[go: up one dir, main page]

JPH0149314B2 - - Google Patents

Info

Publication number
JPH0149314B2
JPH0149314B2 JP58110986A JP11098683A JPH0149314B2 JP H0149314 B2 JPH0149314 B2 JP H0149314B2 JP 58110986 A JP58110986 A JP 58110986A JP 11098683 A JP11098683 A JP 11098683A JP H0149314 B2 JPH0149314 B2 JP H0149314B2
Authority
JP
Japan
Prior art keywords
soil
polymer
point
drug
emulsifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58110986A
Other languages
Japanese (ja)
Other versions
JPS604587A (en
Inventor
Takashiro Azuma
Hiroyuki Oota
Takenao Hatsutori
Junichi Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP58110986A priority Critical patent/JPS604587A/en
Publication of JPS604587A publication Critical patent/JPS604587A/en
Publication of JPH0149314B2 publication Critical patent/JPH0149314B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は造成地の法面、崩落山地等へ散布し
て、地盤の強度、土砂の崩落防止、風による飛散
防止、降雨による侵食防止あるいはグランド、工
事道路等の平地へ散布し、砂、土の固着を行な
い、土壌の飛散、侵食防止等を図るための薬剤に
関するものである。 土砂崩落防止の為の薬剤散布は従来より行われ
ており、散布薬剤については、例えばアスフアル
ト乳剤、酢酸ビニル系樹脂など多くの有機系薬剤
が提案されているが、概して地盤や土砂の固着強
度が十分でなく、又土壌への浸透性が不十分であ
つたり、耐水性、凍結安定性に乏しく、このため
気象的影響を受け易く、長期間にわたり土壌を安
定に維持しておくことは困難であつた。 本発明は、上記の欠点を排除して土壌への浸透
性および土壌への固結力に優れ、かつ激しい気象
変化に対しても長期間にわたつて安定な土壌を形
成でき、更には植生の目的では種子の発芽性およ
び植物の育成にも充分な効力を発揮しうる薬剤に
関するものであり、その骨子とするところは、ア
クリル酸エステルまたは/およびメタクリル酸エ
ステルを主体とするモノマーを、水性媒体中で、
アニオン性乳化剤の存在下に乳化重合して得られ
るアクリル系ポリマー分散液よりなり、該分散液
のPHが5〜9で、ポリマーのガラス転位温度(以
下Tg点と称する)が−40℃〜+20℃の範囲にあ
る土壌侵食防止用薬剤である。 上記本発明の最大の要点は、土砂への浸透性を
高めるために、乳化剤、PHを限定し薬剤の安定化
を図つたことと、長期間にわたり、土壌の固結力
を維持させるために、ある範囲のTg点を有する
アクリル系ポリマーを使用することにあり、以下
これらについて具体的に説明する。 本発明の薬剤を構成するアクリル系ポリマーと
は、アクリル酸エステルまたは/およびメタクリ
ル酸エステルを主体とするモノマーの乳化重合に
よつて得たポリマー中に上記のエステル該当成分
が50%(重量%;以下同じ)以上含有したポリマ
ーであり、実質的には上記モノマーによつてポリ
マーのTg点が−40℃〜+20℃の範囲内をなるよ
うに自由に選択して配合される。 本発明において、アクリル酸エステルとメタク
リル酸エステルとを併用した場合の両者の配合割
合は、アクリル酸エステルとメタクリル酸エステ
ルとの重量比で85:15〜30:70の範囲が得られる
樹脂の硬さの点で好ましい。 これらアクリル酸エステル、メタクリル酸エス
テルにおける使用可能なモノマーとしてはアルキ
ル基の炭素数がC1〜C8の範囲のものが性能的に
も又価格的にも好ましい。例えば、アクリル酸メ
チル(該ホモポリマーのTg点(以下Tg点とのみ
記す)+8℃)、アクリル酸エチル(Tg点−23
℃)、アクリル酸ブチル(Tg点−57℃)アクリル
酸イソブチル(Tg点−24℃)、アクリル酸2エチ
ルヘキシル(Tg点−85℃)などのアクリル酸エ
ステル、メチルメタクリレート(Tg点+105℃)、
エチルメタクリレート(Tg点+65℃)、ブチルメ
タクリレート(Tg点+20℃)などのメタクリル
酸エステルを挙げることが出来る。 又上記のアクリル酸エステル、メタクリル酸エ
ステルのほかに下記○イ及び○ロに記載する、重合性
モノマーの1種もしくは2種以上を配合すること
が出来る。 ○イ 主として土壌の固結力を与える目的でアクリ
ル酸、メタクリル酸等のカルボキシル基含有重
合性モノマーまたは、ヒドロキシエチルアクリ
レート、ヒドロキシブチルアクリレート、ヒド
ロキシエチルメタクリレートなどの水酸基含有
重合性モノマー。好適な使用量はポリマー中10
%以下で、これ以上ポリマーに含有している
と、耐水性が悪くなり、降雨によつて土壌が崩
落する傾向があるので好ましくない。 ○ロ 主として樹脂に硬さを与え、土砂への固結力
を与える目的で、酢酸ビニル、スチレン、アク
リロニトリル、塩化ビニリデン等の比較的安価
に入手可能なエチレン性モノマー。好適な使用
量はポリマーのTg点が−40〜+20℃に入り、
且つポリマー中50%以下が望ましい。 その他必要に応じて公知の連鎖移動剤、可塑剤
等を重合時に添加し、樹脂の硬さを調製すること
が出来る。 ここにTg点とは無定形ポリマーの各種性質が
急変する温度で、この温度以下ではポリマーの無
定形部分の分子セグメントの運動が凍結されるよ
うな温度であるとされている。 本発明薬剤を構成するポリマーのTg点を実際
に測定するには、一例として種々の温度での熱膨
張を測定して比容積−温度曲線の2つの傾斜の異
なる直線の交点としてTg点が求められる。 しかし簡便的には、個々の単独ポリマーのTg
点であるTgの値が知られている事より、次の計
算式によつて共重合体ポリマーのTg点を求める
事ができる。 1/Tg=CA/TgA+CB/TgB …(1) CA:成分Aの重量分率 CB:成分Bの重量分率 TgA:成分A単独ポリマーのガラス転移温度 (〓) TgB:成分B単独ポリマーのガラス転移温度 (〓) Tg:成分A,B共重合体ポリマーのガラス転
移温度(〓) ここでCA+CB=1である。 本発明におけるTg点−40℃〜+20℃の範囲は
上記の個々のポリマーのTg点よりの計算に依拠
した範囲である。 本発明の薬剤は上記モノマーを水媒体中で、ア
ニオン性乳化剤を使用して通常の公知の方法でラ
ジカル乳化重合を行なつたのち、液のPHを5〜9
に調整することで目的を達することができる。 この際、乳化剤として特にアニオン性乳化剤と
限定し、液のPHを5〜9に調整する目的は、薬剤
を土壌へ散布し、これを土壌に深く浸透させるに
は、薬剤を十分安定化させておく必要があるため
である。これに対して乳化剤をカチオン性剤化
剤、ノニオン性乳化剤とした場合には薬剤は土壌
表層でエマルジヨンの破壊等が起こり、土壌内部
へ深く浸透出来なくなる。また、乳化剤としてア
ニオン性乳化剤を使用して乳化重合した場合で
も、液のPHが5以下ではエマルジヨンの安定性が
乏しく、従つてこの場合にも土壌へ深く浸透出来
にくい。またPHが9以上ではPH調製剤にアンモニ
ア、アミン化合物等を使用した場合、散布時に悪
臭が立ち、環境汚染となつたり、その他苛性ソー
ダ等のPH調製剤を使用した場合、耐水性が低下す
るので好ましくない。 本発明に使用しうるアニオン性乳化剤として
は、特に限定されるものではないが、少量使用で
乳化性、エマルジヨンの安定性などの点から、ラ
ウリル硫酸ソーダ、ポリオキシエチレンアルキル
エーテル硫酸ソーダ、ポリオキシエチレンアルキ
ルフエニルエーテル硫酸ソーダ等の硫酸ソーダ型
の乳化剤が好ましい。 本発明の薬剤におけるアクリル系ポリマーの
Tg点は、前記した通り−40℃〜+20℃の範囲の
ものであるが、薬剤を土壌に散布した場合、土壌
へ浸透したのち土壌を強固に固結させる必要があ
り、ポリマーのTg点が−40℃以下の場合には冬
季あるいは寒冷地等でも十分土壌の固結能を持つ
ものの、固結力は弱いため、実用性に欠ける。ま
た、Tg点が+20℃以上の場合には樹脂が硬くな
りすぎ、固結能が悪くなり、土壌にクラツクが生
ずる欠点がある。 その他土壌への浸透性はポリマーの濃度、エマ
ルジヨンの粘度、ポリマー粒子の大きさ等も当然
影響される。本発明の薬剤によれば、ポリマーの
濃度は50%以下のものが好ましく、5〜30重量%
のポリマーの水中に分散しているものが特に好ま
しい。ポリマーの濃度が高いものは土砂への浸透
性が低下する傾向となり、低いものは浸透性は良
好であるが固結力が低下する傾向を示す。 本発明の薬剤の粘度については特別な制限はな
いが緻密な土壌への浸透を可能ならしめるために
数cps〜数+cpsとすることが好ましく又、ポリマ
ー粒子は0.01〜0.5μの範囲で任意の大きさを採用
することが出来る。これは対象となる土壌の種
類、例えば砂(粒径0.074mm〜2mm)の如き、比
較的粗い粒子にはポリマー粒子の大きなものを適
用し、シルト(0.005〜0.074mm)や粘土(0.001〜
0.005mm)の如き細かい粒子の土壌には粒径の細
かいポリマーエマルジヨンを使用することがよ
い。 土壌への浸透深度は薬剤の散布量の調整により
コントロールすることができる。すなわち、皮膜
型として用いる事も、30cm以上深く浸透させる浸
透充填型としても用いる事ができる。 本発明に係る薬剤の土壌への散布量は、土質や
適用目的などによつて異り、一概には云い難いが
土壌の空隙を埋めて固結力を増すには土壌空隙率
の約50%程度を散布の目安とすることが望まし
い。 以下実施例および比較例を掲げて本発明を説明
する。これらの中で用いる記号は下記の意味を持
つ。 MA:メチルアクリレート EA:エチルアクリレート BA:ブチルアクリレート HA:2エチルヘキシルアクリレート MMA:メチルメタクリレート VAC:酢酸ビニル MAA:メタクリル酸 HEMA:2−ヒドロキシエチルメタクリレ
ート APS:過硫酸アンモン DM:ドデシルメルカプタン なお部数はすべて重量部であり、%はすべて重
量%である。 実施例1〜7、比較例1,2 撹拌機、温度計、冷却管、滴下ロートを装備し
た5四ツ口フラスコに水400部を仕込み、80℃
に昇温した。続いて表1のモノマー及びDM混合
物をポリオキシエチレンノニルフエニルエーテル
硫酸ソーダ50部、水400部でブレ乳化し、APS5
部、水95部の開始剤と共に4時間かかつて連続的
に滴下した。この間重合温度を80±2℃に保持
し、滴下終了后さらに1時間同温度で撹拌し、そ
の後室温に冷却し、アンモニア水でPHを6.8に調
製したのち、等量の水で希釈して実施例1〜7、
および比較例1,2の各薬剤を作つた。 これらの薬剤中のポリマーのTg点は表1記載
のごとくであり、この薬剤を園芸用赤玉土を砕い
たものに対し、1m2当り、30Kg散布した場合の散
布1日後、3日後の土壌硬度及び土壌への浸透深
度を測定し表1の結果を得た。
The present invention can be applied to slopes of developed land, collapsed mountains, etc. to improve the strength of the ground, to prevent soil from collapsing, to prevent scattering by wind, to prevent erosion by rain, or to flat areas such as grounds, construction roads, etc. This relates to chemicals for fixing soil, preventing soil scattering, erosion, etc. Spraying chemicals to prevent landslides has been carried out for a long time, and many organic chemicals such as asphalt emulsions and vinyl acetate resins have been proposed as spraying chemicals, but in general, the adhesion strength of the ground and soil is insufficient. In addition, it has insufficient permeability into the soil, has poor water resistance and freeze stability, and is therefore easily affected by weather, making it difficult to maintain soil stability over long periods of time. It was hot. The present invention eliminates the above-mentioned drawbacks, has excellent soil permeability and soil consolidation ability, and can form soil that is stable for a long period of time even in the face of severe weather changes. The objective is to develop a drug that can exhibit sufficient efficacy for seed germination and plant growth. Inside,
It consists of an acrylic polymer dispersion obtained by emulsion polymerization in the presence of an anionic emulsifier, and the pH of the dispersion is 5 to 9, and the glass transition temperature (hereinafter referred to as Tg point) of the polymer is -40℃ to +20℃. It is a soil erosion prevention agent in the range of ℃. The main points of the present invention are that the emulsifier and PH are limited to stabilize the drug in order to increase its permeability into the soil, and that the soil solidification ability is maintained over a long period of time. The aim is to use acrylic polymers having a Tg point within a certain range, and these will be specifically explained below. The acrylic polymer constituting the drug of the present invention is a polymer obtained by emulsion polymerization of monomers mainly composed of acrylic esters and/or methacrylic esters, in which the above ester component is 50% (weight %; (The same applies hereinafter) or more, and the above monomers are substantially freely selected and blended so that the Tg point of the polymer falls within the range of -40°C to +20°C. In the present invention, when acrylic ester and methacrylic ester are used together, the blending ratio of both is determined by the hardness of the resin such that the weight ratio of acrylic ester and methacrylic ester is in the range of 85:15 to 30:70. It is preferable in terms of quality. As monomers that can be used in these acrylic esters and methacrylic esters, those in which the number of carbon atoms in the alkyl group is in the range of C 1 to C 8 are preferable in terms of performance and cost. For example, methyl acrylate (Tg point of the homopolymer (hereinafter simply referred to as Tg point) +8°C), ethyl acrylate (Tg point -23
℃), acrylic acid esters such as butyl acrylate (Tg point -57℃), isobutyl acrylate (Tg point -24℃), 2-ethylhexyl acrylate (Tg point -85℃), methyl methacrylate (Tg point +105℃),
Examples include methacrylic acid esters such as ethyl methacrylate (Tg point +65°C) and butyl methacrylate (Tg point +20°C). In addition to the above-mentioned acrylic esters and methacrylic esters, one or more of the polymerizable monomers listed in ○A and ○B below can be blended. ○B Carboxyl group-containing polymerizable monomers such as acrylic acid and methacrylic acid, or hydroxyl group-containing polymerizable monomers such as hydroxyethyl acrylate, hydroxybutyl acrylate, and hydroxyethyl methacrylate, mainly for the purpose of imparting soil consolidation power. The preferred usage amount is 10 in the polymer.
% or less, and if the polymer contains more than this, water resistance deteriorates and the soil tends to collapse due to rainfall, which is not preferable. ○B Ethylene monomers, such as vinyl acetate, styrene, acrylonitrile, and vinylidene chloride, which are available at relatively low prices, mainly for the purpose of imparting hardness to resins and consolidation power to earth and sand. The suitable amount to use is that the Tg point of the polymer is -40 to +20℃,
Moreover, it is desirable that the content is 50% or less in the polymer. In addition, the hardness of the resin can be adjusted by adding known chain transfer agents, plasticizers, etc. during polymerization, if necessary. The Tg point is the temperature at which various properties of an amorphous polymer suddenly change, and below this temperature, the motion of the molecular segments of the amorphous portion of the polymer is frozen. To actually measure the Tg point of the polymer constituting the drug of the present invention, for example, the thermal expansion at various temperatures is measured and the Tg point is determined as the intersection of two straight lines with different slopes on the specific volume-temperature curve. It will be done. However, for convenience, the Tg of each single polymer is
Since the value of Tg at the point is known, the Tg point of the copolymer can be determined using the following calculation formula. 1/Tg=C A /Tg A +C B /Tg B ...(1) C A : Weight fraction of component A C B : Weight fraction of component B Tg A : Glass transition temperature of component A single polymer (〓) Tg B : Glass transition temperature of component B single polymer (〓) Tg: Glass transition temperature of component A, B copolymer polymer (〓) Here, C A +C B =1. The range of Tg points in the present invention from -40°C to +20°C is based on calculations from the Tg points of the individual polymers mentioned above. The drug of the present invention is obtained by performing radical emulsion polymerization of the above monomer in an aqueous medium using an anionic emulsifier using a conventionally known method, and then adjusting the pH of the liquid to 5 to 9.
You can reach your goal by adjusting. At this time, the emulsifier is specifically limited to an anionic emulsifier, and the purpose of adjusting the pH of the liquid to 5 to 9 is to stabilize the chemical sufficiently in order to spray it on the soil and allow it to penetrate deeply into the soil. This is because it is necessary to On the other hand, when the emulsifier is a cationic emulsifier or a nonionic emulsifier, the emulsion is destroyed in the soil surface layer, and the emulsifier cannot penetrate deeply into the soil. Further, even when emulsion polymerization is carried out using an anionic emulsifier as an emulsifier, if the pH of the liquid is 5 or less, the stability of the emulsion is poor, and therefore, in this case as well, it is difficult to penetrate deeply into the soil. In addition, if the pH is 9 or higher, if ammonia or amine compounds are used as pH adjusters, a bad odor will be emitted during spraying, resulting in environmental pollution.If other pH adjusters such as caustic soda are used, water resistance will decrease. Undesirable. Examples of anionic emulsifiers that can be used in the present invention include, but are not limited to, sodium lauryl sulfate, sodium polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl ether sodium sulfate, and polyoxyethylene alkyl ether sodium sulfate. Sodium sulfate type emulsifiers, such as ethylene alkyl phenyl ether sodium sulfate, are preferred. Acrylic polymer in the drug of the present invention
As mentioned above, the Tg point is in the range of -40℃ to +20℃, but when a chemical is sprayed on soil, it is necessary to solidify the soil after it penetrates into the soil, and the Tg point of the polymer is Although it has sufficient soil consolidation ability even in winter or in cold regions when the temperature is -40℃ or lower, its consolidation power is weak, making it impractical. Furthermore, if the Tg point is +20°C or higher, the resin becomes too hard, resulting in poor consolidation ability and the formation of cracks in the soil. In addition, the permeability into soil is naturally influenced by the concentration of the polymer, the viscosity of the emulsion, the size of the polymer particles, etc. According to the drug of the present invention, the concentration of the polymer is preferably 50% or less, and 5 to 30% by weight.
Particularly preferred are polymers dispersed in water. Those with a high concentration of polymer tend to have low permeability to soil, and those with low polymer concentration have good permeability but tend to have low consolidation power. There is no particular limit to the viscosity of the drug of the present invention, but it is preferably several cps to several + cps in order to enable penetration into dense soil. size can be adopted. This is done by applying large polymer particles to relatively coarse particles such as sand (0.074 mm to 2 mm), silt (0.005 to 0.074 mm), and clay (0.001 to 2 mm).
For soils with fine particles (such as 0.005 mm), it is better to use a polymer emulsion with a fine particle size. The depth of penetration into the soil can be controlled by adjusting the amount of chemical applied. That is, it can be used as a film type or as a penetrating type that penetrates deeper than 30 cm. The amount of the chemical agent according to the present invention to be applied to soil varies depending on the soil quality and purpose of application, and is difficult to generalize, but in order to fill soil voids and increase consolidation power, it should be approximately 50% of the soil porosity. It is desirable to use the degree as a guideline for spraying. The present invention will be explained below with reference to Examples and Comparative Examples. The symbols used in these have the following meanings. MA: Methyl acrylate EA: Ethyl acrylate BA: Butyl acrylate HA: 2-ethylhexyl acrylate MMA: Methyl methacrylate VAC: Vinyl acetate MAA: Methacrylic acid HEMA: 2-hydroxyethyl methacrylate APS: Ammonium persulfate DM: Dodecyl mercaptan All parts are by weight parts, and all percentages are by weight. Examples 1 to 7, Comparative Examples 1 and 2 400 parts of water was charged into a 5-four-necked flask equipped with a stirrer, thermometer, cooling tube, and dropping funnel, and heated to 80°C.
The temperature rose to . Next, the monomer and DM mixture shown in Table 1 was emulsified with 50 parts of polyoxyethylene nonyl phenyl ether sodium sulfate and 400 parts of water, and APS5
1 part, water was added continuously over 4 hours with an initiator of 95 parts. During this time, the polymerization temperature was maintained at 80 ± 2°C, and after the completion of the dropwise addition, the mixture was stirred at the same temperature for another hour, then cooled to room temperature, adjusted to pH 6.8 with aqueous ammonia, and diluted with an equal amount of water. Examples 1 to 7,
And each drug of Comparative Examples 1 and 2 was prepared. The Tg point of the polymer in these agents is as shown in Table 1, and the soil hardness 1 and 3 days after spraying this agent at 30 kg per 1 m 2 on crushed horticultural Akadama soil. The depth of penetration into the soil was measured and the results shown in Table 1 were obtained.

【表】 実施例 8 実施例3で製造した薬剤を紙に含浸させ、そ
の上に種々の種子を100粒蒔き、25℃にて24時間、
72時間、168時間後の発芽数を水の場合と較べて
試験した。その結果を表2に示す。
[Table] Example 8 Paper was impregnated with the drug produced in Example 3, 100 seeds of various types were sown thereon, and the mixture was incubated at 25°C for 24 hours.
The number of germination after 72 hours and 168 hours was compared with that in water. The results are shown in Table 2.

【表】 実施例 9 内径40mmφの各パイプにローム土、砂質土を
夫々別個に深さ15cm迄つめ、実施例3の薬剤を、
ローム土については40g、砂質土では20g散布
し、薬剤が10cm迄浸透する時間を測定した。その
結果を表3に示す。 なお比較として実施例3の薬剤でPHを未調製の
もの(PH=2.2)も同様にテストしたが、ローム
土では薬剤のエマルジヨンの凝固が起こり、ロー
ム土の内部へ浸透しなかつた。 テストに供したローム土、砂質土の物性はつぎ
のようなものである。
[Table] Example 9 Fill each pipe with an inner diameter of 40 mmφ with loam soil and sandy soil to a depth of 15 cm, and apply the chemical of Example 3.
For loam soils, 40g was applied, and for sandy soils, 20g was applied, and the time it took for the chemical to penetrate up to 10cm was measured. The results are shown in Table 3. As a comparison, the drug of Example 3 whose pH had not been adjusted (PH = 2.2) was also tested in the same manner, but in loam soil, the emulsion of the drug coagulated and did not penetrate into the loam soil. The physical properties of the loam soil and sandy soil used in the test are as follows.

【表】【table】

【表】 実施例 10 実施例3の薬剤を水で濃度25%,15%,10%に
なる様に夫々希釈し、これを直径6cm、深さ5cm
のパイプに充填したローム土に夫々散布した。薬
剤散布2日后の土壌表面の硬度を山中式土壌硬度
計により測定したところ表4の結果を得た。
[Table] Example 10 The drug from Example 3 was diluted with water to a concentration of 25%, 15%, and 10%, respectively, and the dilution was carried out in a 6 cm diameter and 5 cm deep
Each was sprayed on loam soil filled in a pipe. Two days after the chemical spraying, the hardness of the soil surface was measured using a Yamanaka soil hardness meter, and the results shown in Table 4 were obtained.

【表】 実施例 11 実施例5記載の薬剤をローム土30cmに浸透さ
せ、2日后の固結硬度の分布を山内式土壌硬度計
で測定した。その結果を表5に示す。
[Table] Example 11 The chemical described in Example 5 was infiltrated into 30 cm of loam soil, and 2 days later, the distribution of consolidation hardness was measured using a Yamauchi soil hardness meter. The results are shown in Table 5.

【表】 実施例 12 ローム土壌を供試体として、実施例3の薬剤の
濃度を水で25%に希釈したもので−4℃×6時間
の凍結、25℃×18時間解凍を1サイクルとして5
サイクル実施し、表面の固結硬度を調べた結果、
32cmであつた。 実施例 13 高さ3m、散水面積1.5m×2.0m、散水量50〜
200mm/hrの人工降雨散水装置を用い、平均散水
時間雨量115mmで土砂流出テストを実施した。 供試土はローム土、砂質土(実施例9と同じも
の)とし、これを縦50cm、横25cm、深さ5cmの実
験箱に詰め、傾斜度30度で実施例3の薬剤を3倍
及び5倍希釈したもので、散布し20時間経過后、
2時間散水をおこなつた。比較のために、薬剤を
使用せず散水のみのテストも実施した。結果を表
6に示す。
[Table] Example 12 Loam soil was used as a test material, and the drug concentration of Example 3 was diluted with water to 25%. One cycle was freezing at -4°C for 6 hours and thawing at 25°C for 18 hours.
As a result of carrying out the cycle and examining the surface consolidation hardness,
It was 32cm long. Example 13 Height 3m, watering area 1.5m x 2.0m, watering amount 50~
A soil runoff test was conducted using an artificial rainfall sprinkler system with a rate of 200 mm/hr and an average rainfall amount of 115 mm per sprinkler period. The test soil was loamy soil or sandy soil (same as in Example 9), packed in an experimental box measuring 50 cm long, 25 cm wide and 5 cm deep, with an angle of 30 degrees and three times the amount of the chemical from Example 3. and 5 times diluted, 20 hours after spraying,
I sprinkled water for 2 hours. For comparison, we also conducted a test using only water sprinkling without using any chemicals. The results are shown in Table 6.

【表】 実施例14,15、比較例3,4 実施例3と同じモノマー組成で得たポリマーエ
マルジヨンのアンモニアによるPH調整を種々変更
した薬剤を用い、実施例3と同様に浸透深度を測
定した。その結果を表7に示す。
[Table] Examples 14 and 15, Comparative Examples 3 and 4 Penetration depth was measured in the same manner as in Example 3, using a polymer emulsion obtained with the same monomer composition as in Example 3, using a drug in which the PH was adjusted with ammonia in various ways. did. The results are shown in Table 7.

【表】 表7において、比較例3(PH=2.3)の薬剤では
エマルジヨンの破壊が起り、土壌内部への浸透が
不能であつた。又比較例4(PH=10.1)では土壌
への浸透性が実施例14,15に対してやや劣る傾向
を示しており、この程度では概ね良好な範囲にあ
ると認められるものの、アンモニア臭が激しく散
布作業の環境上問題があると判断された。 比較例 5,6 乳化剤としてカチオン性乳化剤(ステアリルト
リメチルアンモニウムクロライド)を用いた以外
には実施例2と同様にして乳化重合せしめ、カチ
オン性ポリマーエマルジヨンを得た。(比較例5) これと市販の酢酸ビニル系エマルジヨン(ノニ
オン性乳化剤を使用)(比較例6)とを使用し実
施例2と同様にして散布試験を行なつたが、両者
共に土壌の表層のみしか浸透せず、その浸透深度
は2〜3cmであつた。 以上の実施例、比較例から明らかのごとく、本
発明による薬剤は植生に対するエイキヨウも少な
く且つ、土壌への浸透充填性にすぐれていること
がわかる。
[Table] In Table 7, the chemical of Comparative Example 3 (PH=2.3) caused destruction of the emulsion and was unable to penetrate into the soil. Also, in Comparative Example 4 (PH=10.1), the permeability into the soil tends to be slightly inferior to that of Examples 14 and 15, and although it is recognized that this level is generally in a good range, there is a strong ammonia odor. It was determined that there was an environmental problem with the spraying work. Comparative Examples 5 and 6 Emulsion polymerization was carried out in the same manner as in Example 2 except that a cationic emulsifier (stearyltrimethylammonium chloride) was used as the emulsifier to obtain a cationic polymer emulsion. (Comparative Example 5) A spraying test was conducted in the same manner as in Example 2 using this and a commercially available vinyl acetate emulsion (using a nonionic emulsifier) (Comparative Example 6), but both only applied to the surface layer of the soil. The penetration depth was 2 to 3 cm. As is clear from the above Examples and Comparative Examples, the chemical agent according to the present invention causes less scorching on vegetation and has excellent ability to penetrate and fill soil.

Claims (1)

【特許請求の範囲】[Claims] 1 アクリル酸エステルまたは/およびメタクリ
ル酸エステルを主体とするモノマーを、水性媒体
中でアニオン性乳化剤の存在下に乳化重合して得
られるアクリル系ポリマー分散液よりなり、該分
散液のPHが5〜9であり、かつポリマーのガラス
転位温度が−40℃〜+20℃の範囲にある土壌侵食
防止用薬剤。
1 Consists of an acrylic polymer dispersion obtained by emulsion polymerization of monomers mainly composed of acrylic esters and/or methacrylic esters in an aqueous medium in the presence of an anionic emulsifier, and the pH of the dispersion is 5 to 5. 9, and the glass transition temperature of the polymer is in the range of -40°C to +20°C.
JP58110986A 1983-06-22 1983-06-22 Agent for preventing soil erosion Granted JPS604587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110986A JPS604587A (en) 1983-06-22 1983-06-22 Agent for preventing soil erosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110986A JPS604587A (en) 1983-06-22 1983-06-22 Agent for preventing soil erosion

Publications (2)

Publication Number Publication Date
JPS604587A JPS604587A (en) 1985-01-11
JPH0149314B2 true JPH0149314B2 (en) 1989-10-24

Family

ID=14549503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110986A Granted JPS604587A (en) 1983-06-22 1983-06-22 Agent for preventing soil erosion

Country Status (1)

Country Link
JP (1) JPS604587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291144A (en) * 2015-11-30 2018-07-17 电化株式会社 With the soil erosion preventing agent for well freezing steady dissolution

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68904581T2 (en) * 1988-03-28 1993-05-19 Allied Colloids Ltd DUST BINDERS FOR MINERALS.
DE102007043307A1 (en) 2007-09-12 2009-03-19 Wacker Chemie Ag Treatment of earth building materials with carbon dioxide
CN114340373A (en) * 2019-10-18 2022-04-12 电化株式会社 Method for dispersing resin emulsion
JPWO2021090751A1 (en) * 2019-11-05 2021-05-14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291144A (en) * 2015-11-30 2018-07-17 电化株式会社 With the soil erosion preventing agent for well freezing steady dissolution
CN108291144B (en) * 2015-11-30 2021-03-09 电化株式会社 Soil erosion preventive agent having good freezing dissolution stability

Also Published As

Publication number Publication date
JPS604587A (en) 1985-01-11

Similar Documents

Publication Publication Date Title
US5824725A (en) Method and composition for stabilizing soil and process for making the same
US4107112A (en) Epoxy resin soil stabilizing compositions
CN107709671B (en) Soil erosion inhibitor having excellent freeze-thaw stability
US4592931A (en) Method for soil stabilization and fugitive dust control
RU2370518C2 (en) Method for stabilisation of dust-making surfaces
US4243563A (en) Calcium polysulfide soil stabilization method and compositions
JP6767384B2 (en) Soil erosion inhibitor with excellent freeze-thaw stability
WO2015122333A1 (en) Soil erosion prevention agent
JPH0149314B2 (en)
JP2623184B2 (en) Greening method
JP2002013102A (en) Soil improvement method
JP4048800B2 (en) Spray material and slope protection method
EP0736587A1 (en) Semifluid mix and associated environmental restoration method
TWI676675B (en) Soil erosion preventive agent
EP0134106B1 (en) Chemical formulation for soil stabilization and fugitive dust control
JPH1088508A (en) Developed land construction method
US11725144B2 (en) Method for stabilizing sandy soils
JPS6198801A (en) Stabilization of ground surface
JPH08225704A (en) Composition for stabilizing soil
JPH09296406A (en) Earth-paving agent and earth pavement and dust proofing method
JP2006036851A (en) Re-emulsifying powder resin for vegetation
JPS58171470A (en) Method for preventing scattering of heaped powder
JP2017205049A (en) Weed control material and method of using the same
JP3795767B2 (en) Soil-based pavement and its construction method
JP2589236B2 (en) Construction method of surface layer of soil ground