[go: up one dir, main page]

JPH0160652B2 - - Google Patents

Info

Publication number
JPH0160652B2
JPH0160652B2 JP55050255A JP5025580A JPH0160652B2 JP H0160652 B2 JPH0160652 B2 JP H0160652B2 JP 55050255 A JP55050255 A JP 55050255A JP 5025580 A JP5025580 A JP 5025580A JP H0160652 B2 JPH0160652 B2 JP H0160652B2
Authority
JP
Japan
Prior art keywords
ceramic body
exhaust gas
filter
holes
thin wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55050255A
Other languages
Japanese (ja)
Other versions
JPS56148607A (en
Inventor
Takao Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENUKOA KK
Original Assignee
ENUKOA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENUKOA KK filed Critical ENUKOA KK
Priority to JP5025580A priority Critical patent/JPS56148607A/en
Publication of JPS56148607A publication Critical patent/JPS56148607A/en
Publication of JPH0160652B2 publication Critical patent/JPH0160652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はデイーゼルエンジンからの排出ガス中
に含まれる微粒子および有害ガス成分を除去する
排出ガス濾過体に関するものである。大気汚染防
止に関連し、デイーゼルエンジンから排出される
黒煙粒子を主体とする微粒子および有害ガス成分
であるHC、CO、NOxの除去または低減が必須
となつている。デイーゼルエンジンはシリンダー
内の圧縮された高温空気に燃料を噴射し、燃焼さ
せるもので、その性質上空燃比が大きく空気が過
剰であることから排出ガス中のHC、CO含有量は
比較的少くNOx含有量がやや多くなつている。
しかし、燃料の噴射が燃焼開始前になされるため
燃料の気化が十分に行なわれず油滴のまま空気不
足の状態で燃焼し、黒煙ないし中間生成物を生
じ、いわゆる煤を含む微粒子として排出され、デ
イーゼルエンジンの大きな問題の1つとなつてい
る。これらの有害成分のうち、NOxは空燃比が
大きいことからガソリンエンジンの排出ガス浄化
に有効に使用されている三元触媒が利用できず、
またEGR(排出ガス再循環装置)も含有される大
量の微粒子のためガソリンエンジンのごとく容易
に使用できなく、もつぱら燃料噴射時期の遅延を
主体とする対策が検討されている。しかし、燃料
噴射時期を遅らせるとNOxは減少するが、逆に
HC、COおよび黒煙粒子を主体とする微粒子の増
加を来たす結果となる。 HC、COについては、ガソリンエンジンの排出
ガス処理に用いられている酸化触媒が排出ガス中
の大量の微粒子の沈着により触媒の劣化が激し
く、有効に利用できず、対策としては微粒子とと
もに燃料噴射系、吸気系、燃焼室の改良などが検
討されているが、不充分な状態であり、特に微粒
子については大気汚染上から少くとも現状の濃度
からの大幅な低減が要望されるが、未だ有効な低
減の方法が確立されていない。 本発明はこのような問題を含むデイーゼルエン
ジンからの排出ガス中の微粒子を同時に含有され
ているHC、COとともに大幅に除去低減させるた
めに発明されたもので、多孔質の薄壁により仕切
られた多角形断面をもつ多数の互いに平行な貫通
孔よりなるハニカム状セラミツク体の相隣接する
貫通孔の入口部の端面を交互に1個おきにチエツ
カーフラグパターン状に閉塞し、他方の出口部端
面においては上記入口部で閉塞された貫通孔以外
の貫通孔端面を閉塞し、該ハニカム状セラミツク
体の入口側より導入されたデイーゼルエンジン排
出ガスが該多孔質の薄壁を通過する際に含有する
微粒子が濾過除去され、該セラミツク体の出口側
より排出されるように構成し、該セラミツク体の
貫通孔の孔壁の出口側部分に排出ガス浄化用酸化
触媒を担持させたことを特徴とするデイーゼルエ
ンジン用排出ガス濾過体である。 本発明のさらに詳しい構成の具体例を示す第1
図および第2図に基づいて説明すれば、多孔質の
セラミツク薄壁1により四方を仕切られた四角形
の断面をもつ多数の互に平行な貫通孔2よりなる
セラミツク体3の相隣接する貫通孔の入口部4と
出口部4′とを交互にセラミツク薄壁1と同一な
いし、これより気孔率の小さなセラミツク材5に
て実質的に閉塞し、セラミツク体3の入口側6よ
り導入されたデイーゼルエンジン排出ガスが多孔
質セラミツク薄壁1を通過する際に排出ガス中に
含有する微粒子7を濾過除去し、セラミツク体の
出口側8より排出されるようになつたデイーゼル
エンジン排出ガス中の微粒子の濾過体において、
セラミツク体の貫通孔孔壁の出口部分に排出ガス
浄化用酸化触媒10を担持させ、同時に排出ガス
中のHC、COなどの有害成分を酸化浄化するよう
にしたデイーゼルエンジン用排出ガス濾過体であ
る。 次に本発明のデイーゼルエンジン用排出ガス濾
過体の構成および作用について更に詳細に説明す
ると、セラミツク体3はシリカ、アルミナ、チタ
ニア、ジルコニア、ムライト、コージエライトな
どのセラミツク材料またはこれらの混合物または
複合酸化物からなり、これらの原料粉末または焼
成してこれらの酸化物を生ずる原料粉末を通常の
窯業手法により混練、押出成形、乾燥、焼成して
得られ、薄壁の気孔率はこれを通過するガスの圧
力損失およびセラミツクスの強度面から10〜60容
積%、薄壁の細孔平均径は濾過する微粒子の平均
径が0.1〜0.2μであり、実際に濾過する際は架橋
現象が起こることから効率よく濾過ができ、細孔
の目詰りによる圧力損失増大に到らぬ1〜20μの
ものが使用できる。細孔の平均径および気孔率は
原料粉末の粒度分布の選択、カーボン、木屑、そ
の他有機可燃性粉末の原料粉末への添加により調
節できる。薄壁により仕切られてできる平行な多
数の貫通孔の数は多い程排出ガスの濾過面積が大
きく有利であるが、逆に貫通孔の断面が小さくな
り、微粒子の堆積によりガス通路が閉塞される危
険性があり、有効に利用できる範囲はセラミツク
体断面において1.5〜150個/cm2である。また薄壁
の厚さはセラミツク体断面積当りの貫通孔の数を
増すに従い減らしていく必要があるが、その製造
上から0.05mmが下限であり、また圧力損失を一定
以下に押えるには1.5mmが上限である。セラミツ
ク体の断面の外形には特に制限はないが通常エン
ジンへの取付け上から円形または楕円形のものが
使用できる。 貫通孔を閉塞するセラミツクスは薄壁を濾過体
として用いる関係上薄壁の気孔率と同等ないしそ
れ以下の気孔率であることが必要であり、好まし
くはセラミツク体の押出成形、乾燥後可塑的に混
練された材料をセラミツク体の入口部または出口
部へ実質的に貫通孔が閉塞されるように十分に例
えば2〜10mmの長さに注入し、乾燥し、セラミツ
ク体と同時に焼成される。 本濾過体の孔壁の出口部分に担持する酸化触媒
としては銅、マンガン、コバルトなどの卑金属酸
化物系のものも使用できるが貴金属系の触媒がよ
り効率よく使用できる。すなわちガソリンエンジ
ン車の排出ガス処理に使用されているごとく、先
ずセラミツク体薄壁表面に活性アルミナなどの活
性物質をコーテイングし、これに白金、パラジウ
ム、白金−パラジウムなどの貴金属を浄化すべき
HC、CO量に応じ担持したものが使用できる。 デイーゼルエンジンからの排出ガス中の微粒子
が比較的少ない場合はセラミツク体の入口部分へ
担持しても酸化触媒の機能を発揮するが、微粒子
が多い場合は酸化触媒層にこれが沈着し、触媒機
能が劣化され好ましくなく、その場合はセラミツ
ク体の孔壁の出口部分に触媒を担持するのがよく
排出ガスが濾過体を通過し微粒子の大部分が濾過
除去された後、触媒層を通過するので触媒の劣化
も少なく効果的にHC、COの浄化が可能である。 本発明の濾過体17は、通常ガソリンエンジン
からの排出ガスの浄化に使用されるハニカム型触
媒と同様第3図イのごとく金属ケースに納められ
デイーゼルエンジン15の排気系統、例えば排気
マニホールド16の後方に第3図ロのごとく接続
される。デイーゼルエンジン15からの排出ガス
は濾過体入口6より濾過体に入り、微粒子は主と
して触媒が担持されていない薄壁部分の細孔を通
過する際濾過され、薄壁の入口側に残り、微粒子
の多くが濾過除去された排出ガス濾過体出口側よ
り排出されるこの際濾過体孔壁の出口部分に酸化
触媒が担持されている場合はこの触媒層を通過す
る際HC、COがそれぞれ酸化され、無害のH2O、
CO2となり排出される。 なお、入口側薄壁上に濾過蓄積された黒煙粒子
を主体とした微粒子は薄壁の細孔を塞ぎ、時間経
過とともに圧力損失の増加を来たす。しかしこれ
らの微粒子の大部分を占める黒煙粒子は400〜450
℃以上の温度にさらされた場合、酸素過剰状態に
おいて燃焼することが知られており、本発明の濾
過体においてもエンジン回転数およびエンジン負
荷の増大適正化により容易に排出ガス温度400℃
以上を得ることができ、この場合黒煙粒子は実質
上薄壁上に蓄積し細孔を塞ぐことなく連続的に燃
焼除去できる。 本発明において、濾過体に酸化触媒と組合わせ
た効果をまとめれば、同一の濾過体において微粒
子の濾過除去とHC、COの酸化浄化を行えるこ
と、従つて1つの金属ケースに収容でき、エンジ
ンへの取付けが容易になつたこと、従来微粒子の
沈着による劣化で使用できなかつた酸化触媒が濾
過体との組合わせにより使用できるようになつた
こと、また黒煙粒子が比較的少ない場合は、濾過
体入口部分に酸化触媒を担持することにより、
HC、COの燃焼による反応熱で排出ガス温度を高
めることができ、従つて薄壁上において黒煙粒子
の燃焼を促進できるのが特徴である。 次に本発明の実施例について説明する。 押出法により作られた貫通孔が断面当り15個/
cm2薄壁の厚みが0.4mm、気孔率42%、平均細孔径
10μよりなる直径118mm、長さ200mmのコージエラ
イト質セラミツクスの貫通孔を1つ置きに入口部
と出口部においてそれぞれ10mmにわたつて気孔率
28%のコージエライト質セラミツクスで図示のよ
うにチエツカーフラグパターン状に閉塞した濾過
体の出口部分薄壁上に出口より50mmにγ−アルミ
ナを約30μの厚さにコーテイングし、更に白金触
媒を合計1g担持し、本発明の濾過体を得た。 この濾過体を第2図イに示したものと同様な方
法で金属ケースに納め4気筒、排気量2のデイ
ーゼルエンジン車の排気マニホールドに第2図ロ
に示したと同様に接続し、デイーゼルエンジン6
モードの排出ガス試験および台上3モードによる
排気煙試験を行い、本発明の濾過体取付け前と比
較測定し次の結果を得た。
The present invention relates to an exhaust gas filter that removes particulates and harmful gas components contained in exhaust gas from a diesel engine. In connection with air pollution prevention, it is essential to remove or reduce fine particles, mainly black smoke particles, and harmful gas components HC, CO, and NO x emitted from diesel engines. Diesel engines inject fuel into compressed high-temperature air in the cylinder and combust it. Due to its nature, the air-fuel ratio is large and there is an excess of air, so the HC and CO contents in the exhaust gas are relatively low and NO x The content is slightly higher.
However, because the fuel is injected before the combustion starts, the fuel is not vaporized sufficiently and burns as oil droplets in a lack of air, producing black smoke or intermediate products, which are emitted as so-called fine particles containing soot. This has become one of the major problems with diesel engines. Among these harmful components, NO x has a large air-fuel ratio, so the three-way catalyst that is effectively used to purify exhaust gas from gasoline engines cannot be used.
In addition, the EGR (exhaust gas recirculation system) also contains a large amount of particulates, making it difficult to use as easily as in a gasoline engine, and countermeasures are being considered, mainly by delaying the timing of fuel injection. However, if the fuel injection timing is delayed, NO x will decrease;
This results in an increase in particulates mainly consisting of HC, CO and black smoke particles. Regarding HC and CO, the oxidation catalyst used to treat the exhaust gas of gasoline engines is severely deteriorated due to the deposition of large amounts of fine particles in the exhaust gas, making it impossible to use them effectively. Improvements to the air intake system and combustion chamber are being considered, but they are still insufficient.In particular, there is a need to significantly reduce the current concentration of fine particles from the perspective of air pollution, but there are still no effective methods. No method of reduction has been established. The present invention was invented in order to significantly remove and reduce fine particles in the exhaust gas from diesel engines that contain such problems, along with the HC and CO contained at the same time. The end faces of the entrances of adjacent through-holes of a honeycomb-shaped ceramic body consisting of a large number of mutually parallel through-holes with polygonal cross sections are alternately closed in a checker flag pattern, and the end faces of the other exit part are closed alternately in a checker flag pattern. In this case, the end faces of the through holes other than those closed at the inlet portion are closed, and the diesel engine exhaust gas introduced from the inlet side of the honeycomb-shaped ceramic body is contained when passing through the porous thin wall. The ceramic body is configured such that fine particles are filtered out and discharged from the outlet side of the ceramic body, and an oxidation catalyst for exhaust gas purification is supported on the outlet side portion of the hole wall of the through hole of the ceramic body. This is an exhaust gas filter for diesel engines. A first example showing a more detailed configuration of the present invention.
To explain based on the figures and FIG. 2, a ceramic body 3 has a plurality of mutually parallel through holes 2 which are partitioned on all sides by a porous ceramic thin wall 1 and have a rectangular cross section. The inlet part 4 and the outlet part 4' of the ceramic body 3 are alternately substantially closed with a ceramic material 5 that is the same as the ceramic thin wall 1 or has a smaller porosity than that of the ceramic thin wall 1, and the diesel inlet introduced from the inlet side 6 of the ceramic body 3 is When the engine exhaust gas passes through the porous ceramic thin wall 1, the fine particles 7 contained in the exhaust gas are filtered and removed, and the fine particles in the diesel engine exhaust gas are now discharged from the outlet side 8 of the ceramic body. In the filter body,
This is an exhaust gas filter for a diesel engine, in which an oxidation catalyst 10 for exhaust gas purification is supported on the outlet portion of the through-hole wall of a ceramic body, and at the same time, harmful components such as HC and CO in the exhaust gas are oxidized and purified. . Next, to explain in more detail the structure and operation of the exhaust gas filter for a diesel engine of the present invention, the ceramic body 3 is made of ceramic materials such as silica, alumina, titania, zirconia, mullite, cordierite, or a mixture or composite oxide thereof. These raw material powders or raw material powders that are fired to produce these oxides are kneaded, extruded, dried, and fired using normal ceramic techniques, and the porosity of the thin wall is determined by the amount of gas passing through it. In terms of pressure loss and the strength of ceramics, it is 10 to 60% by volume, and the average pore diameter of the thin wall is 0.1 to 0.2 μ, which is the average diameter of the fine particles to be filtered.When actually filtering, crosslinking occurs, so it is efficient. A material with a diameter of 1 to 20 μm that can be filtered and does not increase pressure loss due to clogging of pores can be used. The average diameter and porosity of the pores can be adjusted by selecting the particle size distribution of the raw material powder and by adding carbon, wood chips, or other organic combustible powder to the raw material powder. The larger the number of parallel through-holes partitioned by thin walls, the larger the filtration area for exhaust gas, which is advantageous, but conversely, the cross-section of the through-hole becomes smaller, and the gas passage becomes blocked by the accumulation of particulates. Although it is dangerous, the range that can be used effectively is 1.5 to 150 pieces/cm 2 in the cross section of the ceramic body. In addition, the thickness of the thin wall must be reduced as the number of through holes per cross-sectional area of the ceramic body increases, but from the viewpoint of manufacturing, the lower limit is 0.05 mm, and 1.5 mm is required to keep pressure loss below a certain level. mm is the upper limit. There is no particular restriction on the external cross-sectional shape of the ceramic body, but a circular or oval shape can usually be used from the standpoint of mounting to the engine. The ceramic that closes the through holes must have a porosity equal to or lower than the porosity of the thin wall because the thin wall is used as a filter, and it is preferable to extrude the ceramic body and then plasticize it after drying. The kneaded material is injected into the inlet or outlet of the ceramic body to a length of, for example, 2 to 10 mm, enough to substantially close the through hole, dried, and fired simultaneously with the ceramic body. As the oxidation catalyst supported on the outlet portion of the pore walls of the present filter, base metal oxides such as copper, manganese, and cobalt can be used, but noble metal catalysts can be used more efficiently. In other words, as is used in the treatment of exhaust gas from gasoline engine vehicles, the surface of the ceramic thin wall should first be coated with an active substance such as activated alumina, and then precious metals such as platinum, palladium, and platinum-palladium should be purified.
Supports depending on the amount of HC and CO can be used. If there are relatively few particulates in the exhaust gas from a diesel engine, the oxidation catalyst function can be achieved even if they are supported at the inlet of the ceramic body, but if there are many particulates, they will settle on the oxidation catalyst layer and the catalytic function will be impaired. In this case, it is better to support the catalyst on the exit part of the pore wall of the ceramic body, since the exhaust gas passes through the filter and most of the fine particles are filtered out, and then passes through the catalyst layer. It is possible to effectively purify HC and CO with little deterioration. The filter body 17 of the present invention is housed in a metal case as shown in FIG. and are connected as shown in Figure 3B. Exhaust gas from the diesel engine 15 enters the filter body through the filter inlet 6, and the fine particles are mainly filtered as they pass through the pores in the thin wall portion where no catalyst is supported, and remain on the inlet side of the thin wall. Most of the filtered and removed exhaust gas is discharged from the outlet side of the filter body. At this time, if an oxidation catalyst is supported on the outlet part of the filter body pore wall, HC and CO are each oxidized as they pass through this catalyst layer. harmless H2O ,
It becomes CO 2 and is emitted. It should be noted that fine particles, mainly black smoke particles, filtered and accumulated on the thin wall on the inlet side block the pores of the thin wall, causing an increase in pressure loss over time. However, the black smoke particles that make up the majority of these particles are 400 to 450.
It is known that combustion occurs in an oxygen-excess state when exposed to temperatures above ℃, and the filter body of the present invention can easily reduce the exhaust gas temperature to 400℃ by increasing the engine speed and engine load appropriately.
In this case, the black smoke particles accumulate substantially on the thin wall and can be burned off continuously without clogging the pores. In the present invention, the effect of combining an oxidation catalyst with a filter body is that it is possible to filter out particulates and oxidize and purify HC and CO in the same filter body. The oxidation catalyst, which was previously unusable due to deterioration due to the deposition of fine particles, can now be used in combination with a filter, and when there are relatively few black smoke particles, the filtration By supporting the oxidation catalyst at the body entrance,
The heat of reaction from the combustion of HC and CO can increase the temperature of the exhaust gas, and therefore the combustion of black smoke particles on thin walls can be promoted. Next, examples of the present invention will be described. 15 through holes per cross section made by extrusion method
cm2 thin wall thickness 0.4mm, porosity 42%, average pore diameter
Every other cordierite ceramic through-hole with a diameter of 118 mm and a length of 200 mm is made of 10μ, and the porosity is 10 mm at the inlet and outlet.
28% cordierite ceramics was used to coat the thin wall of the outlet part of the filter block in the checker flag pattern as shown in the figure, and γ-alumina was coated to a thickness of about 30 μm at a distance of 50 mm from the outlet, and a platinum catalyst was coated in total. A filter body of the present invention was obtained by supporting 1 g of the filter. This filter body was placed in a metal case in the same manner as shown in Fig. 2A, and connected to the exhaust manifold of a 4-cylinder diesel engine vehicle with a displacement of 2 in the same manner as shown in Fig. 2B.
An exhaust gas test in three modes and an exhaust smoke test in three bench modes were conducted, and the results were compared with those before the filter of the present invention was installed, and the following results were obtained.

【表】 すなわち本発明の濾過体の装置した場合、本実
施例によるとNOxの浄化には効果はないが、
HC、COについては大幅な浄化効果があり、微粒
子についてはその主たる黒煙の不透明度で測定す
ると約50%の除去が可能であつた。 以上述べたごとく本発明によるデイーゼルエン
ジン用排出ガス濾過体は、ハニカム状セラミツク
体の相隣接する貫通孔の入口部端面を交互に1個
おきにチエツカーフラグパターン状に閉塞し、他
方の出口部端面においては上記入口部で閉塞され
た貫通孔以外の貫通孔端面を閉塞し、デイーゼル
エンジン排出ガスは必ず貫通孔薄壁を通じて入口
側より出口側に通過する間に、排出ガス中に含有
される黒鉛微粒子を濾過除去された後に、触媒層
を通過するので触媒の劣化も少なくまた入口側貫
通孔の孔壁に捕集された黒鉛微粒子は燃焼除去さ
れるのでHC、COの浄化が効果的に可能となる工
業上大なる利点がある。
[Table] That is, when the filter device of the present invention is used, according to this example, it is not effective in purifying NO x , but
It had a significant purifying effect on HC and CO, and about 50% of fine particles could be removed when measured by the opacity of the main black smoke. As described above, in the exhaust gas filter for a diesel engine according to the present invention, the end surfaces of the inlet portions of adjacent through holes of the honeycomb-shaped ceramic body are alternately closed in a checker flag pattern, and the end surfaces of the inlet portions of the adjacent through holes of the honeycomb-shaped ceramic body are closed in a checker flag pattern, and the outlet portions of the other through holes are closed alternately. On the end face, the end face of the through hole other than the through hole closed at the inlet part is closed, and the diesel engine exhaust gas is always contained in the exhaust gas while passing through the thin wall of the through hole from the inlet side to the outlet side. After the graphite particles are filtered out, they pass through the catalyst layer, so there is little deterioration of the catalyst, and the graphite particles collected on the wall of the inlet side through-hole are burned and removed, resulting in effective purification of HC and CO. There are great industrial advantages that can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イは本発明の濾過体の外形を模式的に示
す斜視図、第1図ロは同濾過体の入口側と出口側
の面を示す側面図、第1図ハは同濾過体の縦断面
図、第2図イは同濾過体の濾過作用説明用拡大縦
断面、第2図ロは入口側または出口側を示す拡大
側面図、第3図イは本発明濾過体を金属ケースに
組込んだ1例を示す断面図、第3図ロは同使用状
態の1例を示す模式図である。 1……薄壁、2……貫通孔、3……セラミツク
体、4……入口部、4′……出口部、5……閉塞
用セラミツク材、6……入口側、7……微粒子、
8……出口側、9……入口部、9′……出口部分、
10……酸化触媒、11……濾過体、12……金
属ケース、13……金属金網、14……金属押え
材、15……デイーゼルエンジン、16……排気
マニホールド、17……金属ケース入り濾過体、
18……排気管。
Figure 1A is a perspective view schematically showing the outer shape of the filter of the present invention, Figure 1B is a side view showing the inlet and outlet sides of the filter, and Figure 1C is the same. A vertical cross-sectional view, FIG. 2A is an enlarged vertical cross-section for explaining the filtration action of the filter, FIG. 2B is an enlarged side view showing the inlet side or outlet side, and FIG. FIG. 3B is a sectional view showing an example of the assembled device, and FIG. DESCRIPTION OF SYMBOLS 1... Thin wall, 2... Through hole, 3... Ceramic body, 4... Inlet part, 4'... Outlet part, 5... Ceramic material for closing, 6... Inlet side, 7... Fine particles,
8...exit side, 9...inlet part, 9'...exit part,
10... Oxidation catalyst, 11... Filter body, 12... Metal case, 13... Metal wire mesh, 14... Metal holding material, 15... Diesel engine, 16... Exhaust manifold, 17... Filter in metal case body,
18...Exhaust pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔質の薄壁により仕切られた多角形断面を
もつ多数の互いに平行な貫通孔よりなるハニカム
状セラミツク体の相隣接する貫通孔の入口部の端
面を交互に1個おきにチエツカーフラグパターン
状に閉塞し、他方の出口部端面においては上記入
口部で閉塞された貫通孔以外の貫通孔端面を閉塞
し、該ハニカム状セラミツク体の入口側より導入
されたデイーゼルエンジン排出ガスが該多孔質の
薄壁を通過する際に含有する微粒子が濾過除去さ
れ、該セラミツク体の出口側より排出されるよう
に構成し、該セラミツク体の貫通孔の孔壁の出口
側部分に排出ガス浄化用酸化触媒を担持させたこ
とを特徴とするデイーゼルエンジン用排出ガス濾
過体。
1. A checker flag pattern is formed alternately on the end faces of the entrances of adjacent through holes of a honeycomb-shaped ceramic body consisting of a large number of mutually parallel through holes with polygonal cross sections partitioned by thin porous walls. On the other outlet end face, the through holes other than those closed at the inlet part are closed, and the diesel engine exhaust gas introduced from the inlet side of the honeycomb-shaped ceramic body is passed through the porous ceramic body. The fine particles contained in the ceramic body are filtered and removed when passing through the thin wall of the ceramic body, and are discharged from the outlet side of the ceramic body. An exhaust gas filter for a diesel engine characterized by supporting a catalyst.
JP5025580A 1980-04-18 1980-04-18 Exhaust gas filter for diesel engine Granted JPS56148607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5025580A JPS56148607A (en) 1980-04-18 1980-04-18 Exhaust gas filter for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5025580A JPS56148607A (en) 1980-04-18 1980-04-18 Exhaust gas filter for diesel engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62094291A Division JPS62247111A (en) 1987-04-18 1987-04-18 Exhaust gas filter for diesel engine

Publications (2)

Publication Number Publication Date
JPS56148607A JPS56148607A (en) 1981-11-18
JPH0160652B2 true JPH0160652B2 (en) 1989-12-25

Family

ID=12853864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5025580A Granted JPS56148607A (en) 1980-04-18 1980-04-18 Exhaust gas filter for diesel engine

Country Status (1)

Country Link
JP (1) JPS56148607A (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730551A (en) * 1980-07-29 1982-02-18 Ngk Spark Plug Co Ltd Honeycomb-type catalyst for cleaning exhaust gas
DE3101026A1 (en) * 1981-01-15 1982-08-26 Engelhard Kali-Chemie Autocat Gmbh, 3000 Hannover BIFUNCTIONAL FILTER FOR TREATING EXHAUST GAS
JPS57194048A (en) * 1981-05-23 1982-11-29 Toyota Motor Corp Waste gas filter
DE3205673A1 (en) * 1982-02-17 1983-09-01 Engelhard Kali-Chemie Autocat Gmbh, 3000 Hannover DEVICE FOR PURIFYING THE EXHAUST GASES FROM DIESEL ENGINES, ESPECIALLY IN MOTOR VEHICLES
US4512786A (en) * 1982-04-21 1985-04-23 Mazda Motor Corporation Exhaust gas purifying device
JPS59211708A (en) * 1983-05-17 1984-11-30 Nissan Motor Co Ltd Exhaust filter for internal-combustion engine
FR2550820B1 (en) * 1983-08-18 1987-08-21 Jourdan Charles EXHAUST DEVICE FOR INTERNAL COMBUSTION ENGINE
JPS61129016A (en) * 1984-11-28 1986-06-17 Kiyataraa Kogyo Kk Honeycomb shaped particulate collection filter, honeycomb shaped catalyst filter and preparation thereof
JPS62725U (en) * 1985-06-19 1987-01-06
JPS6242747A (en) * 1985-08-20 1987-02-24 Matsushita Electric Ind Co Ltd Structure for carrying catalyst
US4830749A (en) * 1986-07-15 1989-05-16 Ngk Insulators, Ltd. Liquid waste filtering apparatus
DE3923985C1 (en) * 1989-07-20 1990-06-28 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
US5228891A (en) * 1992-01-07 1993-07-20 Pall Corporation Regenerable diesel exhaust filter
US5470364A (en) * 1992-01-07 1995-11-28 Pall Corporation Regenerable diesel exhaust filter
US5457945A (en) * 1992-01-07 1995-10-17 Pall Corporation Regenerable diesel exhaust filter and heater
EP0731256B1 (en) * 1992-09-28 2000-03-22 Ford Motor Company Limited Filter element for exhaust emission control of internal combusion engines
ES2292571T3 (en) 2000-03-27 2008-03-16 Toyota Jidosha Kabushiki Kaisha EXHAUST GAS DEPURATION DEVICE.
EP1138888B1 (en) * 2000-03-27 2005-05-18 Toyota Jidosha Kabushiki Kaisha A device for purifying the exhaust gas of an internal combustion engine
CN1246573C (en) 2000-03-27 2006-03-22 丰田自动车株式会社 Exhaust gas cleaning device for IC engines
US6568178B2 (en) 2000-03-28 2003-05-27 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
DE602004029979D1 (en) * 2003-01-07 2010-12-23 Peugeot Citroen Automobiles Sa SUPPORT SYSTEM FOR REGENERATING A PARTICULATE FILTER IN A DISCHARGE LINE OF A DIESEL ENGINE
FR2849670B1 (en) * 2003-01-07 2007-04-13 Peugeot Citroen Automobiles Sa PARTICLE FILTER FOR EXHAUST LINE OF INTERNAL COMBUSTION ENGINE AND EXHAUST LINE COMPRISING SAME
DE10341216A1 (en) * 2003-09-04 2005-04-14 J. Eberspächer GmbH & Co. KG particulate Filter
KR100747088B1 (en) * 2006-06-20 2007-08-07 희성엥겔하드주식회사 Catalytic DPF for Diesel Engine Soot Filters with Improved Thermal Durability

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938266A (en) * 1972-08-16 1974-04-09
JPS5412029A (en) * 1977-06-30 1979-01-29 Texaco Development Corp Smoke filter
JPS5618016A (en) * 1979-07-20 1981-02-20 Nippon Soken Inc Cleaner for fine grain of carbon

Also Published As

Publication number Publication date
JPS56148607A (en) 1981-11-18

Similar Documents

Publication Publication Date Title
JPH0160652B2 (en)
RU2392456C2 (en) Method and device for cleaning of exhaust gas
JP3387290B2 (en) Exhaust gas purification filter
JP5447757B2 (en) Catalyst coated particle filter, process for its production and use thereof
US10808585B2 (en) Catalytic wall-flow filter with partial surface coating
KR100605005B1 (en) Catalytic fume filter for lean exhaust gas treatment
US8926926B2 (en) Exhaust particulate management for gasoline-fueled engines
US8844274B2 (en) Compact diesel engine exhaust treatment system
JP5193437B2 (en) Exhaust gas purification catalyst
US20040037754A1 (en) Apparatus for the removal of soot particles from the exhaust gas of diesel engines
KR100747088B1 (en) Catalytic DPF for Diesel Engine Soot Filters with Improved Thermal Durability
JP3900421B2 (en) Wall flow type diesel exhaust gas purification filter type catalyst and diesel exhaust gas purification device
JP2010269205A (en) Exhaust gas purification catalyst
JP2011214577A (en) Process and device for removing soot particle from diesel engine exhaust gas
KR20090092291A (en) Improved soot filter
KR20080046650A (en) Diesel Exhaust Gas Treatment Apparatus and Catalyst Composition for the Same
JP3874246B2 (en) Filter type catalyst for diesel exhaust gas purification
KR100914279B1 (en) Catalyst for purifying exhaust gases and process for producing the same
RU2018120361A (en) OXIDATION CATALYST
JPH0255603B2 (en)
JP2788494B2 (en) Honeycomb-shaped exhaust gas purification structure and exhaust gas purification method using the structure
JPS6147136B2 (en)
KR101933917B1 (en) Method for coating catalyst on surface inside channels of diesel particulate filter
JP2004243189A (en) Exhaust gas purification device for internal combustion engine
JP2008264631A (en) Filter catalyst for exhaust gas purification