JPH0156870B2 - - Google Patents
Info
- Publication number
- JPH0156870B2 JPH0156870B2 JP15420283A JP15420283A JPH0156870B2 JP H0156870 B2 JPH0156870 B2 JP H0156870B2 JP 15420283 A JP15420283 A JP 15420283A JP 15420283 A JP15420283 A JP 15420283A JP H0156870 B2 JPH0156870 B2 JP H0156870B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- lead
- titanium
- plate
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003466 welding Methods 0.000 claims description 41
- 239000010936 titanium Substances 0.000 claims description 21
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 20
- 229910052719 titanium Inorganic materials 0.000 claims description 20
- 238000005219 brazing Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 description 8
- 238000007747 plating Methods 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 229910000978 Pb alloy Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- VJPLIHZPOJDHLB-UHFFFAOYSA-N lead titanium Chemical compound [Ti].[Pb] VJPLIHZPOJDHLB-UHFFFAOYSA-N 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001245 Sb alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/23—Arc welding or cutting taking account of the properties of the materials to be welded
- B23K9/232—Arc welding or cutting taking account of the properties of the materials to be welded of different metals
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
Description
本発明は、鉛とチタンとを鉛ロー棒を使用して
TIG溶接により溶接する方法に関するものであ
る。
近時、耐食性化学設備の容器、パイプ、構造物
等において、更には電気めつき用不溶性陽極にお
いて耐食性金属としてのチタン及び鉛が使用さ
れ、両者の溶接を必要とすることがある。不溶性
陽極を例にとると、亜鉛めつき、錫めつき、ニツ
ケルめつき、鉛めつき等の電気めつきにおいて、
鋼ストリツプ等の一面乃至両面のめつきの為に不
溶性陽極を用いる試みが為されているのは周知の
通りである。不溶性陽極としては苛酷な腐食環境
に耐えしかも漏洩電流を防止するべくその材質及
び構造について幾つかの提案がなるが、その一つ
として鉛とチタンとの複合材料から成るものが有
望視されている。
第1図は電気亜鉛めつき槽の一部を示し、めつ
き浴中に鋼ストリツプ1はU字形行路に沿つて通
される。鋼ストリツプは(−)極に通電されそし
てその浴中への導入側及び導出側において両面め
つきを目的として不溶性陽極3がストリツプの各
側に配置されている。不溶性陽極3は、通電材と
しての銅材4を内側で包込む鉄板8と鉛板5と、
ストリツプに対面する側とは反対の側に配置され
るチタン材6から構成される。チタン材6は、液
中で不動態化して電流の流れを遮断する特性を有
し、それにより不溶性陽極のストリツプとは反対
の裏面及び側面からの漏洩電流を有効に防止す
る。
不溶性電極の作製に当つて、堅牢な一体構造体
を与える為に、チタン材と鉛板とはその接合部に
おいて第2図に示すように溶接される。また、鉛
板はどうしても溶損するので数ケ月周期で溶損部
を肉盛りする必要があり、その際にも鉛−チタン
肉盛溶接が必要とされる。
従来、鉛とチタンの溶接は困難視され、その完
全なる接合は不可能であるとさえ云われていた。
しかしながら、本発明者は、板厚に応じて選定さ
れた適切な溶接条件においてロー棒を使用して下
向きTIG溶接法を実施することにより、きわめて
簡易に鉛とチタンとの溶接が可能となることを知
見した。従来困難若しくは不可能視されていた鉛
−チタン溶接がこうした簡易な溶接法で実現され
ることはきわめて予想外のことであり、不溶性陽
極の作製の容易化とコスト削減に寄与するもので
ある。
本発明に従えば、13〜85Aの溶接電流、9〜
12Vの溶接電圧、及び70〜300mm/分の溶接速度
から板厚に応じて第4図に示す領域に入る溶接条
件を選定して鉛板とチタン板を下向き姿勢で鉛ロ
ー棒を使用してTIG溶接することを特徴とする鉛
板とチタン板とのロー棒溶接方法が提供される。
選定条件は鉛板厚及びチタン板厚に大きく依存
し、板厚が大きい程溶接入熱量(電圧×電流/速度)
を大きくする必要がある。広範な試験の結果、鉛
及びチタン板厚に応じて次の表に示す溶接条件
がより好ましいことが見出された。
The present invention uses lead and titanium using a lead brazing rod.
This relates to a welding method using TIG welding. Recently, titanium and lead have been used as corrosion-resistant metals in containers, pipes, structures, etc. of corrosion-resistant chemical equipment, and even in insoluble anodes for electroplating, and welding of the two may be required. Taking insoluble anodes as an example, in electroplating such as zinc plating, tin plating, nickel plating, and lead plating,
It is well known that attempts have been made to use insoluble anodes for plating on one or both sides of steel strips and the like. Several proposals have been made regarding the material and structure of the insoluble anode in order to withstand the harsh corrosive environment and prevent leakage current, one of which seems promising is a composite material of lead and titanium. . FIG. 1 shows a part of an electrogalvanizing bath, into which a steel strip 1 is passed along a U-shaped path. The steel strip is energized to the (-) pole and an insoluble anode 3 is placed on each side of the strip for double-sided plating on its entry and exit sides into the bath. The insoluble anode 3 includes an iron plate 8 and a lead plate 5 that enclose a copper material 4 as a current-carrying material inside.
It consists of a titanium material 6 placed on the side opposite to the side facing the strip. The titanium material 6 has the property of being passivated in the liquid and blocking the flow of current, thereby effectively preventing leakage current from the back and side surfaces of the insoluble anode opposite to the strip. In making the insoluble electrode, the titanium material and the lead plate are welded together at their joints, as shown in FIG. 2, in order to provide a robust integral structure. Furthermore, since lead plates inevitably suffer melt damage, it is necessary to build up the melted parts every few months, and lead-titanium build-up welding is also required at that time. In the past, it was considered difficult to weld lead and titanium, and it was even said that perfect joining was impossible.
However, the present inventor has discovered that it is possible to weld lead and titanium extremely easily by performing downward TIG welding using a low rod under appropriate welding conditions selected according to the plate thickness. I found out. It is extremely unexpected that lead-titanium welding, which has been considered difficult or impossible in the past, can be achieved using such a simple welding method, and contributes to simplification and cost reduction in the production of insoluble anodes. According to the invention, welding current of 13 to 85 A, 9 to
Using a welding voltage of 12V and a welding speed of 70 to 300 mm/min, welding conditions that fall within the range shown in Figure 4 according to the plate thickness were selected, and the lead plate and titanium plate were held in a downward position using a lead brazing rod. A method for welding a lead plate and a titanium plate using TIG welding is provided.
The selection conditions largely depend on the thickness of the lead plate and titanium plate; the thicker the plate, the greater the welding heat input (voltage x current/speed) needs to be. As a result of extensive testing, it has been found that the welding conditions shown in the following table are more preferable depending on the lead and titanium plate thickness.
【表】
ロー棒溶接は、第3図に示すように、溶接電極
を下向きとし、チタン−鉛接合部を加熱すること
によつて実施される。アフターシールド及びバツ
クシールドすることが好ましい。ロー棒は7とし
て示す。13〜85Aの溶接電流、9〜12Vの溶接電
圧及び70〜300mm/分の溶接速度の範囲において
第4図に示す溶接入熱量の下で好適な肉盛溶接が
可能である。
第4図において、溶接入熱量範囲の下限曲線よ
り下の範囲では作業性が悪く、ビード外観も不良
であり、良好な接合ができない。上限曲線より上
の範囲では、鉛ニバンアンダーカツト(鉛板の接
合部より上の部品に凹みが生ずる)、鉛肩溶け落
ち(鉛板の角部に溶ける)、或いはチタン溶は落
ち(チタン板の接合部近くに凹みが生ずる)等の
欠陥が生じやすくなる。溶接電流が小さすぎる
と、溶接速度が遅く、ビード外観が悪く、また溶
け込み不良となりやすく、他方溶接電流が大きす
ぎると、溶接速度が速くなりすぎ、電極移動速度
の管理が困難となり、チタン板の溶け落ちその他
の欠陥が生じやすく、酸化も激しくなる。
本発明は、鉛板と記載しているが、Ag2%以下
含む鉛合金、Sb7%以下含む鉛合金、Sn7%以下
含む鉛合金をも均等のものして実施可能であり、
これらを包含するものである。また鉛板としてい
るが、多少凹凸のあるものも本発明の範ちゆうに
入るものである。
本発明によれば、小溶接入熱量で溶接可能であ
り、チタン材の過熱による機械的あるいは化学的
変質を最小限とすることができる。
また溶接前後の不活性ガス雰囲気下での熱処理
を必要としない。
実施例 1
次の定格を有する高性能直流アルゴンアーク溶
接機を使用してPb−Ti板のロー棒溶接を実施し
た。
定格入力 11kVA、8.2kW
定格入力電圧 200V
定格入力電流 55A
定格周波数 50/60Hz
相 数 単相
定格使用率 25%
シールドガスとしては工業用純アルゴンガスを
使用した。直流TIG溶接の電流の極性は電極棒を
(−)そして母材を(+)とした。溶接姿勢は第
3a図に示したようにして施行した。板材は次表
に示すように各種の厚さのものを使用した。試験
結果を次の表に示す。作業性は良好でありまだ
ビード外観の良好な接合部が生成された。ロー棒
としては鉛板3mmのものを約3mm巾に切断した鉛
ロー棒を使用した。結果を表に示す。ビード外
観はきわめて良好であつた。[Table] Low stick welding is performed by heating the titanium-lead joint with the welding electrode facing downward, as shown in Figure 3. After-shielding and back-shielding are preferred. The low bar is shown as 7. Suitable overlay welding is possible under the welding heat input shown in FIG. 4 in the range of welding current of 13 to 85 A, welding voltage of 9 to 12 V, and welding speed of 70 to 300 mm/min. In FIG. 4, in the range below the lower limit curve of the welding heat input range, workability is poor, the bead appearance is poor, and good joining cannot be achieved. In the range above the upper limit curve, lead undercut (a dent occurs in the part above the joint of the lead plate), lead shoulder burn-through (melt to the corner of the lead plate), or titanium undercut (the titanium plate melts). Defects such as dents (indentations near the joints) are more likely to occur. If the welding current is too small, the welding speed is slow, the bead appearance is poor, and penetration is likely to be poor. On the other hand, if the welding current is too large, the welding speed becomes too fast, making it difficult to control the electrode movement speed, and the titanium plate Melt-through and other defects are more likely to occur, and oxidation becomes more intense. Although the present invention is described as a lead plate, it is equally possible to implement lead alloys containing 2% or less Ag, lead alloys containing 7% or less Sb, and lead alloys containing 7% or less Sn.
These are included. Furthermore, although a lead plate is used, a plate with some unevenness also falls within the scope of the present invention. According to the present invention, welding can be performed with a small welding heat input, and mechanical or chemical deterioration of the titanium material due to overheating can be minimized. Furthermore, heat treatment under an inert gas atmosphere before and after welding is not required. Example 1 Low stick welding of Pb-Ti plates was carried out using a high performance DC argon arc welding machine having the following ratings. Rated input 11kVA, 8.2kW Rated input voltage 200V Rated input current 55A Rated frequency 50/60Hz Number of phases Single phase Rated usage rate 25% Industrial pure argon gas was used as the shielding gas. The polarity of the current in DC TIG welding was set as (-) for the electrode rod and (+) for the base metal. The welding position was as shown in Figure 3a. The plates used were of various thicknesses as shown in the table below. The test results are shown in the table below. Workability was good and joints with good bead appearance were produced. As the brazing rod, a lead brazing rod made by cutting a 3 mm lead plate into a width of about 3 mm was used. The results are shown in the table. The bead appearance was extremely good.
第1図は不溶性陽極を使用する電気めつき設備
の一部を示し、第2図は第1図のX−X線に沿う
不溶性陽極の断面図を示し、第3図は鉛ロー棒を
使用する溶接施行状況を示し、そして第4図は鉛
板厚に応じてチタン厚に対する入熱量の適正範囲
を示すグラフである。
1:ストリツプ、3:不溶性陽極、4:通電
材、5:鉛板、6:チタン、7:鉛ロー棒、8:
鉄板。
Figure 1 shows a part of electroplating equipment that uses an insoluble anode, Figure 2 shows a cross-sectional view of the insoluble anode along the line X-X in Figure 1, and Figure 3 uses a lead brazing rod. FIG. 4 is a graph showing the appropriate range of heat input to titanium thickness according to lead plate thickness. 1: Strip, 3: Insoluble anode, 4: Current-carrying material, 5: Lead plate, 6: Titanium, 7: Lead brazing rod, 8:
Iron plate.
Claims (1)
及び70〜300mm/分の溶接速度から板厚に応じて
第4図に示す領域に入る溶接条件を選定して鉛板
とチタン板を下向き姿勢で鉛ロー棒を使用して
TIG溶接することを特徴とする鉛板とチタン板と
のロー棒溶接方法。1 Welding current of 13~85A, welding voltage of 9~12V,
From the welding speed of 70 to 300 mm/min, select welding conditions that fall within the range shown in Figure 4 according to the plate thickness, and use a lead brazing rod to hold the lead plate and titanium plate in a downward position.
A low rod welding method for lead plates and titanium plates, characterized by TIG welding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15420283A JPS6046877A (en) | 1983-08-25 | 1983-08-25 | Welding method of lead and titanium by brazing rod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15420283A JPS6046877A (en) | 1983-08-25 | 1983-08-25 | Welding method of lead and titanium by brazing rod |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6046877A JPS6046877A (en) | 1985-03-13 |
JPH0156870B2 true JPH0156870B2 (en) | 1989-12-01 |
Family
ID=15579070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15420283A Granted JPS6046877A (en) | 1983-08-25 | 1983-08-25 | Welding method of lead and titanium by brazing rod |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6046877A (en) |
-
1983
- 1983-08-25 JP JP15420283A patent/JPS6046877A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6046877A (en) | 1985-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2790656A (en) | Aluminum-dissimilar metal joint and method of making same | |
US5599467A (en) | Aluminum weldment and method of welding aluminum workpieces | |
JPH0639558A (en) | Resistance welding method for aluminum and steel | |
US4486647A (en) | Method of welding aluminum to titanium and a welded joint so produced | |
US20230256532A1 (en) | Joining of lead and lead alloys | |
JPH0156871B2 (en) | ||
JP2006035294A (en) | Joining method for zinc-based alloy-plated steel sheets with excellent corrosion resistance at joints | |
JPH0156870B2 (en) | ||
Niagaj | The use of activating fluxes for the welding of high-alloy steels by A-TIG method | |
JP5131077B2 (en) | Spot welding method for Sn-based plated steel sheet | |
AU2002223700B2 (en) | Method for joining a jacket part to a core part | |
US20250100064A1 (en) | Joining of lead and lead alloys | |
GB2614714A (en) | Joining of lead and lead alloys | |
JPH079150A (en) | Gas shielded arc welding method for galvanized steel sheet and galvanized steel sheet product welded by the welding method | |
JP5949523B2 (en) | Spot resistance welding pretreatment method for Sn-based plated steel sheet | |
EP1507624B1 (en) | Method of welding aluminium alloy strip products | |
AU2002223700A1 (en) | Method for joining a jacket part to a core part | |
JP5202979B2 (en) | Flux for welding Mg-containing aluminum alloy material and flux-cored wire for welding using the same | |
JPS5842790B2 (en) | Stud welding method for pure copper or low alloy copper materials | |
JPH0525000B2 (en) | ||
Sorokin | Welding of cracks with oxidised surfaces in creep-resisting nickel alloys | |
JPH0120955B2 (en) | ||
Beatson | The Welding, Brazing and Soldering of Coated Metals | |
KR19990086809A (en) | Crad Steel Butt Weld Development | |
Ball | The welding of Monel & K-Monel |