[go: up one dir, main page]

JPH0192538A - Compression ratio control device for internal combustion engine - Google Patents

Compression ratio control device for internal combustion engine

Info

Publication number
JPH0192538A
JPH0192538A JP24999687A JP24999687A JPH0192538A JP H0192538 A JPH0192538 A JP H0192538A JP 24999687 A JP24999687 A JP 24999687A JP 24999687 A JP24999687 A JP 24999687A JP H0192538 A JPH0192538 A JP H0192538A
Authority
JP
Japan
Prior art keywords
compression ratio
internal combustion
combustion engine
target
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24999687A
Other languages
Japanese (ja)
Other versions
JPH07113332B2 (en
Inventor
Kenji Kato
健治 加藤
Takao Naruoka
成岡 孝夫
Eiji Iwasaki
英二 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP24999687A priority Critical patent/JPH07113332B2/en
Publication of JPH0192538A publication Critical patent/JPH0192538A/en
Publication of JPH07113332B2 publication Critical patent/JPH07113332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To aim at preventing torque shock due to abrupt change in compression ratio during transition operation of an internal combustion engine by compensating a desired compression ratio such as to reduce the absolute value of the difference between the desired compression ratio of the internal combustion engine and an actual compression ratio thereof. CONSTITUTION:An internal combustion engine 1 incorporates a compression ratio changing mechanism 2 for changing over the compression ratio of the engine over several stages. In this arrangement, there are provided a means 3 for detecting the operating condition of the internal combustion engine 3, and a means 4 for setting a desired compression ratio of the internal combustion engine 1 in accordance with the operating condition detected by means 3. Further, there is provided a means 5 for computing a variation in the difference between the desired compression ration set by the means 4 and an actual compression ratio of the internal combustion engine 1. Further, there is provided a means 6 for compensating the desired compression ratio to decrease the absolute value of the above-mentioned difference. Further, there is provided a means 7 for controlling the compression ratio changing mechanism 2 to obtain the desired compression ratio compensated by the means 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は圧縮比を運転条件に応じて無段階、或いは多
段階に亘って可変とした内燃機関における圧縮比制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a compression ratio control device for an internal combustion engine in which the compression ratio is variable steplessly or in multiple steps depending on operating conditions.

〔従来の技術〕[Conventional technology]

オツトーサイクル内燃機関においては圧縮比を上げると
燃焼効率が向上し燃料消費率を改善できると共に、出力
を高くすることができる。しかし、圧縮比を高くすると
ノッキングが発生し易くなる。
In an Otto cycle internal combustion engine, increasing the compression ratio improves combustion efficiency, improves fuel consumption rate, and increases output. However, when the compression ratio is increased, knocking becomes more likely to occur.

そこで、ノッキングが発生しない範囲で圧縮比を可能な
限り高くすることが行われ、圧縮比が変わると点火時期
や空燃比の要求値も変わるため、圧縮比に応じて点火時
期や空燃比の制御も併せて実行される。即ち、具体的に
は機関回転数、及び吸入空気量、吸気管圧力、スロット
ル開度等に代表される機関負荷などの運転条件に応じて
、ノッキングの発生しない圧縮比を決定し、現行の圧縮
比を上記圧縮比に切り換える制御装置が開示されており
、又、更にこの圧縮比切り換えの際のトルク急変による
ショックを和らげるために圧縮比制御と併せて制御され
ている点火時期や空燃比、或いはスロットル弁を一時的
に、トルクショックが減少される方向に制御する方法が
既に知られている。
Therefore, the compression ratio is made as high as possible without causing knocking, and as the compression ratio changes, the required values for the ignition timing and air-fuel ratio also change, so the ignition timing and air-fuel ratio are controlled according to the compression ratio. is also executed. In other words, the compression ratio that does not cause knocking is determined according to the engine speed and operating conditions such as the engine load represented by the intake air amount, intake pipe pressure, throttle opening, etc., and the current compression ratio is determined. A control device for switching the compression ratio to the above-mentioned compression ratio is disclosed, and the ignition timing, air-fuel ratio, or Methods are already known for temporarily controlling the throttle valve in such a way that the torque shock is reduced.

(特開昭59−43937号等) 〔発明が解決しようとする問題点〕 しかしながら、トルク急変を上述したような各種特性に
より補正する方法では、過渡時の制御遅れや、適合上の
誤差は避けることができず、その結果、多少のトルクシ
ョックは残ってしまい、ドライバビリティを完全に改善
したとは言えない。
(Unexamined Japanese Patent Publication No. 59-43937, etc.) [Problems to be Solved by the Invention] However, with the method of correcting sudden changes in torque using the various characteristics described above, control delays during transients and errors in adaptation can be avoided. As a result, some torque shock remains, and it cannot be said that drivability has been completely improved.

本発明はかかる現状に鑑みなされるものであって根本的
にトルクショックを抑える圧縮比制御装置を提供するも
のである。
The present invention has been made in view of the current situation, and it is an object of the present invention to provide a compression ratio control device that fundamentally suppresses torque shock.

〔問題点を解決するための手段〕[Means for solving problems]

第1図において内燃機関1は機関圧縮比を無段階、或い
は多段階に亘って切り換えることが可能な圧縮比可変機
構2を備える。そして本発明の圧縮比制御装置は、機関
1の運転状態を検出する運転条件検出手段3と、運転条
件検出手段3によって検出された運転条件により機関l
の目標とする圧縮比を決定する目標圧縮比設定手段4と
、上記目標圧縮比と現実の圧縮比との差を求める圧縮比
変化演算手段5と、上記差の絶対値が予め定められた所
定値より大なる時、上記目標圧縮比を補正して、上記現
実の圧縮比との差の絶対値を減ずる目標圧縮比補正手段
6と、目標圧縮比補正手段6により補正された目標圧縮
比に上記機構を制御する機構制御手段7とを有する。
In FIG. 1, an internal combustion engine 1 includes a variable compression ratio mechanism 2 that can change the engine compression ratio steplessly or in multiple steps. The compression ratio control device of the present invention includes an operating condition detecting means 3 for detecting the operating state of the engine 1, and an engine l based on the operating condition detected by the operating condition detecting means 3.
a compression ratio change calculation means 5 for calculating the difference between the target compression ratio and the actual compression ratio; target compression ratio correction means 6 which corrects the target compression ratio to reduce the absolute value of the difference from the actual compression ratio when the value is larger than the target compression ratio; It has a mechanism control means 7 for controlling the above mechanism.

〔実施例〕〔Example〕

以下、本発明の実施例を添付図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第2図は、例えば機関の回転数、及び吸気管内圧力等に
代表される機関負荷に応じて燃焼室容積を無段階、或い
は多段階に変えることにより圧縮比を変化させるように
した内燃機関の部分的概略図であって、燃焼室10の上
部には上方に向って突出した副シリンダ12が形成され
、副シリンダ12内にはその内部を摺動する副ピストン
14が配設されて、制御回路16からの指令を受けた圧
縮比可変機構としてのピストン駆動装置18が副ピスト
ン14を上下動させることにより、燃焼室10の容積、
即ち圧縮比を無段階、又は多段階に変化させている。
Figure 2 shows an internal combustion engine in which the compression ratio is changed by changing the combustion chamber volume steplessly or in multiple steps depending on the engine load represented by the engine speed and intake pipe internal pressure, for example. This is a partial schematic diagram, in which a sub-cylinder 12 is formed in the upper part of the combustion chamber 10 and projects upward, and a sub-piston 14 that slides inside the sub-cylinder 12 is disposed to control the The piston drive device 18 as a variable compression ratio mechanism receives a command from the circuit 16 and moves the sub-piston 14 up and down, thereby changing the volume of the combustion chamber 10,
That is, the compression ratio is changed steplessly or in multiple steps.

本実施例によれば制御回路16には、運転条件検出手段
として機関の回転数NEを検出するためのクランク角セ
ンサ20と、吸気管内圧力PMを検出するための吸気管
内圧力センサ(バキュームセンサ)22とが接続されて
おり、クランク角センサ20はディストリビュータ24
に装着される。
According to this embodiment, the control circuit 16 includes a crank angle sensor 20 for detecting the engine speed NE as an operating condition detection means, and an intake pipe pressure sensor (vacuum sensor) for detecting the intake pipe pressure PM. 22, and the crank angle sensor 20 is connected to the distributor 24.
will be installed on the

尚、制御回路16には通常、上述したセンサの他、例え
ばスロットル開度を検出するためスロットル弁26に接
続されたスロットルポジションセンサ28、機関の温度
状態を検出するための冷却水温センサ30、及び吸排気
温セッサ(図示せず)等が接続され、これらセンサによ
って検出された運転条件や外界条件により制御回路16
は、燃料噴射弁32や点火栓34に信号を送り、後述す
る圧縮比制御に対応する空燃比、点火時期を以って噴射
弁32及び点火栓34を駆動することになる。
In addition to the above-mentioned sensors, the control circuit 16 usually includes, for example, a throttle position sensor 28 connected to the throttle valve 26 for detecting the throttle opening, a cooling water temperature sensor 30 for detecting the temperature state of the engine, and The control circuit 16 is connected to an intake/exhaust temperature sensor (not shown), etc., and the control circuit 16 is controlled based on the operating conditions and external conditions detected by these sensors.
sends a signal to the fuel injection valve 32 and ignition plug 34, and drives the injection valve 32 and ignition plug 34 with an air-fuel ratio and ignition timing corresponding to compression ratio control, which will be described later.

尚、本図において36は吸気弁、38はピストン、40
はシリンダブロック、42はシリンダヘッドを示す。
In this figure, 36 is an intake valve, 38 is a piston, and 40 is an intake valve.
indicates a cylinder block, and 42 indicates a cylinder head.

第3図は以上説明したような各制御を実行する制御回路
16内部を示すブロック図である。この制御回路16は
、マイクロコンピュータシステムとして構成され、中央
処理袋!(cpU) 44と、リードオンリメモリ(R
OM) 46と、ランダムアクセスメモリ(RAM) 
4Bと、入力ポート50と、出力ポート52と、A/D
変換器54と、これら各要素を接続するバス56とから
成る。従って前述した各種センサからの信号は入力ポー
ト50に送られ、CPU 44で圧縮比、点火時期、燃
料噴射量の補正演算や運転条件や外界条件の判定を行な
い、その結果を以って出力ポート52より燃料噴射弁3
2、点火栓34及びピストン駆動装置18に信号を送り
制省卸する。
FIG. 3 is a block diagram showing the inside of the control circuit 16 that executes each control as described above. This control circuit 16 is configured as a microcomputer system, and is a central processing unit! (cpU) 44 and read-only memory (R
OM) 46 and random access memory (RAM)
4B, input port 50, output port 52, and A/D
It consists of a converter 54 and a bus 56 connecting these elements. Therefore, the signals from the various sensors mentioned above are sent to the input port 50, and the CPU 44 performs correction calculations for the compression ratio, ignition timing, and fuel injection amount, and determines the operating conditions and external conditions. Fuel injection valve 3 from 52
2. Send a signal to the ignition plug 34 and the piston drive device 18 to control them.

第4図は、本発明において目標とする圧縮比CRBAS
Fを決定する際に使用される圧縮比マツプ(無段階用)
である。図からも明らかなように本実施例では目標圧縮
比CRnn5eは機関回転数NEと吸気管内圧力PMと
の組み合わせによりマツプサーチして決定されるものと
する(2次元マツプ)。
FIG. 4 shows the target compression ratio CRBAS in the present invention.
Compression ratio map (for stepless) used when determining F
It is. As is clear from the figure, in this embodiment, the target compression ratio CRnn5e is determined by a map search based on a combination of the engine speed NE and the intake pipe internal pressure PM (two-dimensional map).

当然、このマツプに関してはこの2特性に限定されず、
これにスロットル開度TAや吸入空気量Q/回転数NE
等を加味した3次元マツプとしても良い。又、この圧縮
比マツプは制御回路16内のROM 46の所定領域に
格納されており、検出された運転条件によりCPU 4
4で演算、決定されるものである。
Naturally, this map is not limited to these two characteristics,
In addition to this, throttle opening TA and intake air amount Q/rotational speed NE
It is also possible to use a three-dimensional map that takes into account the following. Further, this compression ratio map is stored in a predetermined area of the ROM 46 in the control circuit 16, and the CPU 4
This is calculated and determined in step 4.

第5図及び第6図は本発明の圧縮比制御を概念的に示す
図であって、第5図は車両が急加速した時の吸気管内圧
力PM、及び圧縮比の変化を示し、第6図は急減速時に
おける同特性の変化を示している。
5 and 6 are diagrams conceptually showing the compression ratio control of the present invention. FIG. 5 shows changes in the intake pipe internal pressure PM and compression ratio when the vehicle accelerates suddenly, and FIG. The figure shows changes in the same characteristics during sudden deceleration.

まず、第5図に関し、例えば車両が定常走行から急加速
した場合、吸気管内圧力PMは実線Aに示すように急激
に上昇する。従ってこの運転条件の変化に対応した目標
圧縮比CR11A3Eは、第4図の圧縮比マツプにより
図中点線の如く曲線状になる。
First, with regard to FIG. 5, for example, when the vehicle suddenly accelerates from steady running, the intake pipe internal pressure PM rapidly increases as shown by the solid line A. Accordingly, the target compression ratio CR11A3E corresponding to this change in operating conditions is curved as shown by the dotted line in the compression ratio map of FIG.

しかしながら一般の制御法では、制御プログラム自体が
所定時間毎(Δt)、或いは所定のクランク角度毎に実
行されるため算出された目標圧縮比CRIIAS!は図
中−点鎖線のように直線的に変化し、特に点aより点す
においては目標圧縮比CRBASEが急激に下降するこ
とになる。即ち、この決定された目標圧縮比CRIIA
SEに従ってこのまま実行処理する従来の制御法ではこ
の下降によりトルクショックとなりドライバビリティ悪
化の原因になるのである。これに対し本発明による制御
は単位時間Δtあたりの圧縮比CRの変化幅を所定量(
図ではα)以内に抑えるようにし、図中実線Bに示すよ
うに目標圧縮比CRBAsvを補正し、所謂、急激な圧
縮比変化が無いようにする。
However, in general control methods, the control program itself is executed every predetermined time (Δt) or every predetermined crank angle, so the calculated target compression ratio CRIIAS! changes linearly as shown by the dashed-dotted line in the figure, and the target compression ratio CRBASE drops rapidly especially from point a. That is, this determined target compression ratio CRIIA
In the conventional control method in which execution processing is performed as is according to SE, this drop causes a torque shock and causes deterioration of drivability. On the other hand, the control according to the present invention changes the range of change in compression ratio CR per unit time Δt by a predetermined amount (
In the figure, the target compression ratio CRBAsv is kept within α), and the target compression ratio CRBAsv is corrected as shown by the solid line B in the figure, so that there is no so-called sudden change in the compression ratio.

これは第6図に示す急減速時においても同様であって圧
縮比を急激に上昇せず所定量のづつ増加することにより
トルクショックを緩らげる。
This is also the case during sudden deceleration as shown in FIG. 6, in which the compression ratio is not increased rapidly but increased by a predetermined amount, thereby alleviating the torque shock.

第7図は以上説明したような制御を実現するための制御
回路16の作動を示すフローチャートである。尚、この
作動を実現するためのプログラムはROM 46の所定
領域に格納されており、このルーチンは従来同様、所定
時間毎、或いは所定のクランク角度毎に実行される割り
込みルーチンとする。
FIG. 7 is a flowchart showing the operation of the control circuit 16 for realizing the control as described above. The program for realizing this operation is stored in a predetermined area of the ROM 46, and this routine is an interrupt routine that is executed at predetermined time intervals or at predetermined crank angles, as in the conventional case.

先ず、ステップSIOではクランク角センサ20により
機関回転数NEを読み込み、続くステップ320ではバ
キュームセンサ22より吸気管内圧力PMを読み込み、
ステップS30でこれらNEとPMより前述した第4図
圧縮比マツプのマツプサーチにより、目標圧縮比CRI
43Eを算出する。
First, in step SIO, the engine speed NE is read by the crank angle sensor 20, and in the subsequent step 320, the intake pipe internal pressure PM is read from the vacuum sensor 22.
In step S30, the target compression ratio CRI is determined by a map search of the compression ratio map shown in FIG. 4 using these NE and PM.
Calculate 43E.

次に、ステップ340では前回、本ルーチンを実行した
時の圧縮比CRotoを読み込んで、ステップ350に
進み圧縮比の変化(差)ΔCR”’CRIASI!−C
Rot。を算出する。
Next, in step 340, the compression ratio CRoto when this routine was executed last time is read, and the process proceeds to step 350, where the change (difference) in the compression ratio ΔCR'''CRIASI!-C
Rot. Calculate.

次にステップS60ではステップS50で決定された圧
縮比の変化ΔCRが所定値α(α:正の値)より大きい
か否かを見る。ところで第4図圧縮比マツブに示すよう
に、−船釣には、運転条件が軽負荷側に変化した時に、
目標圧縮比CR11A3Eが増大することになるため、
例えば減速時にはΔCRは正の値をとり、かつ絶対値が
大きくなることになる。
Next, in step S60, it is checked whether the change in compression ratio ΔCR determined in step S50 is larger than a predetermined value α (α: positive value). By the way, as shown in Figure 4, compression ratio, when the operating conditions change to the light load side,
Since the target compression ratio CR11A3E will increase,
For example, during deceleration, ΔCR takes a positive value and its absolute value increases.

従って第6図に示すような急減速時にはYesと判定さ
れ、ステップS70に進むことになる。そしてステップ
370では、前回の圧縮比CROLDを所定値αだけ高
くするように補正し、補正された目標圧縮比CRi□、
を以って今回の目標圧縮比とする。
Therefore, in the case of sudden deceleration as shown in FIG. 6, the determination is YES and the process proceeds to step S70. Then, in step 370, the previous compression ratio CROLD is corrected to be higher by a predetermined value α, and the corrected target compression ratio CRi□,
This is the current target compression ratio.

一方、ステップS60でNoと判定された時は、ステッ
プS80に進んで、ΔCRが一αより小さいか否かを見
る。これは加速時においてΔCRが負の値をとるためで
あって、その絶対値が所定値αより大きくなるような急
加速である場合、(例えば第5図の状態)ΔCRが−α
より小さくなるため、YeSと判定され、ステップ39
0に進むことになる。
On the other hand, when the determination in step S60 is No, the process advances to step S80 and it is determined whether ΔCR is smaller than 1 α. This is because ΔCR takes a negative value during acceleration, and in the case of sudden acceleration where the absolute value becomes larger than the predetermined value α (for example, the state shown in FIG. 5), ΔCR becomes -α
Since it is smaller, it is determined Yes, and step 39
It will proceed to 0.

ステップS90では、ステップS70とは逆に前回の圧
縮比CROLDから所定値αだけ減少するように補正し
、補正された目標圧縮比CRBASEを以って今回の目
標圧縮比とすることになる。
In step S90, contrary to step S70, the previous compression ratio CROLD is corrected to decrease by a predetermined value α, and the corrected target compression ratio CRBASE is used as the current target compression ratio.

前後するがステップS60及びステップS80でN。The answer is N at step S60 and step S80.

の場合は、急加速、急減速ではないと判定され従ってト
ルクショックも無いためステップS30で求められた目
標圧縮比を変更せず、次のステップ5100に進む。
In this case, it is determined that there is no sudden acceleration or sudden deceleration, and therefore there is no torque shock, so the target compression ratio determined in step S30 is not changed and the process proceeds to the next step 5100.

ステップ5100においては、上述したステップS30
、ステップS70、ステップS90で決定した夫々の目
標圧縮比になるように制御回路16は圧縮比可変機構2
に信号を送り目標とする圧縮比を達成することになる。
In step 5100, the above-mentioned step S30
, the control circuit 16 controls the compression ratio variable mechanism 2 so that the target compression ratios determined in steps S70 and S90 are achieved.
A signal is sent to achieve the target compression ratio.

そして最後に、ステップ5110に進み、今回の圧縮比
CRIIAStを、RAM 4Bの所定領域にCROL
Dとして記憶し、復帰することになる。
Finally, the process advances to step 5110, where the current compression ratio CRIIASt is CROL-loaded into a predetermined area of RAM 4B.
It will be remembered as D and will be returned.

急加減速時の場合、次のフロー実行では以上のようにし
て補正された圧縮比をCROLDを対象としてさらに補
正処理がなされるわけであって、この処理を繰り返すこ
とにより最終的に一α〈ΔCR<αとなるまで目標圧縮
比補正処理が実行されることになる。
In the case of sudden acceleration/deceleration, in the next flow execution, the compression ratio corrected as described above is further corrected for CROLD, and by repeating this process, it is finally The target compression ratio correction process is executed until ΔCR<α.

以上説明した制御ルーチンは、急加速時及び急減速時の
圧縮比補正として所定値αを増減ずることにより急激な
圧縮比変化を抑えたものである。これに対し第8図及び
第9図は上述した補正法とは異なる本発明の別実施例と
して、急加減速の開始時においてその補正幅を大きくと
り、その後徐々に補正幅を小さくしたものであって加減
速開始時の圧縮比の追従性を高めたものである。具体的
には図からも明らかなように急加減速が開始されたなら
ば、今回の運転条件より求められた目標圧縮比CR1A
s1と、現実の圧縮比CROLDとの差ΔCRの絶対値
の半分だけ補正し、以下この補正を順次繰り返していく
方法である。従って、この補正を実行する制御ルーチン
は、第10図に示すように先に説明した第7図制御ルー
チンとは基本的に同様であり、先のステップS70及び
ステップ390に換わり、ステップ5270で目標圧縮
比CR1IAsEをCRotn+ (CRmast  
CROLD )/ 2に補正すること(減速時)及びス
テップ5290で目標圧縮比CR□、ゆをCROLD(
CROLD  CRIA3り/ 2に補正すること(加
速時)が異なるだけである。〔双方とも補正された目標
圧縮比は(CRIIASE +CRotn )/ 2な
る。〕尚、本実施例において過渡時であるか否かの判定
値(所定値)α′は、第7図制御ルーチンに使用された
所定値αよりも小さく設定されており、加減速時におけ
る目標圧縮比に対して補正処理回数をある程度まで(第
8.9図では3回)確保し、急加減速終了後の運転条件
に対応する目標圧縮比に対して補正された目標圧縮比が
円滑に接近するようにしている。又、これに関連してさ
らに補正処理回数を増やすためには所定値α′を出来る
だけ小さくすれば良く、例えば第10図制御ルーチンの
所定値α′を0に設定したのと同様な意味をもつ第11
図制御ルーチンで代用しても良い。即ち、本制御ルーチ
ンは第10図制御ルーチンにおけるステップ8250〜
280を省略したものに相当し、この場合、急加減速時
のみの補正に限定されず、通常の加減速時においても補
正処理が実行されることになる。これは過渡時のトルク
ショック低減という本発明の目的を達成しつつ、プログ
ラムを簡略化するという意味で利点を持つ。以上説明し
た第7.10.11図制御ルーチンは、圧縮比を無段階
に亘って切り換えることができる機構に対して本発明を
適用した例であるが、本発明は、多段階制御についても
、同様に適用できる。即ち、多段階制御の場合は、第1
2図に示すような圧縮比マツプを使用し、ある境界線間
領域内に含まれる運転領域では全て同一の圧縮比(例え
ばCR,。
The control routine described above suppresses sudden changes in the compression ratio by increasing or decreasing the predetermined value α as compression ratio correction during sudden acceleration and sudden deceleration. On the other hand, FIGS. 8 and 9 show another embodiment of the present invention different from the correction method described above, in which the correction width is set large at the start of sudden acceleration/deceleration, and then the correction width is gradually reduced. This improves the followability of the compression ratio at the start of acceleration/deceleration. Specifically, as is clear from the figure, if sudden acceleration/deceleration starts, the target compression ratio CR1A determined from the current operating conditions
In this method, only half of the absolute value of the difference ΔCR between s1 and the actual compression ratio CROLD is corrected, and this correction is successively repeated thereafter. Therefore, the control routine for executing this correction, as shown in FIG. 10, is basically the same as the control routine in FIG. The compression ratio CR1IAsE is CRotn+ (CRmast
CROLD ) / 2 (during deceleration) and step 5290 to correct the target compression ratio CR□, yu to CROLD (
The only difference is that CROLD CRIA3 is corrected to 2 (during acceleration). [The corrected target compression ratio for both is (CRIIASE +CRotn)/2. ] In this embodiment, the determination value (predetermined value) α′ for determining whether or not the transient state is occurring is set smaller than the predetermined value α used in the control routine in FIG. By ensuring that the compression ratio is corrected up to a certain number of times (3 times in Figure 8.9), the target compression ratio that has been corrected to the target compression ratio that corresponds to the operating conditions after the end of sudden acceleration/deceleration can be smoothly corrected. I'm trying to get closer. In addition, in this regard, in order to further increase the number of times of correction processing, the predetermined value α' should be made as small as possible. Motsu No. 11
A diagram control routine may be used instead. That is, this control routine includes steps 8250 to 8250 in the control routine of FIG.
280 is omitted, and in this case, the correction process is not limited to correction only during sudden acceleration/deceleration, but also during normal acceleration/deceleration. This has an advantage in that it simplifies the program while achieving the object of the present invention of reducing torque shock during transient times. The control routines in Figures 7.10.11 described above are examples in which the present invention is applied to a mechanism that can steplessly switch the compression ratio, but the present invention also applies to multi-step control. The same applies. In other words, in the case of multi-stage control, the first
A compression ratio map as shown in Fig. 2 is used, and all operating regions included in a certain boundary line region have the same compression ratio (for example, CR, etc.).

CR,・・・等)をとることになるため、仮りに急加減
速時に運転条件から求まる目標圧縮比が、急加減 ゛連
部の圧縮比から2領域以上に亘って変化するような場合
においても(例えばCR,→CR4,)、実際の圧縮比
は1領域毎しか変化しないようにすれば良い(例えばC
I?I−CRZ→CR3→Cl?、 、図中矢印参照)
。従ってこの場合の制御フローチャートは、第7図のス
テップS30の圧縮比マツプを例えば第12図に示す多
段階用圧縮比マツプに書き換え、例えばマツプにおいて
各領域の圧縮比が1づつ変化するように設定される場合
、ステップ360〜90のαを1に置換すれば良い。
CR, etc.), so if the target compression ratio determined from the operating conditions during sudden acceleration/deceleration changes over two or more regions from the compression ratio of the sudden acceleration/deceleration section, (for example, CR, → CR4,), the actual compression ratio only needs to change for each region (for example, CR, → CR4,).
I? I-CRZ→CR3→Cl? , , see the arrow in the figure)
. Therefore, in the control flowchart in this case, the compression ratio map in step S30 of FIG. 7 is rewritten, for example, to the multi-stage compression ratio map shown in FIG. If so, α in steps 360 to 90 may be replaced with 1.

尚、これまで述べたいずれの実施例においても、本発明
による圧縮比制御に同期して、燃料噴射量や点火時期を
変化させることは当然である。
Incidentally, in any of the embodiments described so far, it is a matter of course that the fuel injection amount and ignition timing are changed in synchronization with the compression ratio control according to the present invention.

〔効 果〕〔effect〕

以北説明したように本発明によれば、過渡時において過
渡の際の運転条件に対応して算出された目標圧縮比と、
現実の圧縮比との差の絶対値を減ずるように目標圧縮比
を新らたに補正するため、圧縮比急変によるトルクショ
ックは防止される。
As described above, according to the present invention, the target compression ratio calculated in response to the operating conditions during the transient,
Since the target compression ratio is newly corrected so as to reduce the absolute value of the difference from the actual compression ratio, torque shock due to sudden changes in the compression ratio is prevented.

又、圧縮比の急変は無くなるため点火時期や空燃比の同
期が容易となり制御精度が向上する。加えて仮りにアク
セル煽りが連続するような短時間光たりの運転条件変化
が大きい場合でも圧縮比の変動幅は上記補正により従来
より小さく抑えることができ、従って極端な圧縮比のハ
ンチング現象が防止され圧縮比可変機構の耐久性も向上
する。
Furthermore, since there is no sudden change in the compression ratio, synchronization of the ignition timing and air-fuel ratio becomes easier and control accuracy improves. In addition, even if there are large changes in operating conditions such as short bursts of light, such as continuous acceleration, the fluctuation range of the compression ratio can be kept smaller than before with the above correction, thus preventing extreme hunting of the compression ratio. This also improves the durability of the variable compression ratio mechanism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成図;第2図は本発明の実施例の機
関構成図;第3図は制御回路内部を示す本発明のブロッ
ク図;第4図は本実施例にて使用される圧縮比マツプ;
第5図は急加速時における本発明の圧縮比制御を概念的
に示す図;第6図は急減速時における圧縮比制御を概念
的に示す図;第7図は第5,6図に示す圧縮比制御を可
能にする制御回路の作動を示すフローチャート図;第8
図は急加速時において第5.6図と異なる圧縮比制御を
概念的に示す図;第9図は急減速時において第8図と同
様な圧縮比制御を概念的に示す図;第10回は第8.9
図に示す圧縮比制御を可能にする制御回路のフローチャ
ート図;第11図は第10図に示すフローチャートを簡
略化したフローチャート図;第12図は圧縮比多段階制
御において使用される圧縮比マツプ: 10・・・燃焼室、       12・・・副シリン
ダ、14・・・副ピストン、     16・・・制御
回路、1B・・・ピストン駆動装置、 20・・・クランク角センサ、 22・・・バキュームセンサ、 24・・・ディストリビュータ、26・・・スロットル
弁、28・・・スロットルポジションセンサ、30・・
・冷却水温センサ、  32・・・燃料噴射弁、34・
・・点火栓。
Fig. 1 is a block diagram of the present invention; Fig. 2 is an engine block diagram of an embodiment of the present invention; Fig. 3 is a block diagram of the present invention showing the inside of the control circuit; Fig. 4 is a block diagram of the present invention used in this embodiment. compression ratio map;
Fig. 5 is a diagram conceptually showing the compression ratio control of the present invention during sudden acceleration; Fig. 6 is a diagram conceptually showing the compression ratio control during sudden deceleration; Fig. 7 is shown in Figs. 5 and 6. Flowchart diagram showing the operation of the control circuit that enables compression ratio control; 8th
The figure conceptually shows compression ratio control different from Fig. 5.6 during sudden acceleration; Fig. 9 conceptually shows the same compression ratio control as Fig. 8 during sudden deceleration; Part 10 is 8.9
A flowchart of a control circuit that enables the compression ratio control shown in the figure; FIG. 11 is a simplified flowchart of the flowchart shown in FIG. 10; FIG. 12 is a compression ratio map used in compression ratio multi-step control: DESCRIPTION OF SYMBOLS 10... Combustion chamber, 12... Sub cylinder, 14... Sub piston, 16... Control circuit, 1B... Piston drive device, 20... Crank angle sensor, 22... Vacuum sensor , 24... Distributor, 26... Throttle valve, 28... Throttle position sensor, 30...
・Cooling water temperature sensor, 32...Fuel injection valve, 34・
...Spark plug.

Claims (1)

【特許請求の範囲】 1、圧縮比を無段階、或いは多段階に亘って切り換える
ことが可能な圧縮比可変機構を備えた内燃機関の圧縮比
制御装置において、 機関の運転条件を検出する運転条件検出手段と、該運転
条件検出手段によって検出された運転条件により機関の
目標とする圧縮比を決定する目標圧縮比設定手段と、上
記目標圧縮比と現実の圧縮比との差を求める圧縮比変化
演算手段と、上記差の絶対値が予め定められた所定値よ
り大なる時、上記目標圧縮比を補正して上記現実の圧縮
比との差の絶対値を減ずる目標圧縮比補正手段と、該目
標圧縮比補正手段により補正された目標圧縮比に上記機
構を制御する機構制御手段とを有することを特徴とする
内燃機関の圧縮比制御装置。
[Scope of Claims] 1. In a compression ratio control device for an internal combustion engine equipped with a variable compression ratio mechanism capable of changing the compression ratio steplessly or in multiple stages, an operating condition for detecting the operating condition of the engine. a detection means, a target compression ratio setting means for determining a target compression ratio of the engine based on the operating conditions detected by the operating condition detection means, and a compression ratio change for determining the difference between the target compression ratio and the actual compression ratio. calculation means; target compression ratio correction means for correcting the target compression ratio to reduce the absolute value of the difference from the actual compression ratio when the absolute value of the difference is greater than a predetermined value; A compression ratio control device for an internal combustion engine, comprising mechanism control means for controlling the mechanism to a target compression ratio corrected by a target compression ratio correction means.
JP24999687A 1987-10-05 1987-10-05 Internal combustion engine compression ratio control device Expired - Lifetime JPH07113332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24999687A JPH07113332B2 (en) 1987-10-05 1987-10-05 Internal combustion engine compression ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24999687A JPH07113332B2 (en) 1987-10-05 1987-10-05 Internal combustion engine compression ratio control device

Publications (2)

Publication Number Publication Date
JPH0192538A true JPH0192538A (en) 1989-04-11
JPH07113332B2 JPH07113332B2 (en) 1995-12-06

Family

ID=17201291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24999687A Expired - Lifetime JPH07113332B2 (en) 1987-10-05 1987-10-05 Internal combustion engine compression ratio control device

Country Status (1)

Country Link
JP (1) JPH07113332B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2379034A (en) * 2001-08-08 2003-02-26 Ford Global Tech Inc Scheduling optimal compression ratio of an internal combustion engine
US7422004B2 (en) 2004-01-21 2008-09-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with variable compression ratio
US7854217B2 (en) 2007-09-06 2010-12-21 Toyota Jidosha Kabushiki Kaisha Idling control device of spark ignition type internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2379034A (en) * 2001-08-08 2003-02-26 Ford Global Tech Inc Scheduling optimal compression ratio of an internal combustion engine
US6675087B2 (en) 2001-08-08 2004-01-06 Ford Global Technologies, Llc Method and system for scheduling optimal compression ratio of an internal combustion engine
GB2379034B (en) * 2001-08-08 2005-02-23 Ford Global Tech Inc A method and system for scheduling optimal compression ratio of an international combustion engine
US7422004B2 (en) 2004-01-21 2008-09-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with variable compression ratio
US7840335B2 (en) 2004-01-21 2010-11-23 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with variable compression ratio
US7854217B2 (en) 2007-09-06 2010-12-21 Toyota Jidosha Kabushiki Kaisha Idling control device of spark ignition type internal combustion engine

Also Published As

Publication number Publication date
JPH07113332B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
US4582032A (en) Ignition timing control system for internal combustion engine
EP2317106A1 (en) Internal combustion engine control device
JP2000008932A (en) Mode control system of direct injection spark ignition engine
CN107002573A (en) Controller for internal combustion engine
KR101848598B1 (en) Control method and apparatus for internal combustion engine
JP2569586B2 (en) Electronic control unit for internal combustion engine
JPS606043A (en) Fuel injection control method for internal combustion engine
JPH0192538A (en) Compression ratio control device for internal combustion engine
JPH0357879A (en) Ignition timing controller
JPS5839306A (en) Learning control method for electronic control engine
JPH07116956B2 (en) Internal combustion engine compression ratio control device
JPH0652074B2 (en) Idling stabilizer for multi-cylinder engine
JPH0623553B2 (en) Engine air-fuel ratio control method
JP2521039B2 (en) Engine air-fuel ratio control device
JP6267280B2 (en) Control device for internal combustion engine
KR100454320B1 (en) Device and method for engine control
JPS6375354A (en) Ignition timing control device for internal combustion engine
JPH10159627A (en) Deceleration controller for internal combustion engine
JPH0571381A (en) Fuel supply control device for internal combustion engine
JPH0559999A (en) Output control device for engine
JPH0584384B2 (en)
JPS62203942A (en) Controller for internal combustion engine
JPS61229937A (en) Air-fuel ratio controller for multiple cylinder engine
JP4844522B2 (en) Control device for internal combustion engine
JPH06173731A (en) Control method for engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term