布が同心
円環状に分布している場合には、測定点を大幅に低減で
き、回転駆動系及びその制御ソフトウェアも簡略化でき
、計測時間の短縮化又は定量の高精度化を図ることがで
き、解析に要する時間の短縮化及び計算機容量の縮約が
できる効果がある。Note that the number of rings is equal to or smaller than the number of gamma ray detectors. In other words, if the number of toruses is equal to the number of gamma-ray detectors, the detection efficiency is determined by simultaneous equations, and if the number of toruses is smaller than the number of gamma-ray detectors, it is calculated repeatedly using the method of least squares, for example. What is required is a generally known throughput. [Effects of the Invention] As described above, according to this invention, ■ A cylindrical container is divided into a plurality of sufinus of a predetermined thickness perpendicular to the center line. ■ A region division format for understanding the radioactivity distribution of the slice is a plurality of rings (including the center circle) formed by a plurality of concentric circles centered on the center line of the slice. However, the number of rings shall be equal to or smaller than the number of gamma ray detectors), ■ Based on the density value for each ring given in advance, calculate the number of rings when radioactivity is present in the ring. The detection efficiency of the gamma ray detectors for gamma rays emitted from the radioactivity within the ring is calculated in advance for each ring and each gamma ray detector, and this is set as a detection efficiency data group. The gamma rays emitted from the radioactive waste inside the container are measured while the container rotates n times (n: an integer) without going up and down, and the responses of the gamma ray detectors during that time are integrated for each detector. Using this as a measurement data group, ■ Calculate the amount of radioactivity for each ring from the detection efficiency data group and measurement data group, and ■ Add up the radioactivity l for each ring of the Sufinu to calculate the slice force. The amount of radioactivity is determined by repeating the above steps for each slice divided into multiple slices by raising and lowering the cylindrical container, and then calculating the amount of radioactivity per container by summing up the amount of radioactivity for each slice of the container. Therefore, if the density distribution in the plane perpendicular to the center line of the cylindrical container is distributed in a concentric ring shape, the number of measurement points can be significantly reduced, the rotation drive system and its control software can be simplified, and the measurement time can be reduced. This has the effect of shortening the time required for analysis and increasing the precision of quantification, reducing the time required for analysis and reducing computer capacity.
第1図a、bはこの発明の一実施例による容器詰め放射
性廃棄物中の放射能定量法を説明するそれぞれ斜視図お
よび平面図、第2図a+bはそれぞれ従来の容器詰め放
射性廃棄物中の放射能定量法における領域分割の様子を
説明する斜視図、第8図は第2図すの領域分割による放
射能定量法を説明する平面図である。
図Iこおいて、(2)はガンマ線検出器、81〜Snハ
ヌライスである〇
なお、各図中同一符号は同一または相当部分を示すもの
とする。Figures 1a and b are a perspective view and a plan view, respectively, illustrating a method for quantifying radioactivity in radioactive waste packed in a container according to an embodiment of the present invention, and Figures 2a and b are diagrams illustrating a method for quantifying radioactivity in radioactive waste packed in a container according to an embodiment of the present invention. FIG. 8 is a perspective view illustrating the state of region division in the radioactivity quantification method, and FIG. 8 is a plan view illustrating the radioactivity quantification method by region division as shown in FIG. In FIG. 1, (2) is a gamma ray detector, 81 to Sn Hanurice. In each figure, the same reference numerals indicate the same or corresponding parts.
Claims (2)
ンマ線検出器を設置し、上記容器を上記ガンマ線検出器
に対して相対的に上記容器の中心線を軸として回転させ
、上記中心線に沿つて昇降させて上記容器内の放射性廃
棄物から放出されるガンマ線を上記ガンマ線検出器で測
定することにより、与えられる放射性廃棄物の密度分布
情報を使つて、上記容器内の放射性廃棄物の放射能分布
を求めることにより放射能を定量する方法において、 [1]上記円筒型容器を中心線に垂直で所定厚さの複数
個のスライスに分割し、 [2]上記スライスの放射能分布を把握する為の領域分
割形式を上記スライスの中心線を中心とする複数個の同
心円により形成される複数個の円環(中心部分の円を含
む)とし(ただし、上記円環数は上記ガンマ線検出器数
と等しいか小さくとるものとする)、 [3]あらかじめ与えられる上記円環毎の密度値から、
上記円環に放射能が存在した場合の上記複数個のガンマ
線検出器の円環内放射能から放出されるガンマ線に対す
る検出効率を、上記円環毎、ガンマ線検出器毎にあらか
じめ計算してこれを検出効率データ群とし、[4]上記
複数個のガンマ線検出器により、上記容器が昇降しない
でn回(n:整数)回転する間に容器内放射性廃棄物か
ら放出されるガンマ線を計測し、その間の上記ガンマ線
検出器の応答を検出器毎に積算してこれを計測データ群
とし、 [5]上記検出効率データ群と計測データ群より上記円
環毎の放射能量を演算により求め、 [6]上記スライスの上記円環毎の放射能量を合計して
スライス当りの放射能量とし、 [7]上記円筒状容器を昇降させて複数個に分割したス
ライス毎に以上の作業を繰り返し、 [8]上記容器のスライス毎の放射能量を合計して容器
1個当りの放射能量とする ことを特徴とする容器詰め放射性廃棄物中の放射能定量
法。(1) A plurality of gamma ray detectors are installed outside the radioactive waste packed in a cylindrical container, and the container is rotated about the center line of the container relative to the gamma ray detector, and the center line The gamma rays emitted from the radioactive waste in the container are measured by the gamma ray detector, and the density distribution information of the radioactive waste provided is used to determine the density of the radioactive waste in the container. In the method of quantifying radioactivity by determining the radioactivity distribution, [1] the cylindrical container is divided into a plurality of slices of a predetermined thickness perpendicular to the center line, and [2] the radioactivity distribution of the slices is determined. The area division format for understanding is a plurality of rings (including the center circle) formed by a plurality of concentric circles centered on the center line of the slice (however, the number of rings is determined by the gamma ray detection described above). [3] From the density value for each ring given in advance,
If radioactivity exists in the ring, the detection efficiency of the plurality of gamma ray detectors for gamma rays emitted from the radioactivity in the ring is calculated in advance for each ring and each gamma ray detector. As a detection efficiency data group, [4] The gamma rays emitted from the radioactive waste inside the container are measured by the plurality of gamma ray detectors while the container rotates n times (n: an integer) without going up and down, and The responses of the gamma ray detectors are integrated for each detector to form a measurement data group, [5] the amount of radioactivity for each ring is calculated from the detection efficiency data group and the measurement data group, [6] Add up the amount of radioactivity for each ring of the slice to obtain the amount of radioactivity per slice, [7] Repeat the above operation for each slice divided into a plurality of slices by raising and lowering the cylindrical container, [8] The above. A method for quantifying radioactivity in radioactive waste packed in a container, characterized in that the amount of radioactivity in each slice of the container is summed to determine the amount of radioactivity per container.
は、検出効率データ群は、 [1]あらかじめ円環分割条件を定めておき、円環毎、
ガンマ線検出器毎に密度をパラメータとしたガンマ線検
出効率をあらかじめ計算してデータテーブルとし、 [2]容器詰め放射性廃棄物の上記スライス毎の密度情
報より上記データテーブルのガンマ線検出効率を内挿ま
たは外挿して所定の密度に対するガンマ線検出効率を上
記円環毎、ガンマ線検出器毎に求める ことを特徴とする特許請求の範囲第1項記載の容器詰め
放射性廃棄物中の放射能定量法。(2) In the case where the density can be considered uniform for each slice, the detection efficiency data group is
Calculate the gamma ray detection efficiency using density as a parameter for each gamma ray detector in advance and create a data table. [2] Interpolate or extrapolate the gamma ray detection efficiency in the data table from the density information for each slice of containerized radioactive waste. A method for quantifying radioactivity in containerized radioactive waste according to claim 1, characterized in that gamma ray detection efficiency for a predetermined density is determined for each ring and each gamma ray detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25299787A JPH0194284A (en) | 1987-10-07 | 1987-10-07 | Quantification of radioactivity in radioactive waste packed in container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25299787A JPH0194284A (en) | 1987-10-07 | 1987-10-07 | Quantification of radioactivity in radioactive waste packed in container |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0194284A true JPH0194284A (en) | 1989-04-12 |
Family
ID=17245056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25299787A Pending JPH0194284A (en) | 1987-10-07 | 1987-10-07 | Quantification of radioactivity in radioactive waste packed in container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0194284A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5716341A (en) * | 1993-06-29 | 1998-02-10 | Saito; Yoshikuni | Hub for syringe, connecting structure of hub, syringe, piston, needle assembly unit, connecting structure between needle assembly unit and syringe, syringe assembly and method of assembling syringe assembly |
US5772687A (en) * | 1993-03-12 | 1998-06-30 | Saito; Yoshikuni | Hub for syringe, connecting structure of hub, syringe, syringe assembly and method of assembling syringe assembly |
JP2006528363A (en) * | 2003-05-14 | 2006-12-14 | ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー | Tomography of solid materials |
CN103135122A (en) * | 2011-12-01 | 2013-06-05 | 中国辐射防护研究院 | Mixed nuclide gamma point source volume sample efficiency calibration method |
JP2013231611A (en) * | 2012-04-27 | 2013-11-14 | Fuji Electric Co Ltd | Height distribution measuring monitor |
JP2014098651A (en) * | 2012-11-15 | 2014-05-29 | Kobelco Eco-Solutions Co Ltd | Method for estimating amount of radioactive materials |
-
1987
- 1987-10-07 JP JP25299787A patent/JPH0194284A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5772687A (en) * | 1993-03-12 | 1998-06-30 | Saito; Yoshikuni | Hub for syringe, connecting structure of hub, syringe, syringe assembly and method of assembling syringe assembly |
US5716341A (en) * | 1993-06-29 | 1998-02-10 | Saito; Yoshikuni | Hub for syringe, connecting structure of hub, syringe, piston, needle assembly unit, connecting structure between needle assembly unit and syringe, syringe assembly and method of assembling syringe assembly |
US5788672A (en) * | 1993-06-29 | 1998-08-04 | Saito; Yoshikuni | Hub for syringe, connecting structure of hub, syringe, piston, needle assembly unit, connecting structure between needle assembly unit and syringe, syringe assembly and method of assembling syringe assembly |
US5879339A (en) * | 1993-06-29 | 1999-03-09 | Saito; Yoshikuni | Hub for syringe, connecting structure of hub, syringe, piston, needle assembly unit, connecting structure between needle assembly unit and syringe, syringe assembly and method of assembling syringe assembly |
JP2006528363A (en) * | 2003-05-14 | 2006-12-14 | ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー | Tomography of solid materials |
JP4762143B2 (en) * | 2003-05-14 | 2011-08-31 | ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー | Tomography of solid materials |
CN103135122A (en) * | 2011-12-01 | 2013-06-05 | 中国辐射防护研究院 | Mixed nuclide gamma point source volume sample efficiency calibration method |
JP2013231611A (en) * | 2012-04-27 | 2013-11-14 | Fuji Electric Co Ltd | Height distribution measuring monitor |
JP2014098651A (en) * | 2012-11-15 | 2014-05-29 | Kobelco Eco-Solutions Co Ltd | Method for estimating amount of radioactive materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7902519B2 (en) | Monitoring | |
Deprez et al. | Characterization of a SPECT pinhole collimator for optimal detector usage (the lofthole) | |
US7279676B2 (en) | Position sensitive radiation spectrometer | |
JPH0194284A (en) | Quantification of radioactivity in radioactive waste packed in container | |
JP3795041B2 (en) | Radioactive substance content measuring method and measuring apparatus | |
KR102394944B1 (en) | Apparatus for measuring and amending activity concentration density of radioactive material and operation calibration methode thereof | |
JP5523407B2 (en) | Radiation detection apparatus and detection method | |
KR100979559B1 (en) | Search method for reference radioactivity waste drum to verify the indirect calibration of gamma scanner and new verification method to extend the life of radioactive standard material | |
JP3581413B2 (en) | Non-destructive radiometric collimator measurement method for solidified radioactive waste in drums | |
JPH09230051A (en) | Radioactivity quantity measuring method for radioactive waste solidified body | |
Phillips et al. | Quantitative determination of fission products in irradiated fuel pins using nondestructive gamma scanning | |
JPH01101489A (en) | Radioactive nuclear species measuring instrument | |
Dung | Some theoretical results of gamma techniques for measuring large samples | |
RU2108631C1 (en) | Fuel column continuity checking device | |
JP3241262B2 (en) | Radioactivity measurement method for solidified radioactive waste | |
RU2792704C1 (en) | Method for automatic control of the presence of components in fuel rods and the continuity of the fuel column and a device for its implementation | |
JP2635860B2 (en) | Radioactivity evaluation method for solidified radioactive waste | |
JPS6280578A (en) | Measuring instrument for radioactive concentration | |
KR101721525B1 (en) | method for detecting gamma ray of fuel rod | |
RU2034314C1 (en) | Process of calibration of aviation gamma spectrometer | |
JPS62168080A (en) | Measuring instrument for radiation concentration | |
Ensslin et al. | Attribute and Semiquantitative Measurements | |
RU2316064C2 (en) | Method and device for quality control of mox fuel rods | |
CN116794703A (en) | Method and device for testing radiation inspection robot and storage medium | |
Smith et al. | Safeguards and Security progress report, January--December 1989 |