JPH0156536B2 - - Google Patents
Info
- Publication number
- JPH0156536B2 JPH0156536B2 JP59278211A JP27821184A JPH0156536B2 JP H0156536 B2 JPH0156536 B2 JP H0156536B2 JP 59278211 A JP59278211 A JP 59278211A JP 27821184 A JP27821184 A JP 27821184A JP H0156536 B2 JPH0156536 B2 JP H0156536B2
- Authority
- JP
- Japan
- Prior art keywords
- metal layer
- concentration region
- layer
- resist film
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/80—FETs having rectifying junction gate electrodes
Landscapes
- Junction Field-Effect Transistors (AREA)
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing a semiconductor device.
従来、所謂GaAsFETと称せられる半導体装置
は、ゲート電極に対して高濃度不純物領域を形成
する場合やオートミツク電極を形成する場合に
は、次のようにして製造されている。先ず、第2
図Aに示す如く、GaAs半導体基板1の所定領域
にN型導動形の低濃度領域2を形成した後、低濃
度領域2上に所定パターンの高融点金属のゲート
電極を形成する。次に同図Bに示す如く、ステツ
プカバレツジの良好なる絶縁膜4を被着後、絶縁
膜4上に所定パターンのレジスト膜5を形成す
る。次いで、これをマスクにしてN型高濃度の不
純物のイオン注入を行ない、N型高濃度不純物領
域6を低濃度領域2内に形成し、これに熱処理を
施して活性化される。然る後同図Cの如く高濃度
領域6上に所定パターンのオーミツク電極7を形
成し、次いで、同図Dに示す如く、不要なオーミ
ツク電極形成部材をレジスト膜5と共にリフトオ
フし、ゲートセルフアライン構造の半導体層10
を得る。
Conventionally, a semiconductor device called a GaAsFET has been manufactured in the following manner when a high concentration impurity region is formed in a gate electrode or an automix electrode is formed. First, second
As shown in FIG. A, after forming a low concentration region 2 of N-type conductivity in a predetermined region of a GaAs semiconductor substrate 1, a gate electrode of a refractory metal in a predetermined pattern is formed on the low concentration region 2. Next, as shown in FIG. 3B, after an insulating film 4 with good step coverage is deposited, a resist film 5 in a predetermined pattern is formed on the insulating film 4. Next, using this as a mask, ions of N-type high concentration impurity are implanted to form N-type high concentration impurity region 6 in low concentration region 2, which is activated by heat treatment. Thereafter, as shown in the figure C, a predetermined pattern of ohmic electrodes 7 is formed on the high concentration region 6, and then, as shown in the figure D, unnecessary ohmic electrode forming members are lifted off together with the resist film 5, and gate self-alignment is performed. Semiconductor layer 10 of the structure
get.
このような製造方法によるものでは、高濃度不
純物領域6はゲート電極3に対して自動的に決定
されるが、オーミツク電極7を形成するには、リ
ソグラフイ技術を用いてゲート・ソース電極、ゲ
ート・ドレイン電極間隔を精度よく決めなければ
ならない。しかし、この精度には、限界があり、
合せズレを生じやすい。GaAsFETの場合特にソ
ース直列抵抗が高周波特性に大きな影響を及ぼす
ため、ゲート電極3とオートミツク電極7の設定
位置のずれは、高周波特性を悪くするために問題
となる。 In this manufacturing method, the high concentration impurity region 6 is automatically determined for the gate electrode 3, but in order to form the ohmic electrode 7, lithography technology is used to form the gate/source electrode, gate - Drain electrode spacing must be determined accurately. However, there is a limit to this accuracy,
Misalignment is likely to occur. In the case of GaAsFETs in particular, the source series resistance has a large effect on the high frequency characteristics, so any misalignment in the set positions of the gate electrode 3 and the automic electrode 7 poses a problem as it deteriorates the high frequency characteristics.
この問題を解消するために、オートミツク電極
7をセルアライン構造にして製造する方法が開発
されている。この方法は、先ず、第3図Aに示す
如く、半導体基板1の所定領域にN導電型の低濃
度領域2を形成する。次いで、この低濃度領域2
上にA等の低抵抗金属を用いてゲート電極3を
形成する。次いで、同図Bに示す如く、ゲート電
極3を含む半導体基板1の主面に熱CVD(熱
ChemicalVaporDeposition)法により酸化膜1
1を形成する。次に、同図Dに示す如く、酸化膜
11にRIE(ReactiveIonEthing)法によりエツチ
ング処理を施し、ゲート電極3の側壁部にだけ、
酸化膜11を残存させる。次いで、同図Dに示す
如く、側壁部となつた酸化膜11及びゲート電極
3を含む半導体基板1の主面上にオートミツク電
極形成部材12及びレジスト膜13を順次積層形
成する。次いで、同図Eに示す如く、RIE法によ
りゲート電極3上のレジスト膜13及びオートミ
ツク電極形成部材12の部分を除去する。然る
後、同図Fに示す如く、イオンミーリング法によ
り残存したレジスト膜13を除去して所定パター
ンのオートミツク電極14を形成した半導体装置
20を得る。 In order to solve this problem, a method has been developed in which the automix electrode 7 is manufactured with a cell-aligned structure. In this method, first, as shown in FIG. 3A, a low concentration region 2 of N conductivity type is formed in a predetermined region of a semiconductor substrate 1. Next, this low concentration region 2
A gate electrode 3 is formed thereon using a low resistance metal such as A. Next, as shown in Figure B, the main surface of the semiconductor substrate 1 including the gate electrode 3 is subjected to thermal CVD
Oxide film 1 is formed by chemical vapor deposition method.
form 1. Next, as shown in FIG.
The oxide film 11 is left. Next, as shown in FIG. 1D, an automic electrode forming member 12 and a resist film 13 are sequentially laminated on the main surface of the semiconductor substrate 1 including the oxide film 11 which has become the sidewall portion and the gate electrode 3. Next, as shown in Figure E, the resist film 13 on the gate electrode 3 and the automic electrode forming member 12 are removed by the RIE method. Thereafter, as shown in FIG. F, the remaining resist film 13 is removed by ion milling to obtain a semiconductor device 20 on which an automix electrode 14 of a predetermined pattern is formed.
この方法によるものでは、ソース・ドレインの
電極であるオートミツク電極14の形成のために
RIE法をイオンミーリング法を採用するため工程
が煩雑になる。しかも、ゲート電極3上のオーミ
ツク電極形成部材12を除去する際のエツチング
の終点を検出するのが難しい。このため、一枚の
ウエハ内で均一にソース・ドレインの電極を分離
できない問題がある。 In this method, in order to form the automatic electrodes 14, which are source and drain electrodes,
The process becomes complicated because the ion milling method is used instead of the RIE method. Furthermore, it is difficult to detect the end point of etching when removing the ohmic electrode forming member 12 on the gate electrode 3. Therefore, there is a problem that source and drain electrodes cannot be uniformly separated within one wafer.
本発明は、ソース・ドレインとなる高濃度不純
物領域及びこれらの電極となるオートミツク電極
を簡単な工程でセルフアライン技術にて容易に形
成し、形状精度が高く信頼性の高い素子を得るこ
とができる半導体装置の製造方法を提供するもの
である。
According to the present invention, high-concentration impurity regions that will become sources and drains and automatic electrodes that will become these electrodes can be easily formed using self-alignment technology in a simple process, and a highly reliable element with high shape accuracy can be obtained. A method for manufacturing a semiconductor device is provided.
本発明は、ゲート電極の上部と側面の絶縁物層
を高濃度不純物の注入のためのマスクとして用い
ると共に、ゲート電極の肩部にステツプカバレツ
ジの悪い絶縁物層を形成してオーバーハング構造
を利用することによりオーミツク電極の分離を完
全に行い、ソース・ドレインとなる高濃度不純物
領域及びこれらの電極となるオーミツク電極を簡
単な工程でセルフアライン技術にて容易に形成
し、形状精度が高く信頼性の高い素子を得ること
ができる半導体装置の製造方法である。
The present invention uses the insulating layer on the top and side surfaces of the gate electrode as a mask for implanting high-concentration impurities, and forms an insulating layer with poor step coverage on the shoulder of the gate electrode to create an overhang structure. By using this method, the ohmic electrodes can be completely separated, and the highly concentrated impurity regions that will become the source and drain, as well as the ohmic electrodes that will become these electrodes, can be easily formed using self-alignment technology in a simple process, resulting in high shape accuracy and reliability. This is a method of manufacturing a semiconductor device that can obtain a device with high performance.
以下、本発明の実施例について第1図A乃至同
図Gを参照して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1A to 1G.
まず、第1図Aに示す如く、GaAsからなる半
導体基板21に例えばSiをイオン注入してアニー
ルを行い所定の低濃度領域22を形成する。次
に、低濃度領域22を含む半導体基板21上に厚
さ0.1μmのゲート電極となる高融点金属層23、
バリアメタル層24、厚さ約0.5μmの低抵抗金属
層25例えば、Tiw、Mo、Auからなるものを順
次積層形成する。次いで、低抵抗金属層25上に
絶縁膜26として例えばシリコン酸化膜を厚さ約
0.6μm推積した後、その上に所定パターンのレジ
スト膜27を形成する。レジスト膜厚はパターン
変換差を小さくするためにできる限り薄い方が望
ましい。 First, as shown in FIG. 1A, ions of Si, for example, are implanted into a semiconductor substrate 21 made of GaAs and annealed to form a predetermined low concentration region 22. Next, on the semiconductor substrate 21 including the low concentration region 22, a high melting point metal layer 23 having a thickness of 0.1 μm and serving as a gate electrode,
A barrier metal layer 24 and a low-resistance metal layer 25 having a thickness of about 0.5 μm, for example, made of Tiw, Mo, and Au are sequentially laminated. Next, a silicon oxide film, for example, is formed as an insulating film 26 on the low resistance metal layer 25 to a thickness of approximately
After estimating the thickness of 0.6 μm, a resist film 27 with a predetermined pattern is formed thereon. It is desirable that the resist film thickness be as thin as possible in order to reduce pattern conversion differences.
次に同図Bに示す如く、レジスト膜27をマス
クにして、例えばRIEを用いて絶縁膜26へレジ
ストパターンを転写する。次いで、レジスト膜2
7を除去し、絶縁膜26をマスクにして例えばイ
オンビームミーリングを用いて下地金属層である
低抵抗金属層25、バリアメタル層24及び高融
点金属層23へ絶縁膜26のパターンを転写しゲ
ート電極を形成する。 Next, as shown in FIG. B, using the resist film 27 as a mask, a resist pattern is transferred onto the insulating film 26 using, for example, RIE. Next, resist film 2
7 is removed, and the pattern of the insulating film 26 is transferred to the low resistance metal layer 25, the barrier metal layer 24, and the high melting point metal layer 23, which are the underlying metal layers, using, for example, ion beam milling using the insulating film 26 as a mask, and then forming the gate. Form an electrode.
次に同図Cに示す如く、第2の絶縁膜28とし
て例えばプラズマシリコン酸化膜を残存した絶縁
膜26及び下地金属層を含む半導体基板21の主
面に厚さ約0.3μm推積する。第2絶縁膜28上に
所定パターンのレジスト膜29を形成し、このレ
ジスト膜29と第2絶縁膜28をマスクにして高
濃度のSiイオンを低濃度領域2内に注入してソー
ス・ドレインとなる高濃度領域30をセルフアラ
インで形成する。ここで、Siイオンの注入条件
は、厚さ約0.3μmの第2絶縁膜28をSiイオンが
貫通するような加速電圧を選択する。また、ゲー
ト電極側面部の第2絶縁膜28の膜厚を制御する
ことにより、ゲート・ソース、ゲート・ドレイン
の夫々の間隔を制御し、ゲート耐圧の高いFET
を得るようにする。次いで、レジスト膜29を除
去し、N型不純物からなる高濃度領域30を活性
化するために、例えばハロゲンランプ光により約
850℃で5秒間熱処理を施す。 Next, as shown in FIG. 3C, a second insulating film 28, for example, a plasma silicon oxide film, is deposited to a thickness of about 0.3 μm on the main surface of the semiconductor substrate 21 including the remaining insulating film 26 and the underlying metal layer. A resist film 29 with a predetermined pattern is formed on the second insulating film 28, and high-concentration Si ions are implanted into the low-concentration region 2 using this resist film 29 and the second insulating film 28 as masks to form sources and drains. The high concentration region 30 is formed by self-alignment. Here, as the conditions for implanting the Si ions, an acceleration voltage is selected so that the Si ions penetrate the second insulating film 28 having a thickness of approximately 0.3 μm. In addition, by controlling the thickness of the second insulating film 28 on the side surface of the gate electrode, the gate-source and gate-drain distances can be controlled, allowing the FET to have a high gate breakdown voltage.
Try to get the following. Next, the resist film 29 is removed, and in order to activate the high concentration region 30 made of N-type impurities, for example, a halogen lamp is used to activate the high concentration region 30 made of N-type impurities.
Heat treatment is performed at 850°C for 5 seconds.
然る後、同図Dに示す如く、ステツプカバレツ
ジの悪い第3絶縁膜31として例えばCVDシリ
コン酸化膜28上に厚さ約0.4μm推積し、ゲート
の肩の部分にオーバーハング構造を形成する。こ
れにより後述するオーミツク金属の被着時の段切
れを生じ易くする。次いで、同図Eに示す如く、
第3絶縁膜31上に所定パターンのレジスト膜3
2を形成後、例えばRIE法を用いて第2及び第3
絶縁膜28,31に高濃度領域30を露出する窓
33を形成すると共に、ゲート電極の上面及び側
面に第2、第3絶縁膜28,31の一部分を残存
させる。 After that, as shown in Figure D, a third insulating film 31 with poor step coverage is deposited to a thickness of about 0.4 μm on the CVD silicon oxide film 28, and an overhang structure is formed at the shoulder of the gate. do. This makes it easy to cause breakage when applying ohmic metal, which will be described later. Next, as shown in Figure E,
A resist film 3 having a predetermined pattern on the third insulating film 31
After forming the second and third layers, for example, using the RIE method,
A window 33 is formed in the insulating films 28, 31 to expose the high concentration region 30, and portions of the second and third insulating films 28, 31 are left on the top and side surfaces of the gate electrode.
次に、同図Fに示す如く、オーミツク電極34
となる金属として例えばAuGe(5%)/Niを約
0.2μm/0.03μmの厚さで高濃度領域30及びレ
ジスト膜32上に推積する。次に、レジスト膜3
2およびその上部に被着した不要なオーミツク電
極形成部材をリフトオフにより除去する。この
後、オーミツク電極34の合金化処理として約
430℃の温度で5分間N2雰囲気中の熱処理を施
す。さらに、例えばフツ化アンモン(NH4F)等
により第2、第3絶縁膜28,31およびその上
部に推積したオーミツク電極形成部材を除去す
る。 Next, as shown in FIG.
For example, AuGe (5%)/Ni is used as a metal.
It is deposited on the high concentration region 30 and the resist film 32 to a thickness of 0.2 μm/0.03 μm. Next, resist film 3
2 and the unnecessary ohmic electrode forming member attached thereto are removed by lift-off. After this, as an alloying treatment for the ohmic electrode 34, approximately
Heat treatment is performed at a temperature of 430° C. for 5 minutes in an N 2 atmosphere. Further, the second and third insulating films 28 and 31 and the ohmic electrode forming member deposited thereon are removed using, for example, ammonium fluoride (NH 4 F) or the like.
このようにして同図Gに示す如く、ゲート・ソ
ース電極間隔、ゲート・ドレイン電極間隔が等し
く設定されたGaAsMESFETを構成する半導体
装置40を得る。 In this way, as shown in FIG. G, a semiconductor device 40 constituting a GaAs MESFET in which the spacing between the gate and source electrodes and the spacing between the gate and drain electrodes are set to be equal is obtained.
このようにして得られた半導体装置40では、
ゲート側壁部の第2、第3絶縁膜28,31の膜
厚により、ゲートとオーミツク電極34の間隔を
等しくなるように精度良く設定されている。 In the semiconductor device 40 obtained in this way,
The thicknesses of the second and third insulating films 28 and 31 on the gate side walls are precisely set so that the distance between the gate and the ohmic electrode 34 is equal.
また、プロセス的には、第1の絶縁膜26上に
さらに、ステツプカバレツジの悪い第2絶縁膜2
8を被着してオーバーハング部を作ることによ
り、ゲート上部に被着するオーミツク電極形成部
材の段切れを生じ易くし、リフトオフを行ない易
くして歩留りを向上させることができる。また、
高融点金属をゲート電極として用いるため、ゲー
ト電極形成後に高濃度領域30の活性化熱処理を
行なうことができる。これによりゲート電極形成
後の高濃度領域30の形成工程、及びオーミツク
電極34形成工程をすべてセルフアラインで行な
い、厳密なマスク合せ精度を不要して、製造工程
を簡略化できると共に、装置自体の特性のばらつ
きを抑えることができる。 In addition, in terms of process, a second insulating film 2 with poor step coverage is added on the first insulating film 26.
By depositing 8 to form an overhang portion, it is possible to easily break the ohmic electrode forming member deposited on the upper part of the gate, facilitate lift-off, and improve yield. Also,
Since a high melting point metal is used as the gate electrode, activation heat treatment of the high concentration region 30 can be performed after forming the gate electrode. As a result, the process of forming the high concentration region 30 after forming the gate electrode and the process of forming the ohmic electrode 34 are all performed in self-alignment, eliminating the need for strict mask alignment accuracy, simplifying the manufacturing process, and improving the characteristics of the device itself. It is possible to suppress the variation in
以上説明して如く、本発明に係る半導体装置の
製造方法によればソース・ドレインとなる高濃度
不純物領域及びこれらの電極となるオーミツク電
極を簡単な工程でセルフアライン技術にて容易に
形成し、形状精度及び信頼性の高い素子を容易に
得ることができるものである。
As explained above, according to the method of manufacturing a semiconductor device according to the present invention, high-concentration impurity regions that will become sources and drains and ohmic electrodes that will become these electrodes can be easily formed by self-alignment technology in a simple process, An element with high shape accuracy and reliability can be easily obtained.
第1図A乃至同図Gは、本発明方法を工程順に
示す説明図、第2図A乃至同図D、及び第3図A
乃至同図Fは、従来の半導体装置の製造方法を工
程順に示す説明図である。
21……半導体基板、22……低濃度領域、2
3……高融点金属層、24……バリアメタル層、
25……低抵抗金属層、26……絶縁膜、27…
…レジスト膜、28……第2絶縁膜、29……レ
ジスト膜、30……高濃度領域、31……第3絶
縁膜、32……レジスト膜、33……窓、34…
…オーミツク電極、40……半導体装置。
Figures 1A to 1G are explanatory views showing the method of the present invention in the order of steps, Figures 2A to 3D, and Figure 3A
FIGS. 1A to 1F are explanatory diagrams showing a conventional method for manufacturing a semiconductor device in the order of steps. 21...Semiconductor substrate, 22...Low concentration region, 2
3... High melting point metal layer, 24... Barrier metal layer,
25...Low resistance metal layer, 26...Insulating film, 27...
...Resist film, 28...Second insulating film, 29...Resist film, 30...High concentration region, 31...Third insulating film, 32...Resist film, 33...Window, 34...
... Ohmic electrode, 40 ... Semiconductor device.
Claims (1)
領域を形成する工程と、該低濃度領域を含む前記
半導体基板表面に高融点金属層、バリア金属層、
低抵抗金属層、第1の絶縁物層を順次積層形成す
る工程と、所定パターンのフオトレジスト膜をマ
スクにして前記第1の絶縁物層、低抵抗金属層、
バリア金属層、高融点金属層を順次パターニン
グ、ゲート電極を形成すると共に該ゲート電極上
に所定パターンの前記第1絶縁物層を残在させる
工程と、該ゲート電極及び該第1絶縁物層を含む
前記半導体基板の主面にステツプカバレツジの良
好なる第2の絶縁物層を被着する工程と、該第2
絶縁物層上に所定パターンのレジスト膜を形成し
た後、該レジスト膜をマスクとして高濃度不純物
を前記低濃度領域に注入して高濃度不純物領域を
形成する工程と、ステツプカバレツジの悪い第3
絶縁物層を前記第2絶縁物層上に被着して、ゲー
ト最上部にオーバーハング部を形成する工程と、
所定パターンのレジスト膜をマスクにして異方性
ドライエツチングを用いて前記第2、第3絶縁物
層の一部を除去して前記高濃度領域を露出する開
口部を設ける工程と、露出した前記高濃度領域上
及び前記第3絶縁物層上にオーミツク金属層を被
着する工程と、前記第1、2、3絶縁物層をその
上の前記オーミツク性金属層と共に除去し、除去
する工程とを具備することを特徴とする半導体装
置の製造方法。1. Forming a low concentration region of a predetermined conductivity type in a predetermined region of a semiconductor substrate, and forming a high melting point metal layer, a barrier metal layer, on the surface of the semiconductor substrate including the low concentration region.
a step of sequentially laminating a low-resistance metal layer and a first insulator layer, and using a photoresist film of a predetermined pattern as a mask, the first insulator layer, the low-resistance metal layer,
sequentially patterning a barrier metal layer and a high melting point metal layer to form a gate electrode and leaving the first insulating layer in a predetermined pattern on the gate electrode; a step of depositing a second insulating layer with good step coverage on the main surface of the semiconductor substrate including
After forming a resist film with a predetermined pattern on the insulating layer, a high concentration impurity is implanted into the low concentration region using the resist film as a mask to form a high concentration impurity region, and a third step with poor step coverage.
depositing an insulating layer on the second insulating layer to form an overhang at the top of the gate;
a step of removing a portion of the second and third insulating layers using a resist film of a predetermined pattern as a mask and using anisotropic dry etching to provide an opening that exposes the high concentration region; depositing an ohmic metal layer over the high concentration region and the third insulator layer; and removing the first, second and third insulator layers together with the overlying ohmic metal layer. A method for manufacturing a semiconductor device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59278211A JPS61154178A (en) | 1984-12-27 | 1984-12-27 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59278211A JPS61154178A (en) | 1984-12-27 | 1984-12-27 | Manufacture of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61154178A JPS61154178A (en) | 1986-07-12 |
JPH0156536B2 true JPH0156536B2 (en) | 1989-11-30 |
Family
ID=17594143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59278211A Granted JPS61154178A (en) | 1984-12-27 | 1984-12-27 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61154178A (en) |
-
1984
- 1984-12-27 JP JP59278211A patent/JPS61154178A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61154178A (en) | 1986-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2778600B2 (en) | Method for manufacturing semiconductor device | |
KR900008277B1 (en) | Manufacturing Method of Field Effect Transistor | |
US4222164A (en) | Method of fabrication of self-aligned metal-semiconductor field effect transistors | |
JPS63263770A (en) | GaAs MESFET and its manufacturing method | |
JPS6310589B2 (en) | ||
US4700455A (en) | Method of fabricating Schottky gate-type GaAs field effect transistor | |
JPS6351550B2 (en) | ||
JP2000091348A (en) | Field effect type semiconductor device and method of manufacturing the same | |
JPH0156536B2 (en) | ||
JPH01251669A (en) | Method of manufacturing field effect transistor | |
JPH0574814A (en) | Manufacture of schottky-gate type field-effect transistor | |
JPH0684954A (en) | Manufacture of semiconductor device | |
JPS61229369A (en) | Manufacture of semiconductor device | |
JPH02262342A (en) | Manufacture of semiconductor device | |
JPS61152080A (en) | field effect transistor | |
JPS6163063A (en) | Manufacturing method of semiconductor device | |
JPS6054480A (en) | Manufacture of gallium arsenide schottky barrier junction gate field effect transistor | |
JPH07120678B2 (en) | Method of manufacturing Schottky barrier gate field effect transistor | |
JPS59986B2 (en) | Method for manufacturing field effect transistors | |
JPH02181440A (en) | Manufacture of field-effect transistor | |
JPS60234373A (en) | Manufacture of semiconductor device | |
JPS61144071A (en) | Manufacture of semiconductor device | |
JPH09293735A (en) | Method for manufacturing field effect transistor | |
JPS6151979A (en) | Manufacture of semiconductor device | |
JPS63284853A (en) | Semiconductor device |