[go: up one dir, main page]

JPH0151167B2 - - Google Patents

Info

Publication number
JPH0151167B2
JPH0151167B2 JP18495782A JP18495782A JPH0151167B2 JP H0151167 B2 JPH0151167 B2 JP H0151167B2 JP 18495782 A JP18495782 A JP 18495782A JP 18495782 A JP18495782 A JP 18495782A JP H0151167 B2 JPH0151167 B2 JP H0151167B2
Authority
JP
Japan
Prior art keywords
liquid crystal
agent
crystal panel
insulating material
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18495782A
Other languages
Japanese (ja)
Other versions
JPS5974528A (en
Inventor
Yoshihiro Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP18495782A priority Critical patent/JPS5974528A/en
Publication of JPS5974528A publication Critical patent/JPS5974528A/en
Publication of JPH0151167B2 publication Critical patent/JPH0151167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は、絶縁体物質からなる表示体用ギヤツ
プ剤に金属酸化物層を形成し、その上に無電解メ
ツキにより金属被膜を形成したことによつて、導
通性を付与した表示体用上下導通剤に関してい
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides conductivity by forming a metal oxide layer on a gapping agent for a display body made of an insulating material, and forming a metal coating on the gapping agent by electroless plating. It relates to the applied vertical conductive agent for display bodies.

液晶パネルは、従来、時計、電卓等の表示体と
して多く使用されてきている。
Liquid crystal panels have conventionally been widely used as displays for watches, calculators, and the like.

最近は、液晶パネルの表示容量が大きくなる傾
向があり、それに伴つて上下導通部の数が多くな
つてきている。ここで第1図、第2図に従来の液
晶パネルの上下導通部の概略図を示す。
Recently, there has been a tendency for the display capacity of liquid crystal panels to increase, and the number of upper and lower conductive parts has increased accordingly. Here, FIGS. 1 and 2 are schematic diagrams of the upper and lower conductive parts of a conventional liquid crystal panel.

第1図は、上下基板の上下導通を取るために軟
金属を用いた場合のものである。上基板に穴を開
けておき、3のコモン電極のリード端子5へ導通
を取るために、穴の中に軟金属であるインジウム
ボール6を入れて、つぶした状態のものである。
このように、インジウムボールによつて上下導通
を取つた場合、3のコモン電極と6のインジウム
ボールのコンタクトが取れないことが多く、ま
た、工数もかかり生産性が悪かつた。この欠点を
改良して、銀ペースト9を上下基板のどちらかに
印刷することによつて、工数を減したものが第2
図の状態である。ところが、このような状態の液
晶パネルも、上下導通部の不良が液晶パネルの歩
留り低下の大きな原因となつていた。これは、7
のシール剤と9の銀ペーストの乾燥温度が異るこ
と、また、通常液晶パネルは単品で製造するので
はなく、二枚のガラス板を貼り合わせ、第3図の
ような形をしたあと破線部に切り込みを入れ、割
ることによつて単品の液晶パネル10を製造して
いる。このため液晶パネルの端部には力が加わ
り、シール剤の外部にある銀ペーストが、ハガレ
上下導通不良を起す原因となつていた。そこで銀
ペーストの操着性を良くするために樹脂分を多く
すると、銀ペースト内での銀粒子の接触が取れに
くくなり、上下導通不良を起すこととなつた。ま
た銀ペースト中の銀粒子を多くすると、当然のこ
とながら接着性が悪くなつた。更に、適当の割合
であつても製造時の湿度、温度、乾燥等によつて
も歩留りが大きく変動し、その原因の解析も困難
を極めているのが現状である。
FIG. 1 shows a case in which soft metal is used to establish vertical conduction between the upper and lower substrates. A hole is made in the upper substrate, and an indium ball 6 made of soft metal is placed in the hole and crushed in order to establish conduction to the lead terminal 5 of the common electrode 3.
In this way, when vertical conduction is established using indium balls, it is often impossible to establish contact between the common electrode 3 and the indium ball 6, and it also takes a lot of man-hours, resulting in poor productivity. The second method is to improve this drawback and reduce the number of man-hours by printing the silver paste 9 on either the upper or lower substrate.
This is the state shown in the figure. However, even in liquid crystal panels in such a state, defects in the upper and lower conductive parts have been a major cause of a decrease in the yield of liquid crystal panels. This is 7
The drying temperature of the sealant shown in Figure 3 and the silver paste shown in Figure 9 are different.Also, liquid crystal panels are usually not manufactured as individual items, but rather are made by bonding two glass plates together, forming the shape shown in Figure 3, and then forming the dotted line. A single liquid crystal panel 10 is manufactured by making a cut in the part and breaking it. As a result, force is applied to the edges of the liquid crystal panel, causing the silver paste outside the sealant to peel off and cause poor vertical continuity. Therefore, when the resin content was increased in order to improve the handling properties of the silver paste, it became difficult to maintain contact between the silver particles within the silver paste, resulting in poor vertical conduction. Furthermore, as the amount of silver particles in the silver paste was increased, the adhesiveness naturally deteriorated. Furthermore, even if the ratio is appropriate, the yield varies greatly depending on humidity, temperature, drying, etc. during production, and it is currently extremely difficult to analyze the causes of this.

また銀ペーストを用いた場合、銀粒子の径が一
定でなく、大きい粒子の径が7μ以上であるのが
一般的なものである。このため、ギヤツプ厚が
5μmの液晶パネルを量産することが困難であつ
た。第4図にこの状態を示す。11は銀粒子、1
2は銀ペースト中の接着樹脂である。
Furthermore, when silver paste is used, the diameter of the silver particles is not constant, and the diameter of the large particles is generally 7μ or more. For this reason, the gap thickness
It was difficult to mass produce 5μm liquid crystal panels. FIG. 4 shows this state. 11 is a silver particle, 1
2 is the adhesive resin in the silver paste.

そこで、粒径が液晶パネルのギヤツプを確保す
るために用いられるギヤツプ剤に無電解メツキを
することで導電性を付与した上下導通剤が考えら
れた。ところが絶縁体物質に直接無電解メツキ被
膜を形成したため、メツキ被膜と絶縁体物質との
密着性が悪く、接着剤中にメツキ被膜のついたギ
ヤツプ剤を分散させる時メツキ被膜が剥離しやす
く、分散方法に注意を要し、また上下導通に信頼
性が不足しがちであつた。また部分的にメツキ被
膜が形成されないところもあり、信頼性が不足し
ていた。ここで本発明者は、絶縁体上に無電解メ
ツキ被膜を密着よく均一に形成する方法として絶
縁体上に金属酸化物層を形成後、無電解メツキ被
膜を形成する方法を見い出している。
Therefore, a top-bottom conductive agent was devised in which conductivity was imparted by applying electroless plating to the gapping agent used to ensure the gap in particle size in liquid crystal panels. However, since the electroless plating film was formed directly on the insulating material, the adhesion between the plating film and the insulating material was poor, and when the gapping agent with the plating film was dispersed in the adhesive, the plating film was likely to peel off, resulting in poor dispersion. The method required careful attention, and the reliability of vertical conduction tended to be insufficient. Furthermore, there were some areas where the plating film was not formed, resulting in a lack of reliability. Here, the present inventor has discovered a method of forming an electroless plating film on an insulator with good adhesion and uniformity by forming a metal oxide layer on the insulator and then forming an electroless plating film.

そこで本発明は、このような欠点を改良するた
めに、粒径が液晶パネルのギヤツプを確保するた
めに用いられるギヤツプ剤に、金属酸化物層を形
成し、更にその上に無電解メツキをすることによ
つて導通性を付与した上下導通剤を用いたことを
特徴としている。
Therefore, in order to improve these drawbacks, the present invention forms a metal oxide layer on the gapping agent used to ensure the gap in the particle size of the liquid crystal panel, and then performs electroless plating on the gapping agent. It is characterized by the use of a vertical conductive agent that imparts conductivity.

上下導通剤としては、グラスフアイバー、アル
ミナ、無機ガラスビーズ等があり、これを使用し
た場合、液晶パネルのギヤツプによつて上下導通
の接点不良が解消される訳である。この状態を第
5図に示す。
Examples of the vertical conductive agent include glass fiber, alumina, and inorganic glass beads, and when this agent is used, contact failures in vertical conduction due to gaps in the liquid crystal panel are eliminated. This state is shown in FIG.

また、絶縁体物質上に形成する金属酸化物層と
しては、SnO2、Sb2O3、TiO2、In2O3等のうちど
れか1つ、あるいは2つ以上の混合被膜が無電解
メツキを密着性良く、均一につけるのには適当で
あるが、これらに限定されない。
Furthermore, as the metal oxide layer formed on the insulating material, one or a mixed film of two or more of SnO 2 , Sb 2 O 3 , TiO 2 , In 2 O 3 , etc. can be electrolessly plated. It is suitable for uniformly applying materials with good adhesion, but is not limited to these.

次に本発明の表示パネル用上下導通剤の製造方
法の概略を述べる。
Next, a method for manufacturing the vertical conductive agent for display panels according to the present invention will be outlined.

グラスフアイバー、アルミナ、無機ガラスビー
ズ等の無機ギヤツプ剤を加熱水中に分散させ加熱
懸濁液をつくる。次にメタノール、エタノール等
の低沸点溶媒に、塩化第2スズ、塩化アンチモ
ン、塩化チタン、塩化インジウム等の金属塩のど
れか1つあるいは2つ以上を溶解し、これを加熱
懸濁液に加えるとアルコールは加熱水とを接触す
ることで瞬時に蒸発し加水分解が起り均一に金属
酸化物層が、無機ギヤツプ剤上に形成される。こ
れを3別、洗浄し、空気中で400℃〜500℃で焼成
することによつて、絶縁体上に密着よく金属酸化
物被膜が形成される。次にこの上に無電解メツキ
をするために、通常次のような無電解前処理工程
を用いる。
An inorganic gapping agent such as glass fiber, alumina, or inorganic glass beads is dispersed in heated water to create a heated suspension. Next, dissolve one or more metal salts such as stannic chloride, antimony chloride, titanium chloride, indium chloride, etc. in a low boiling point solvent such as methanol or ethanol, and add this to the heated suspension. When the alcohol and alcohol come into contact with heated water, they instantly evaporate and hydrolysis occurs, forming a uniform metal oxide layer on the inorganic gapping agent. By washing this three times and baking it in air at 400°C to 500°C, a metal oxide film is formed on the insulator with good adhesion. Next, in order to perform electroless plating on this, the following electroless pretreatment process is usually used.

(1) アルカリ脱脂 (2) 酸中和 (3) SnCl2溶液におけるセンシタイジング (4) PdCl2溶液におけるアクチベイチング である。センシタイジングは、絶縁物質の表面に
例えばSn2+イオンを吸着させる工程であり、ア
クチベイチングは例えば Sn2++Pd2+→Sn4+Pd0 の反応を絶縁物質表面に起し、Pd0を無電解メツ
キの触媒核とする工程である。
(1) Alkaline degreasing (2) Acid neutralization (3) Sensitizing in SnCl 2 solution (4) Activating in PdCl 2 solution. Sensitizing is a process in which, for example, Sn 2+ ions are adsorbed onto the surface of an insulating material, and activating is a process in which, for example, a reaction of Sn 2+ + Pd 2+ → Sn 4 + Pd 0 occurs on the surface of an insulating material, and Pd 0 This is a process in which the metal is used as a catalyst nucleus for electroless plating.

無電解メツキ前処理工程を行つたあと、所定の
方法に従つて建浴、加温された無電解メツキ浴に
浸漬すればメタライジングできる。
After performing the electroless plating pretreatment step, metallization can be performed by immersing the product in an electroless plating bath that has been prepared and heated according to a predetermined method.

無電解メツキ浴としては、Au、Ni、Cu、Ag、
Co、Sn等のメツキ浴があり、上下導通剤として
使用可能であるが、メツキ被膜の密着性は、Ni
が最も良く、そのため絶縁性物質のメタライジン
グには無電解ニツケル浴が最もすぐれている。
Electroless plating baths include Au, Ni, Cu, Ag,
There are plating baths such as Co and Sn that can be used as upper and lower conductive agents, but the adhesion of the plating film is limited to Ni.
Therefore, the electroless nickel bath is the best for metallizing insulating materials.

前述の金属酸化物層の厚さ、及びメツキ膜厚さ
は、液晶パネルのギヤツプ剤を使用する場合は
200Å〜5000Åが良い。200Å以下であるとギヤツ
プ剤にメツキ被膜の形成されていない部分が生じ
たり、また抵抗が大きくなるため実際的ではな
い。5000Å以上になると、上下導通部と液晶ギヤ
ツプ厚が1μm以上の差ができ、液晶層が不均一と
なり駆動電圧の変化、あるいは干渉色により色ム
ラが出てしまう。
The thickness of the metal oxide layer and plating film mentioned above should be determined when using a gapping agent for liquid crystal panels.
200 Å to 5000 Å is good. If it is less than 200 Å, it is not practical because there will be parts of the gapping agent where no plating film is formed and the resistance will become large. If the thickness exceeds 5000 Å, there will be a difference of 1 μm or more between the upper and lower conductive parts and the liquid crystal gap thickness, and the liquid crystal layer will become non-uniform, resulting in uneven color due to changes in drive voltage or interference colors.

また、絶縁性物質にニツケル被膜等を形成した
場合、抵抗値が大きい場合は、ニツケル等の表面
に無電解銀メツキ無電解金メツキ等の電気導通性
の良い貴金属被膜を形成するとよい。貴金属無電
解メツキの被膜の厚さは50Å〜1μmが好ましい。
Furthermore, when a nickel film or the like is formed on an insulating material and the resistance value is large, it is preferable to form a noble metal film with good electrical conductivity such as electroless silver plating or electroless gold plating on the surface of the nickel or the like. The thickness of the noble metal electroless plating film is preferably 50 Å to 1 μm.

このようにしてメタライズされた絶縁性物質を
接着剤に加え均一に分散させる。
The thus metalized insulating material is added to the adhesive and uniformly dispersed.

接着剤としては、エポキシ樹脂、アクリル樹脂
等を使用した。
As the adhesive, epoxy resin, acrylic resin, etc. were used.

上記接着剤中へのメタライズされた絶縁性物質
の割合は0.1wt%〜30wt%が適当であり、0.1wt
%以下であると導通部の抵抗が大きくなつたりば
らついたりしやすくなる。また30wt%以上にな
ると接着性に問題がでやすくなる。またギヤツプ
剤の分散状態は、液晶パネルの少なくとも上下導
通部において5ケ/mm2〜500ケ/mm2が良い。上限、
下限の値は上記と同様の理由である。もちろん、
これらの値は、絶縁性物質の径により多少異る。
The appropriate proportion of the metalized insulating material in the above adhesive is 0.1wt% to 30wt%, and 0.1wt%
% or less, the resistance of the conductive portion tends to increase or fluctuate. Furthermore, if the content exceeds 30 wt%, problems with adhesion tend to occur. The dispersion state of the gapping agent is preferably 5 particles/mm 2 to 500 particles/mm 2 at least in the upper and lower conductive parts of the liquid crystal panel. upper limit,
The lower limit value is determined for the same reason as above. of course,
These values differ somewhat depending on the diameter of the insulating material.

このようにして作られた上下導通剤は、印刷に
よつて液晶パネルの上下導通部につけられ、液晶
パネルに組み込まれた。
The thus produced vertical conductive agent was applied to the vertical conductive portions of the liquid crystal panel by printing and incorporated into the liquid crystal panel.

液晶パネルの基板は通常ガラスが用いられてい
るが、プラスチツクフイルムに透明電極(SnO2
In2O3等)をパターニングしたものを用いてもよ
い。プラスチツクフイルムの場合は、上下導通材
の接触した部分が、組立時の加圧によりへこみ、
それによつて上下導通材との接触面積が大きくな
り信頼性が増すことになる。
Glass is usually used for the substrate of liquid crystal panels, but transparent electrodes (SnO 2 ,
In 2 O 3 etc.) may be patterned. In the case of plastic film, the contact area between the upper and lower conductive materials may dent due to the pressure applied during assembly.
This increases the contact area with the upper and lower conductive members and increases reliability.

次に実施例を用いて詳細に説明する。 Next, a detailed explanation will be given using examples.

実施例 1 径5μmのグラスフアイバーの粉末10gを水1
に加え90℃に加熱し撹拌し、均一に分散した加熱
懸濁液を調整した。この加熱懸濁液に、エタノー
ル300c.c.にSnCl480gを溶解したものからなる溶
液を2時間かけてゆつくり注入して、前記グラス
フアイバー上にSnO2から成る被膜層を析出させ、
3別、洗浄して500℃で1時間焼成を行つた。
Example 1 10g of glass fiber powder with a diameter of 5μm is added to 1 part of water.
The mixture was heated to 90°C and stirred to prepare a uniformly dispersed heated suspension. A solution consisting of 80 g of SnCl 4 dissolved in 300 c.c. of ethanol is slowly injected into this heated suspension over 2 hours to deposit a coating layer of SnO 2 on the glass fiber,
3. Separately, it was washed and fired at 500°C for 1 hour.

次に、SnCl21g/、HCl1c.c./の混合溶液
中にこれらの粒子を分散させ、ろ過、水洗後、所
定の方法によつて建浴されたカニゼン社製のレツ
ドシユーマー中にこれらの粒子を分散し、ろ過、
水洗した。
Next, these particles were dispersed in a mixed solution of 1 g of SnCl 2 /, 1 c.c. of HCl, and after filtering and washing with water, these particles were placed in a redosumer manufactured by Kanigen Co., Ltd., which was prepared using a prescribed method. Disperse, filter,
Washed with water.

そして、所定の方法によつて建浴されたカニゼ
ン社製のS−680溶液(45℃)に6分間分散させ、
ろ過、水洗した。これによつてグラスフアイバー
上に3500Åのニツケル−リンメツキができた。こ
れをエポキシ樹脂中に25wt%の割合で分散させ、
ホウケイ酸ガラスの液晶パネルの上下導通剤とし
て使用したところ、抵抗値は9KΩ(抵抗値はネサ
ガラスを介して測定した)となつた。また所定の
加速試験を行つても抵抗値の変化はなかつた。
Then, it was dispersed for 6 minutes in a Kanigen S-680 solution (45°C) prepared by a predetermined method.
Filtered and washed with water. This resulted in a 3500 Å nickel-phosphorus plating on the glass fiber. Disperse this in epoxy resin at a ratio of 25wt%,
When used as a conductor between the upper and lower sides of a borosilicate glass liquid crystal panel, the resistance value was 9KΩ (resistance value was measured through Nesa glass). Further, even when a predetermined accelerated test was performed, there was no change in the resistance value.

実施例 2 実施例1と同様にSnO2被膜の形成された7μm
のグラスフアイバー粒子上に2000Åのニツケル−
リンメツキを施した後、日本エンゲルハルト社製
のアトメツクス金メツキ浴で、500Åのニツケル
−リン層を金と置換メツキした。つまり1500Åは
ニツケル−リン層、その上層として500Åは金層
が形成された。
Example 2 A 7μm SnO 2 film was formed in the same way as Example 1.
2000Å nickel on glass fiber particles
After phosphor plating, a 500 Å nickel-phosphorus layer was replaced with gold using an Atmex gold plating bath manufactured by Nippon Engelhard. In other words, a nickel-phosphorous layer was formed at 1500 Å, and a gold layer was formed at 500 Å above it.

これをエポキシ樹脂中に5wt%分散させ、液晶
パネルの上下導通剤として使用したところ、上下
導通の抵抗値は8KΩとなつた。また所定の加速
試験を行つても、抵抗の変化はなかつた。
When this was dispersed in epoxy resin at 5wt% and used as a vertical conduction agent for a liquid crystal panel, the resistance value for vertical conduction was 8KΩ. Further, even when a predetermined acceleration test was performed, there was no change in resistance.

実施例 3 実施例2でメタライズされた7μmのグラスフア
イバー粒子をU.V硬化(紫外線硬化)性のアクリ
ル樹脂中に15wt%分散させ、上下導通剤として
ポリエチレンフイルムからなる液晶パネルに使用
した。上下導通の抵抗値は17KΩとなり、加速試
験にも抵抗値の変化はなかつた。
Example 3 The 7 μm glass fiber particles metalized in Example 2 were dispersed at 15 wt % in a UV-curable acrylic resin and used as a vertical conductor in a liquid crystal panel made of polyethylene film. The resistance value for vertical conduction was 17KΩ, and there was no change in resistance value even during accelerated tests.

実施例 4 実施例2でメタライズされた7μmのグラスフア
イバー粒子を2wt%、銀ペースト中に分散させ
て、液晶パネルの上下導通剤として使用した。抵
抗値は銀ペーストよりやや下がり、加速試験での
抵抗の変化はなかつた。
Example 4 2 wt % of the 7 μm glass fiber particles metallized in Example 2 were dispersed in a silver paste and used as an upper and lower conductive agent for a liquid crystal panel. The resistance value was slightly lower than that of silver paste, and there was no change in resistance during accelerated testing.

実施例 5 実施例4と同様にグラスフアイバー粒子を
10wt%銀ペーストに分散させ、液晶パネルの上
下導通剤として使用したところ、同様の結果が得
られた。
Example 5 Similar to Example 4, glass fiber particles were
Similar results were obtained when it was dispersed in a 10wt% silver paste and used as a conductive agent between the upper and lower sides of a liquid crystal panel.

実施例 6 10μmのアルミナ粒子に実施例1と同様の方法
でSnO2被膜を形成後、ニツケル−リン無電解メ
ツキを3000Åの厚さに行い、実施例1と同様の試
験を行つたところ、抵抗値は10KΩ(ネサガラス
をかえして抵抗値を測定した)となり、所定の加
速試験を行つても抵抗値に変化はなかつた。
Example 6 After forming a SnO 2 film on 10 μm alumina particles in the same manner as in Example 1, nickel-phosphorus electroless plating was performed to a thickness of 3000 Å, and the same test as in Example 1 was conducted. The value was 10KΩ (the resistance value was measured by changing the Nesa glass), and the resistance value did not change even after performing the specified acceleration test.

実施例 7 径7μmのグラスフアイバーの粉末10gを水1
に加え90℃に加熱撹拌し、均一に分散した加熱懸
濁液を調整した。この加熱懸濁液にエタノール
300c.c.にTiCl4を30g溶解したものからなる溶液
を2時間かけてゆつくり注入して、前記グラスフ
アイバー上にTiO2からなる被膜層を析出させ、
ろ別、洗浄して500℃で1時間焼成を行つた。
Example 7 10g of glass fiber powder with a diameter of 7μm is added to 1 part of water.
In addition, the mixture was heated and stirred at 90°C to prepare a uniformly dispersed heated suspension. Ethanol to this heated suspension
A solution consisting of 30 g of TiCl 4 dissolved in 300 c.c. was slowly injected over 2 hours to deposit a coating layer of TiO 2 on the glass fiber,
It was filtered, washed, and fired at 500°C for 1 hour.

これを実施例1と同様な方法で無電解メツキを
行つたところ、実施例1と同様な結果を得た。
When this was subjected to electroless plating in the same manner as in Example 1, the same results as in Example 1 were obtained.

以上実施例1から7までの上下導通剤を使用し
た場合、上下導通不良は今までの上下導通剤を使
用した場合と比較して1/20に減少した。
When the vertical conductive agents of Examples 1 to 7 were used, the defective vertical conductivity was reduced to 1/20 compared to the case where the conventional vertical conductive agents were used.

上述の如く本発明によれば、ギヤツプ剤の表面
に金属酸化物層を設けたので、無電解ニツケルメ
ツキ被膜と絶縁性物質からなるギヤツプ剤との密
着性が格段に向上した。また、接着剤との混合割
合を0.1wt%〜30wt%としたので、上下導通部に
おける抵抗のバラツキが小さく且つ安定した接着
性が得られるのである。
As described above, according to the present invention, since the metal oxide layer is provided on the surface of the gapping agent, the adhesion between the electroless nickel plating film and the gapping agent made of an insulating material is significantly improved. Moreover, since the mixing ratio with the adhesive is 0.1 wt% to 30 wt%, stable adhesiveness with small variations in resistance in the upper and lower conductive parts can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図…従来の液晶パネル断面図 1,2:上下基板、3,4:上下透明電極、
5:上電極からの導通端子、6…軟金属(インジ
ウムボール)、7…ギヤツプ剤を含んだシール部、
8…液晶、 第2図…従来の他の液晶パネル断面図 9:上下導通剤、 第3図…一般の液晶パネルの工程途上における
基板平面図 10:単品の液晶パネル、 第4図…上下導通部の断面図(従来例) 11…銀粒子、12:銀ペースト中の接着樹
脂、 第5図…上下導通部の断面図(本発明:グラス
フアイバー) 13…グラスフアイバー、14…接着材。
Figure 1: Cross-sectional view of conventional liquid crystal panel 1, 2: Upper and lower substrates, 3, 4: Upper and lower transparent electrodes,
5: Conductive terminal from the upper electrode, 6... Soft metal (indium ball), 7... Seal part containing gapping agent,
8...Liquid crystal, Figure 2...Cross-sectional view of other conventional liquid crystal panels 9: Vertical conduction agent, Figure 3...Substrate plan view during the process of a general liquid crystal panel 10: Single liquid crystal panel, Figure 4...Vertical conduction 11... Silver particles, 12: Adhesive resin in silver paste, Fig. 5... Cross-sectional view of upper and lower conductive parts (present invention: glass fiber) 13... Glass fiber, 14... Adhesive material.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の基板間のギヤツプを確保するための絶
縁性物質からなるギヤツプ剤の表面に金属酸化物
層が形成されてなり、さらに該金属酸化物層上に
無電解ニツケルメツキ被膜が形成され、該ギヤツ
プ剤が接着剤中に0.1wt%〜30wt%の範囲で分散
されていることを特徴とする表示パネル用上下導
通剤。
1 A metal oxide layer is formed on the surface of a gap agent made of an insulating material to ensure a gap between a pair of substrates, and an electroless nickel plating film is further formed on the metal oxide layer, and the gap is A vertical conductive agent for a display panel, characterized in that an adhesive is dispersed in an adhesive in a range of 0.1wt% to 30wt%.
JP18495782A 1982-10-21 1982-10-21 Upper and lower conductive agent for display panels Granted JPS5974528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18495782A JPS5974528A (en) 1982-10-21 1982-10-21 Upper and lower conductive agent for display panels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18495782A JPS5974528A (en) 1982-10-21 1982-10-21 Upper and lower conductive agent for display panels

Publications (2)

Publication Number Publication Date
JPS5974528A JPS5974528A (en) 1984-04-27
JPH0151167B2 true JPH0151167B2 (en) 1989-11-01

Family

ID=16162302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18495782A Granted JPS5974528A (en) 1982-10-21 1982-10-21 Upper and lower conductive agent for display panels

Country Status (1)

Country Link
JP (1) JPS5974528A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197887A (en) * 1997-01-08 1998-07-31 Ricoh Co Ltd Liquid crystal display cell and its manufacture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1576130A (en) * 1976-08-10 1980-10-01 Quebec Ministere Des Richesses Continuous production of lithium carbonate
JPS5937641B2 (en) * 1976-10-01 1984-09-11 古河電気工業株式会社 Mobile object current collection method
JPS5926661B2 (en) * 1980-06-28 1984-06-29 松下電器産業株式会社 Electroless plating active metal material paste and plating method using the same

Also Published As

Publication number Publication date
JPS5974528A (en) 1984-04-27

Similar Documents

Publication Publication Date Title
JPH0126069B2 (en)
JP4052832B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP4863988B2 (en) Conductive fine particles and anisotropic conductive material
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
EP0083458B1 (en) Method of partially metallising electrically conductive non-metallic patterns
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
JPH0151167B2 (en)
JPS5926662B2 (en) Electroless plating active metal material paste and plating method using the same
US6652980B2 (en) Electrochromic material and method for making the same
JP2826817B2 (en) Display panel
JP2852909B2 (en) Display panel
JP2755196B2 (en) Display panel
JPH0470613B2 (en)
JPH0423389B2 (en)
JPS60245781A (en) Plating method onto transparent conductive film pattern
JPH06102522A (en) Display panel
JP3701038B2 (en) Thick film copper conductor paste composition and method for producing circuit board using the same
JPH0585637B2 (en)
JPS60262304A (en) liquid crystal display device
JPS6133905B2 (en)
JPS646530B2 (en)
JPS5948950B2 (en) Active metal material paste for electroless plating and plating method using it
JPH05125552A (en) Method for plating transparent conductive film with gold
JPS60245782A (en) Plating method onto transparent conductive film pattern
JPS5926661B2 (en) Electroless plating active metal material paste and plating method using the same