[go: up one dir, main page]

JPH0148464B2 - - Google Patents

Info

Publication number
JPH0148464B2
JPH0148464B2 JP9084A JP9084A JPH0148464B2 JP H0148464 B2 JPH0148464 B2 JP H0148464B2 JP 9084 A JP9084 A JP 9084A JP 9084 A JP9084 A JP 9084A JP H0148464 B2 JPH0148464 B2 JP H0148464B2
Authority
JP
Japan
Prior art keywords
water
liquid
nozzle
circulation device
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9084A
Other languages
Japanese (ja)
Other versions
JPS60144558A (en
Inventor
Haruko Ozeki
Akya Ozeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59000090A priority Critical patent/JPS60144558A/en
Publication of JPS60144558A publication Critical patent/JPS60144558A/en
Publication of JPH0148464B2 publication Critical patent/JPH0148464B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/06Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/454Mixing liquids with liquids; Emulsifying using flow mixing by injecting a mixture of liquid and gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/27Mixing by jetting components into a conduit for agitating its contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本説明では液体を水に、気体を空気あるいは酸
素に置換えた例を示す。 本発明は水道水、ポンプあるいは落差により得
られる高圧水の圧力を利用して、高速のジエツト
水を発生させその力によつて、周囲の水を効率よ
く循環させると同時に空気の泡あるいは酸素等の
気体の泡を混合させるものであり、突起物及び可
動部分がない単純な構造のため故障、汚れがない
などの特徴がある。更に液体中への気体の溶解が
行われ水の腐敗を防ぐばかりでなく、気泡の発
生、消滅の際に発生する超音波により洗浄作用が
生じ、肌を刺激し肌の美容、医療効果等の副次効
果をもつている。 第1図、第2図、第6図の図面によつて循環装
置の例を示す。 先端を細く絞つた極小孔径の液体用ノズル1の
一方の端をホースないしパイプ4を介して水道
水、高圧ポンプ水あるいは落差により得られる圧
力水の出口5に接続し高圧の水を液体用ノズル1
に通すと先端から少量の高速ジエツト水が噴出す
る。ベルヌーイの定理に従つてこの高速ジエツト
水の周囲は負圧を呈するので、この高速ジエツト
水を取囲む形に開口する気体用環状ノズル2、あ
るいは高速ジエツト水の近傍に1個から複数個の
気体用ノズル3等の気体の吸込み口を設け、これ
ら気体の吸込み口の一方の端を通気管17を介し
て気体の取入れ口6につなぐと、ここから空気あ
るいは酸素等の気体を吸込む。この気体は細かい
泡となつて高速ジエツト水と共に水中を移動し、
これに伴つて周囲の大量の水を動かすことができ
ると同時に気体が水中に溶解する。このノズル全
体を案内管11にその中心線を概ね平行にして取
付け一体化すると水の強制循環装置になる。この
ノズルを上向きにすると泡の浮上効果と相乗して
その効果は大きい。 また第6図に示すように液体用ノズル1の中に
気体用ノズル3を置いた場合は液体用ノズル1は
薄く絞られた環状を呈するので高速のジエツト水
は筒状に噴出し、ジエツト水に囲まれた気体用ノ
ズル3から気体を、またジエツト水の外側から周
囲の水を効率よく吸引し、水と気体を混合し、移
動させ、輸送循環させることができる。この方法
は第1図に示す装置を用いて気体用環状ノズル2
に水を流し、液体用ノズル1の一方の端を気体中
に開口させたことに等しい。 ここで液体用ノズル1はその先端で水が高速で
噴出することが必要であり、そのためにはノズル
1の前での圧力損失を小さくするように、途中の
径は太くし、ノズル1の先端は流れを邪魔しない
ように滑らかな曲線で細く絞られる構造にするこ
とが好ましい。ノズル1の先端の開口部の形状は
丸、楕円、多角形、長方形等任意の形状をとるこ
とができるが、特に小孔径の丸、あるいはスリツ
ト状の薄く幅の広い小断面の開口部をもつ液体用
ノズル1はジエツト水流の比表面積が大きく、単
位ジエツト水量当りの水の循環流量が大きく効率
的である。 液体用ノズル1の外側の案内管11の断面形状
は液体用ノズル1の開口部の形状とは異なつても
よいが相似形に近くすることが好ましい。即ち液
体用ノズル1の開口部の縁とその外側にある案内
管11の内側との距離がその周囲にわたつて略等
しくなるようにするとよい。 スリツト状の開口部を曲げてその両端をつなぐ
と環状のノズルが構成され第6図に示した装置は
その1つである。第6図では案内管11の一端を
下方に曲げ、下方に在る水を大量に下から上方表
層近くへ移動させる例を示した。 次に実施例の効果について詳しく述べる。 第1図に於いて先端の孔の径を小さく(例えば
0.5mm直径)絞つた液体用ノズル1の先に少し離
してその軸を同一にして気体用環状ノズル2(本
例では0.7mm直径)を設け、液体用ノズル1との
間に環状の気体用のスリツトが形成されるように
した。そしてその外側周囲に液体用ノズル1の中
心軸と概ね平行に径の太い(本例では40mm直径)
案内管11を置いて二つのノズルを一体化した。 この液体用ノズル1に水道水を流すと水道水は
0.5mmの小孔径に拘束されて、水道水圧、蛇口の
開度にはあまり影響されずに毎分0.3リツトルし
か流れないが、約25m毎秒の高速で水がジエツト
となつて噴出する。すると前記理由により気体用
環状ノズル2から空気が吸込まれ微小な気泡とな
つて水と混合し案内管11の中の水は約40cm毎秒
で流れた。これは毎分30リツトルの水が動いてい
ることになり輸送量が約百倍に増幅されたことを
示している。そしてこのとき大量の空気が水に溶
解されることが特徴である。本実施例で吸込まれ
る空気量は毎分0.2〜0.3リツトルであり液体用ノ
ズル1から噴出するジエツト水とほぼ同じ体積で
あつた。噴出するジエツト水の元圧が高ければ更
に大量の空気を吸込み溶かし込むことができる。
更にこの案内管11内に於いて百倍に増幅された
水が案内管11の出口からゆつくり(40cm毎秒)
流れ出ると、その水が更にその出口周囲の水を随
伴して動かすので更にその数倍の水を移動させ
る。そのうえ吸込まれた空気が微小な泡となつて
浮上し上部の水を撹はんするので最終的には液体
用ノズル1から噴出するジエツト水量の千倍以上
の水を動かすことになる。 このような増幅効果は液体用ノズル1のノズル
断面積が案内管11の内側断面積に比べて6400分
の1(0.52/402)と小さいことから生じており、
極少量の高速流体はポンプのように揚水する力は
ないが百倍から千倍もの大量の流体をゆつくり移
動循環させることができることを示している。 従来噴流水ポンプとして知られているものは、
液体用ノズル1の断面積とスロートの断面積の比
が0.1〜0.9の範囲でありその場合の水の輸送倍率
は大きくて4〜5倍である。第7図イにこれら従
来技術の領域を機械工学便覧から抜粋して示し
た。本願の技術は液体用ノズル1の断面積A1
案内管11の断面積A2の比が桁違いに小さく、
第7図ロに示すように従来では知られていない領
域を利用している。このため水の輸送倍率が百倍
〜千倍以上にも及ぶものであり、言替えれば大量
を水の循環に極僅か(数百分の1)の量の高速水
で足りることに特徴がある。そしてこの極僅かの
水が水中に噴出することによりその近くの気体用
環状ノズル2、あるいは気体用ノズル3等の気体
の吸込み口からはほぼ同量の空気が吸引され、こ
れが微小な泡となり大量に移動循環される水と共
に水中に拡散されこの泡の浮上効果により水の撹
はん循環が更に助長されることが本願技術の重要
な新技術である。 次にこの装置を一般的な外釜型の浴槽へ適用し
た例について第3図、第8図によつて説明する。
液体用ノズル1と気体の吸込み口とを一体化した
案内管11を風呂の連結管9又は10に取付け、
パイプ4に高圧水を流すと液体用ノズル1の先端
から噴出するジエツト水と、気体用環状ノズル2
又は気体用ノズル3等の気体の吸込み口から吸引
されて生ずる微小な泡によつて案内管11内の水
は強く移動させられ、釜8内の加熱された熱湯が
浴槽7の中へ移動し浴槽底部の冷たい水は釜8の
中へ供給され、浴槽7及び加熱器8内を強制循環
せしめることができる。第8図に示すように液体
用ノズル1と気体用環状ノズル2を組合わせた案
内管11を下向きにして連結管9に取付けると釜
8内で加熱された湯が浴槽7の底迄達し、前述の
ように周囲の水を随伴し浮上する気泡の効果と重
なりジエツト水量の千倍以上の水を動かし浴槽内
全体を撹はんするので湯の温度は一層均一にな
る。案内管11の一部に自由に曲げることのでき
る自在管20を設けると、加熱された湯と気泡の
方向を任意に変えることができ追いだき等の場合
にも好都合である。 この様にして沸かしたお風呂は第5図に示すよ
うに沸上がり時に浴槽内の温度が全く均一にな
り、掻回す必要もなく火傷の心配もなくなつた。
追いだきなどの場合、入浴中にこの循環装置を用
いると加熱された湯が浴槽中に速やかに流れ出て
くるため温まり方が速いだけでなく、発生した泡
が浴中で生成し、凝集し、はじける際に発する超
音波が皮膚を刺激するのでより温まりかつ汚れが
除かれ肌を活性化するなどの美容及び医療作用が
ある。案内管11を連結管9または10から外し
て水中で用いるか、あるいわ水中に空気中から高
速ジエツト水を吹付け叩き付けるようにして用い
ることにより同様に超音波の効果を利用すること
ができる。又気泡を肌に当てることによりその効
果は更に著しい。 その他液体用ノズル1からジエツト水が流れて
いるときは必ず気泡が発生し表面で気泡がはじ
け、小さな音がするので機能しているのがよく分
つて高圧水の出口(蛇口)5を閉め忘れることも
なく便利である。又細かい気泡の間断ない上昇に
より、浴槽中の垢、髪の毛等のゴミが早く浮き表
面に溜るので除去が容易であり清潔な湯を保つこ
とができるばかりでなく、釜内へもきれいな湯が
速く循環するので釜の汚れも少なく伝熱効率が上
昇するため熱効率が高く維持される(第1表)。 第4図、第9図に示すように液体用ノズル1及
び気体用環状ノズル2又は気体用ノズル3を連結
管9又は10のいずれかの中に組込み、かつ途中
の配管4と通気管17の双方あるいは一方を加熱
器8又は排ガス管19の排熱で予熱することによ
つて更に熱効率を上げることができる(第1表)。
これは配管4の中を流れる圧力水の流速が速く、
比表面積が大きく排熱でも充分に伝熱加熱効率が
よいためである。
In this explanation, an example will be shown in which the liquid is replaced with water and the gas is replaced with air or oxygen. The present invention utilizes the pressure of high-pressure water obtained from tap water, a pump, or a head to generate high-speed jet water, and uses that force to efficiently circulate surrounding water and at the same time generate air bubbles and oxygen. It mixes gas bubbles, and has a simple structure with no protrusions or moving parts, so it does not break down or get dirty. Furthermore, gas is dissolved in the liquid, which not only prevents water from spoiling, but also the ultrasonic waves generated when air bubbles appear and disappear, which has a cleaning effect that stimulates the skin and has skin beauty and medical effects. It has side effects. Examples of circulation devices are shown in the drawings of FIGS. 1, 2, and 6. One end of a liquid nozzle 1 with a very small pore diameter with a thinly constricted tip is connected via a hose or pipe 4 to an outlet 5 of tap water, high-pressure pump water, or pressure water obtained by a head, and high-pressure water is supplied to the liquid nozzle. 1
When passed through the tip, a small amount of high-speed jet water will spray out from the tip. According to Bernoulli's theorem, the area around this high-speed jet water exhibits a negative pressure, so there is an annular gas nozzle 2 that opens to surround this high-speed jet water, or one or more gas nozzles are installed near the high-speed jet water. When a gas suction port such as a nozzle 3 is provided, and one end of the gas suction port is connected to a gas intake port 6 via a ventilation pipe 17, air or a gas such as oxygen is sucked from there. This gas becomes fine bubbles and moves through the water with the high-speed jet water.
Along with this, a large amount of surrounding water can be moved, and at the same time, gas is dissolved in the water. When the entire nozzle is attached and integrated to the guide tube 11 with its center line generally parallel, it becomes a forced water circulation device. If this nozzle is directed upward, the effect will be greater due to the floating effect of the bubbles. Furthermore, as shown in Fig. 6, when the gas nozzle 3 is placed inside the liquid nozzle 1, the liquid nozzle 1 has a thinly constricted annular shape, so high-speed jet water is ejected in a cylindrical shape. It is possible to efficiently suck gas from the gas nozzle 3 surrounded by the jet water and surrounding water from the outside of the jet water, mix the water and gas, move them, and transport and circulate them. This method uses the apparatus shown in FIG.
This is equivalent to flowing water through the air and opening one end of the liquid nozzle 1 into the gas. Here, it is necessary for the liquid nozzle 1 to eject water at high speed at its tip, and for this purpose, the diameter in the middle is made thicker so as to reduce the pressure loss in front of the nozzle 1, and the tip of the nozzle 1 It is preferable to have a narrow structure with a smooth curve so as not to disturb the flow. The shape of the opening at the tip of the nozzle 1 can be any shape such as round, oval, polygon, rectangle, etc., but in particular it has a round shape with a small hole diameter or a slit-like thin and wide opening with a small cross section. The liquid nozzle 1 has a large specific surface area of the jet water flow, and is efficient in that the circulation flow rate of water per unit amount of jet water is large. Although the cross-sectional shape of the guide tube 11 on the outside of the liquid nozzle 1 may be different from the shape of the opening of the liquid nozzle 1, it is preferable that the cross-sectional shape be close to a similar shape. That is, it is preferable that the distance between the edge of the opening of the liquid nozzle 1 and the inside of the guide tube 11 located outside the edge be approximately equal throughout the circumference. By bending a slit-shaped opening and connecting its two ends, an annular nozzle is constructed, and the device shown in FIG. 6 is one such device. FIG. 6 shows an example in which one end of the guide tube 11 is bent downward to move a large amount of water located below from below to near the upper surface layer. Next, the effects of the embodiment will be described in detail. In Figure 1, the diameter of the hole at the tip is made smaller (for example,
An annular gas nozzle 2 (0.7 mm diameter in this example) is installed at the end of the constricted liquid nozzle 1 with its axes being the same, and a gas annular nozzle 2 (0.7 mm diameter in this example) is installed at the end of the constricted liquid nozzle 1. slits are now formed. Then, around the outside thereof, there is a large diameter approximately parallel to the central axis of the liquid nozzle 1 (40 mm diameter in this example).
A guide tube 11 was placed to integrate the two nozzles. When tap water is poured through this liquid nozzle 1, the tap water is
Restricted by the small pore diameter of 0.5 mm, only 0.3 liters per minute flows without being affected by tap water pressure or faucet opening, but water spouts out as a jet at a high speed of approximately 25 m/s. Then, for the reason mentioned above, air was sucked in from the annular gas nozzle 2, formed minute bubbles, and mixed with water, causing the water in the guide tube 11 to flow at a rate of about 40 cm/sec. This means that 30 liters of water is moving every minute, meaning that the amount of water being transported has been amplified approximately 100 times. A characteristic feature of this process is that a large amount of air is dissolved in the water. In this example, the amount of air sucked in was 0.2 to 0.3 liters per minute, which was approximately the same volume as the jet water jetted from the liquid nozzle 1. If the source pressure of jet water is high, a larger amount of air can be sucked in and dissolved.
Furthermore, water amplified 100 times within this guide tube 11 slowly flows out from the outlet of the guide tube 11 (at a rate of 40 cm/sec).
When the water flows out, it also moves the water surrounding the outlet, which moves several times as much water. Moreover, the air sucked in becomes minute bubbles that float up and stir the water above, so that in the end, more than 1,000 times more water than the amount of jet water ejected from the liquid nozzle 1 is moved. Such an amplification effect occurs because the nozzle cross-sectional area of the liquid nozzle 1 is 1/6400 (0.5 2 /40 2 ) smaller than the inner cross-sectional area of the guide tube 11.
Although a small amount of high-speed fluid does not have the power to lift water like a pump, it is possible to move and circulate a large amount of fluid 100 to 1,000 times more slowly. What is conventionally known as a jet water pump is
The ratio of the cross-sectional area of the liquid nozzle 1 to the cross-sectional area of the throat is in the range of 0.1 to 0.9, and in that case, the water transport magnification is 4 to 5 times as large. Figure 7A shows these areas of prior art extracted from the Mechanical Engineering Handbook. In the technology of the present application, the ratio between the cross-sectional area A 1 of the liquid nozzle 1 and the cross-sectional area A 2 of the guide tube 11 is an order of magnitude smaller,
As shown in FIG. 7B, an area unknown in the past is utilized. Therefore, the water transport magnification is 100 to 1,000 times or more, and in other words, a very small amount (several hundredths) of high-speed water is sufficient to circulate a large amount of water. When this very small amount of water is ejected into the water, approximately the same amount of air is sucked in from the gas suction port of the gas annular nozzle 2 or gas nozzle 3 nearby, which turns into minute bubbles and generates a large amount of air. An important new technology of the present technology is that the bubbles are diffused into the water together with the water that is moved and circulated, and the floating effect of the bubbles further promotes the agitation and circulation of the water. Next, an example in which this device is applied to a general outer pot type bathtub will be explained with reference to FIGS. 3 and 8.
Attach a guide pipe 11 that integrates a liquid nozzle 1 and a gas suction port to a connecting pipe 9 or 10 of the bath,
When high-pressure water flows through the pipe 4, jet water is ejected from the tip of the liquid nozzle 1 and the annular gas nozzle 2.
Alternatively, the water in the guide tube 11 is strongly moved by minute bubbles generated by suction from the gas suction port of the gas nozzle 3, etc., and the heated hot water in the pot 8 moves into the bathtub 7. Cold water at the bottom of the bathtub is supplied into the pot 8 and can be forced to circulate within the bathtub 7 and heater 8. As shown in FIG. 8, when the guide tube 11, which is a combination of the liquid nozzle 1 and the gas annular nozzle 2, is attached to the connecting tube 9 in a downward direction, the hot water heated in the pot 8 reaches the bottom of the bathtub 7. As mentioned above, the effect of the air bubbles floating along with the surrounding water moves more than 1,000 times the amount of jet water and stirs the entire bathtub, making the temperature of the hot water more uniform. Providing a freely bendable flexible tube 20 as part of the guide tube 11 allows the direction of the heated hot water and air bubbles to be changed arbitrarily, which is convenient for purposes such as chasing. As shown in Figure 5, the bath heated in this manner has a completely uniform temperature within the bath, and there is no need to stir the bath, and there is no fear of burns.
When using this circulation device while taking a bath, the heated water quickly flows into the bathtub, which not only heats it up quickly, but also causes bubbles to form in the bath and coagulate. The ultrasonic waves emitted when they burst stimulate the skin, which has beauty and medical effects such as warming the skin, removing dirt, and revitalizing the skin. The effect of ultrasonic waves can be similarly utilized by removing the guide tube 11 from the connecting tube 9 or 10 and using it underwater, or by spraying high-speed jet water from the air into the water. The effect is even more remarkable when the bubbles are applied to the skin. In addition, when jet water is flowing from the liquid nozzle 1, bubbles are always generated and the bubbles burst on the surface, making a small sound, so you can clearly tell that it is functioning, but you forget to close the high-pressure water outlet (faucet) 5. It's incredibly convenient. In addition, due to the continuous rise of fine air bubbles, dirt such as dirt and hair in the bathtub quickly floats and collects on the floating surface, making it easy to remove and not only keeping the hot water clean, but also allowing clean hot water to flow quickly into the pot. Since it circulates, there is less dirt in the pot and the heat transfer efficiency increases, so the thermal efficiency is maintained at a high level (Table 1). As shown in FIGS. 4 and 9, the liquid nozzle 1 and the gas annular nozzle 2 or the gas nozzle 3 are assembled into either the connecting pipe 9 or 10, and the pipe 4 and the vent pipe 17 are connected to each other. Thermal efficiency can be further increased by preheating either or both of them using the exhaust heat of the heater 8 or the exhaust gas pipe 19 (Table 1).
This is because the pressure water flowing through the pipe 4 has a high flow rate.
This is because the specific surface area is large and the heat transfer heating efficiency is sufficiently high even with waste heat.

【表】 又高圧水の開閉弁14と加熱器バーナー18用
の燃料開閉弁15とを連動させることにより加熱
と循環を同時に行うことができ便利である。この
ときタイマー16あるいは感温センサー等により
燃料開閉弁15を閉じてからある時間経つてから
高圧水の開閉弁14を閉じるようにすると、加熱
器内に残る熱湯をも有効に利用することができ
る。又浴槽内の湯の温度センサーからの信号で燃
料開閉弁15を開閉させるようにすると更に便利
である。以上の効果を第1表に纏めて示したが、
b−高速ジエツト水−とは第1,第2,第6図に
於いて気体用環状ノズル2あるいは気体用ノズル
3がない場合であり、従つて気泡は発生せず水だ
けが循環した場合である。これに対し本発明の技
術は第1表のc、dに示すように熱効率向上と温
度均一化の効果が明らかである。 近年貯水池、養殖用水域、湖沼や湾内等の閉水
域、流れの澱む河川は水の循環が悪く、その上生
活排水の流入あるいは魚介類の飼料、排せつ物等
によつて水が富栄養化し汚濁、腐敗し飲用、養殖
等の用をなさなくなりつつある。本装置をこれら
水域の水の浄化装置として用いた例について説明
する。 第1図、第6図に示す循環装置を浄化しようと
する水域の水中表面近くに置く。第10図に示す
ように気体取入口6は空気中に出し、案内管11
につながる環流管21の下端は該水域の底近くに
位置させる。一方該水域の近くの高い位置に在る
河川の流域あるいは水源池に取水口23を設け該
水域迄敷設した配管22の下端を高圧水の出口5
を介して水用のパイプ4の一端に接続する。この
ようにして液体用ノズル1の先端には取水口23
と該水域水面の間の落差に相当する水圧が働き、
この水圧により水源の水が液体用ノズル1の先端
からジエツト噴流となつて該水域中に噴出する。
このジエツト噴流によつて前述のように百倍以上
の水が案内管11のなかを流れるので、下方につ
ながる環流管21を通して底部の大量の腐敗水が
静かに間断なく吸い上げられ循環すると同時に気
体用ノズル3から空気が気泡となつて腐敗水中の
溶け込み酸化し浄化する機能をもつ。更に本装置
では閉水域系内に流れ込む水を利用しているので
水域内及び周辺の生態系には全く悪影響を及ぼさ
ないことも特徴の一つであり次に実施例を示す。 腐敗が著しく利用されていない広さ1Km×0.5
Km、深さ20mの養殖池(水量107m3)は周囲が山
に囲まれており、この池へ流入する雨水の降水域
は約3Km×2Kmでありその年間降雨量は2000mmで
ある。すなわち年間の全雨水量は1.2×107m3であ
る。この養殖池に流入する小川が4本あり、うち
一本の小川に全雨水量の約100分の1(105m3)が
流れている。この小川を養殖池水面より50m高い
位置で堰止めここを取水口23とした。ここで用
いた循環装置は第6図、第10図の構造をしてお
り液体用ノズル1は外径16mm、内径11mmの環状ス
リツトノズルとなつている。中心に9mm直径の気
体用ノズル3がある。案内管11は直径1mのパ
イプからなり水面下約1mの深さに略水平を保つ
ようにフロートに固定され、気体取入口6は水面
上に開いている。環流管21の下端は池の底から
約2m上方に位置するようにした。前記取水口2
3と本装置の水用パイプ4の間を10cm直径の配管
22でつなぐと、50mの水頭圧がかかり液体用ノ
ズル1から約30m毎秒の水が噴出する。この噴出
する水量は年間約105m3であり、従つて吸引され
る空気は前述の通りほぼ同体積であり年間約105
m3であつた。吸引された空気は1mm前後の微小径
の気泡となるので、その表面積は6×108m2と莫
大なものになり、この養殖池の表面積5×105m2
の千倍以上に相当する。しかも微小気泡が水中を
移動、浮上するので気泡と水の界面は激しく撹は
んされ空気が効率的に水中に溶解する。このとき
案内管11の中を流れる水は毎秒40cmであり年間
107m3に相当し百倍に増幅された。この循環水量
107m3は養殖池の全水量に相当し、一年で池全部
の水が一回循環し入替わり、大量の空気を溶かし
込むことによつて腐敗水が完全に浄化された。こ
の効果は半年程度で現れ始め一年経過後には臭気
も消え飲料水としても使える程になつた。第10
図において案内管11及び液体用ノズル1の方向
を若干下向きにすると気泡の液中への滞在時間が
長く効果が大きい。第11図は液体用ノズル1を
上に向けた場合であり気泡の浮揚力と相乗して循
環の効果が大きい。 同様な小型の装置を水道水蛇口につなぎ家庭用
の池、水槽の中で用いると、水中への空気の溶け
込みが円滑に行われ魚介類の生息に非常に良い効
果をもたらすことが分つた。このような目的のた
めに水中ポンプ等で水を空中に汲み上げ空気を溶
解させる装置があるが、電力を使うこと、感電の
虞があること、静かな場所特に夜間は騒音で使え
ない場合がある、等の欠点がある。本装置は従来
装置の欠点がないばかりでなく絶間ない水の循環
と空気の溶解が行なわれるので、水の腐敗を防ぐ
と同時に液体用ノズル1から供給される極少量の
新鮮な水道水が池へ補給されるので、水を入替え
る作業あるいは蒸発損失のための水の補給が自動
的に行われる等の効果がある。水道水が勿体ない
場合は中の水を高圧ポンプに導きノズルから噴出
させ再利用してもよい。 以上に述べた例の他、本装置は薬品等の各種液
体の輸送、循環作用にも利用できるので、液体用
ノズル1に流す高圧の液体は各種の液体を用いて
よく、同様に移動循環する水は各種の液体あるい
は粉粒体のような流体でも、移動、循環させるこ
とができ、この液体用ノズル1の孔径、噴出する
液体の圧力及び気体用環状ノズル2、気体用ノズ
ル3の孔径、案内管11の口径を適切に選ぶこと
により液体、気体、粒体の比率を任意に設定する
ことができる。 本発明に似ている技術として、浴槽の水あるい
は池の水をポンプを通してリサイクル噴流出させ
るものがあるが汚れた水を循環させているので
垢、髪の毛、池内の藻類、魚貝類、木片、腐敗物
等のごみがポンプ、あるいはノズルの中に詰まり
故障し機能を果たさなくなる等の問題がある。 本発明の特徴は、先端を細く絞つた小口径の液
体用のノズル1,2から微小量ではあるが高速の
ジエツト水を噴出させ、その数十倍−数百倍もの
量の周囲の水を循環させ、その中に微細な気泡を
吸込むことに在る。即ち極く少量のジエツト水で
大量の系内の水を動かすことが出来るので、系内
の汚れた水をリサイクルしなくとも系外に在る僅
かのきれいな水を使うことが出来る訳である。
[Table] Furthermore, by interlocking the high-pressure water on-off valve 14 and the fuel on-off valve 15 for the heater burner 18, heating and circulation can be performed simultaneously, which is convenient. At this time, if the high-pressure water on-off valve 14 is closed a certain amount of time after the fuel on-off valve 15 is closed using a timer 16 or a temperature-sensitive sensor, the hot water remaining in the heater can also be effectively used. . Furthermore, it is more convenient to open and close the fuel on-off valve 15 based on a signal from a temperature sensor of hot water in the bathtub. The above effects are summarized in Table 1,
b - High-speed jet water - refers to the case where there is no annular gas nozzle 2 or gas nozzle 3 in Figures 1, 2, and 6, and therefore no bubbles are generated and only water circulates. be. On the other hand, as shown in c and d of Table 1, the technology of the present invention clearly has the effect of improving thermal efficiency and making temperature uniform. In recent years, water circulation in reservoirs, aquaculture waters, closed waters such as lakes and bays, and stagnant rivers has been poor, and the water has become eutrophic and polluted due to the influx of domestic wastewater, fish feed, excrement, etc. It is becoming rotten and no longer useful for drinking or aquaculture. An example in which this device is used as a water purification device for these water areas will be explained. The circulation device shown in Figures 1 and 6 is placed near the underwater surface of the body of water to be purified. As shown in FIG. 10, the gas intake port 6 is exposed to the air, and the guide tube 11
The lower end of the reflux pipe 21 connected to the water area is located near the bottom of the water area. On the other hand, a water intake port 23 is provided in a river basin or water source pond located at a high position near the water area, and the lower end of the pipe 22 laid to the water area is connected to the high-pressure water outlet 5.
It is connected to one end of a water pipe 4 via a. In this way, the water intake port 23 is placed at the tip of the liquid nozzle 1.
A water pressure equivalent to the head difference between the water surface and the water surface acts,
Due to this water pressure, water from the water source is jetted from the tip of the liquid nozzle 1 into the water area as a jet stream.
Due to this jet stream, more than 100 times as much water flows through the guide pipe 11 as described above, so a large amount of rotten water at the bottom is quietly and continuously sucked up and circulated through the downwardly connected reflux pipe 21, and at the same time, the gas nozzle 3, the air forms bubbles and dissolves in the putrid water, oxidizing it and purifying it. Furthermore, since this device uses water flowing into a closed water system, one of its features is that it does not have any adverse effects on the ecosystem within or around the water body.Examples will now be described. An area of 1 km x 0.5 that is severely decayed and unused.
The aquaculture pond (water volume: 10 7 m 3 ), which is 20 m in length and 20 m in depth, is surrounded by mountains, and the rainwater area that flows into this pond is approximately 3 km x 2 km, and the annual rainfall is 2000 mm. In other words, the total amount of rainwater per year is 1.2×10 7 m 3 . There are four streams that flow into this aquaculture pond, one of which receives about one-hundredth of the total rainwater (10 5 m 3 ). This stream was dammed at a position 50 meters higher than the water level of the aquaculture pond, and this was designated as water intake port 23. The circulation device used here has the structure shown in FIGS. 6 and 10, and the liquid nozzle 1 is an annular slit nozzle with an outer diameter of 16 mm and an inner diameter of 11 mm. There is a gas nozzle 3 with a diameter of 9 mm in the center. The guide tube 11 is made of a pipe with a diameter of 1 m, and is fixed to the float at a depth of about 1 m below the water surface so as to remain substantially horizontal, and the gas intake port 6 is open above the water surface. The lower end of the reflux pipe 21 was positioned approximately 2 m above the bottom of the pond. Said water intake 2
3 and the water pipe 4 of this device are connected by a pipe 22 with a diameter of 10 cm, a water head pressure of 50 m is applied, and water is ejected from the liquid nozzle 1 at a rate of about 30 m/sec. The amount of water ejected is approximately 10 5 m 3 per year, and the air sucked in is approximately the same volume as described above, which is approximately 10 5 m 3 per year.
It was m3 . The sucked air becomes bubbles with a diameter of around 1 mm, so the surface area is enormous, 6 x 10 8 m 2 , and the surface area of this aquaculture pond is 5 x 10 5 m 2.
This is equivalent to more than 1,000 times the amount of Furthermore, as the microbubbles move through the water and float to the surface, the interface between the bubbles and the water is violently agitated, and the air is efficiently dissolved into the water. At this time, the water flowing through the guide pipe 11 is 40 cm per second, and the annual flow rate is 40 cm per second.
equivalent to 10 7 m 3 and amplified 100 times. This amount of circulating water
10 7 m 3 is equivalent to the total water volume of the aquaculture pond, and the water in the entire pond was circulated and replaced once in a year, and the putrid water was completely purified by dissolving a large amount of air. This effect began to appear after about half a year, and after a year, the odor disappeared and the water became usable as drinking water. 10th
In the figure, if the direction of the guide tube 11 and the liquid nozzle 1 is slightly downward, the stay time of the bubbles in the liquid will be longer and the effect will be greater. FIG. 11 shows a case where the liquid nozzle 1 is directed upward, and the effect of circulation is large due to the buoyancy force of the bubbles. It has been found that when a similar small device is connected to a tap water faucet and used in a home pond or aquarium, air dissolves smoothly into the water, which has a very positive effect on the habitat of fish and shellfish. For this purpose, there are devices such as submersible pumps that pump water into the air and dissolve the air, but they use electricity, there is a risk of electric shock, and they may not be usable in quiet places, especially at night, due to noise. , etc. have drawbacks. This device not only does not have the drawbacks of conventional devices, but also has constant water circulation and air dissolution, which prevents water from spoiling and at the same time ensures that a very small amount of fresh tap water supplied from the liquid nozzle 1 is kept in the pond. This has the effect of automatically replacing water or replenishing water for evaporation loss. If tap water is wasted, the water inside can be guided to a high-pressure pump and ejected from a nozzle for reuse. In addition to the examples described above, this device can also be used to transport and circulate various liquids such as chemicals, so various types of high-pressure liquids may be used as the high-pressure liquid to be flowed into the liquid nozzle 1, and they can be moved and circulated in the same way. Water can be moved and circulated as a fluid such as various liquids or powder or granules. By appropriately selecting the diameter of the guide tube 11, the ratio of liquid, gas, and particles can be set arbitrarily. As a technology similar to the present invention, there is a method that recycles bath water or pond water through a pump, but because it circulates dirty water, it collects dirt, hair, algae in the pond, fish and shellfish, wood chips, and decay. There are problems such as dirt and other objects clogging the pump or nozzle, causing it to malfunction and no longer function properly. The feature of the present invention is that a small amount of jet water is ejected at high speed from small-diameter liquid nozzles 1 and 2 with thinly constricted tips, and the amount of surrounding water is several tens to hundreds of times larger. It circulates and sucks microscopic air bubbles into it. In other words, since a large amount of water within the system can be moved with a very small amount of jet water, the small amount of clean water outside the system can be used without recycling the dirty water within the system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第6図は循環用ノズルの正面
図及び断面図、第3図、第4図、第8図、第9図
は循環装置のお風呂への使用例、第5図は本発明
の装置を使用した場合の効果を実証する浴槽内温
度の深さ方向の分布を示す図、第7図は管の断面
積比と水の輸送倍率の関係を示す図、第10図、
第11図は本発明の養殖池での実施態様を示す
図、である。 1……液体用ノズル、2……気体用環状ノズ
ル、3……気体用ノズル、4……液体用のホース
又はパイプ、5……高圧液体の出口、6……気体
取入口、7……浴槽、8……加熱器、9,10…
…連結管、11……案内管、12,13……導水
管、14……高圧液体の開閉弁、15……燃料開
閉弁、16……タイマー又は感温センサー、17
……通気管、18……加熱器バーナー、19……
排ガス管、20……自在管、21……環流管、2
2……配管、23……取水口、24……空気抜き
孔。
Figures 1, 2, and 6 are a front view and a sectional view of the circulation nozzle, Figures 3, 4, 8, and 9 are examples of how the circulation device is used in a bath, and Figure 5 Figure 7 shows the distribution of temperature in the bathtub in the depth direction, demonstrating the effect of using the device of the present invention; Figure 7 shows the relationship between the cross-sectional area ratio of the pipe and the water transport magnification; figure,
FIG. 11 is a diagram showing an embodiment of the present invention in an aquaculture pond. 1...Liquid nozzle, 2...Gas annular nozzle, 3...Gas nozzle, 4...Liquid hose or pipe, 5...High-pressure liquid outlet, 6...Gas intake port, 7... Bathtub, 8... Heater, 9, 10...
... Connecting pipe, 11 ... Guide pipe, 12, 13 ... Water conduit pipe, 14 ... High-pressure liquid on-off valve, 15 ... Fuel on-off valve, 16 ... Timer or temperature sensor, 17
... Ventilation pipe, 18 ... Heater burner, 19 ...
Exhaust gas pipe, 20... Flexible pipe, 21... Circulation pipe, 2
2...Piping, 23...Water intake, 24...Air vent hole.

Claims (1)

【特許請求の範囲】 1 先端を細く絞つた液体用ノズル1の先端の付
近に、気体用環状ノズル2または気体用ノズル3
を持つノズル構造物を、液体を溜めた容器の中に
置き、ノズル2,3は空気中あるいは各種気体中
に開口する気体取入れ口6につなぎ、液体用ノズ
ル1はこの容器とは異なる場所に在る高圧を生ず
る液体源につながるようにしてなる気体吹込み液
体の循環装置。 2 案内管11の中央近くに各々の中心線を略平
行にして液体用ノズル1を置き、気体用環状ノズ
ル2または気体用ノズル3と一体にしてなる特許
請求の範囲第1項記載の循環装置。 3 液体を溜めた容器が溶槽7、連結管9,1
0、あるいは加熱器8である特許請求の範囲第1
項記載の循環装置。 4 案内管11を連結管9あるいは10に取付け
できるようにしてなる特許請求の範囲第3項記載
の循環装置。 5 液体用のパイプ4と通気管17の一方、ある
いは双方を加熱器8、排ガス管19等の排熱で予
熱するようにしてなる特許請求の範囲第3項記載
の循環装置。 6 高圧液体の開閉弁14と燃料開閉弁15の
夫々の開閉機構を直接に、あるいはタイマーまた
は感温センサー16を介して間接的に連動して、
働かせるようにしてなる特許請求の範囲第3項記
載の循環装置。 7 高圧を生ずる液体源が、水道水、高圧ポンプ
水、落差により得られる圧力をもつ高所にある水
源、等である特許請求の範囲第1項記載の循環装
置。 8 液体を溜めた容器が湖、沼、池、湾、貯水
池、河川、あるいは養殖池等の水域である特許請
求の範囲第1項記載の循環装置。 9 案内管11が環流管21につながるようにし
てなる特許請求の範囲第2項記載の循環装置。
[Claims] 1. An annular gas nozzle 2 or a gas nozzle 3 is installed near the tip of the liquid nozzle 1, which has a thinly constricted tip.
A nozzle structure with a holder is placed in a container containing liquid, the nozzles 2 and 3 are connected to a gas intake port 6 that opens into the air or various gases, and the liquid nozzle 1 is placed in a place different from this container. A gas-blown liquid circulation device connected to a source of liquid that produces a high pressure. 2. The circulation device according to claim 1, wherein the liquid nozzle 1 is placed near the center of the guide tube 11 with their center lines substantially parallel, and is integrated with the annular gas nozzle 2 or the gas nozzle 3. . 3 The containers that store the liquid are the melt tank 7 and the connecting pipes 9 and 1.
0 or the heater 8
Circulation device as described in section. 4. The circulation device according to claim 3, wherein the guide pipe 11 can be attached to the connecting pipe 9 or 10. 5. The circulation device according to claim 3, wherein one or both of the liquid pipe 4 and the ventilation pipe 17 are preheated by exhaust heat from the heater 8, the exhaust gas pipe 19, etc. 6 The opening and closing mechanisms of the high-pressure liquid on-off valve 14 and the fuel on-off valve 15 are linked directly or indirectly via a timer or temperature sensor 16,
4. The circulation device according to claim 3, which is adapted to work. 7. The circulation device according to claim 1, wherein the liquid source that generates high pressure is tap water, high-pressure pump water, a water source located at a high place with pressure obtained by a head difference, or the like. 8. The circulation device according to claim 1, wherein the container storing the liquid is a water area such as a lake, swamp, pond, bay, reservoir, river, or aquaculture pond. 9. The circulation device according to claim 2, wherein the guide pipe 11 is connected to the reflux pipe 21.
JP59000090A 1984-01-05 1984-01-05 Circulation device Granted JPS60144558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000090A JPS60144558A (en) 1984-01-05 1984-01-05 Circulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000090A JPS60144558A (en) 1984-01-05 1984-01-05 Circulation device

Publications (2)

Publication Number Publication Date
JPS60144558A JPS60144558A (en) 1985-07-30
JPH0148464B2 true JPH0148464B2 (en) 1989-10-19

Family

ID=11464417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000090A Granted JPS60144558A (en) 1984-01-05 1984-01-05 Circulation device

Country Status (1)

Country Link
JP (1) JPS60144558A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109323B2 (en) * 1984-04-05 1995-11-22 松下電器産業株式会社 Bath equipment
CN102009010A (en) * 2010-11-29 2011-04-13 汤建男 High-pressure siphon gas-water mixture water outlet device
JP5854028B2 (en) * 2013-11-19 2016-02-09 三菱電機株式会社 Bath water heater
CN106390794B (en) * 2016-11-19 2020-08-28 河北北壳环保科技有限公司 Lubricating oil production is with mixing stirred tank

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913411U (en) * 1972-05-02 1974-02-04

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942038Y2 (en) * 1982-05-14 1984-12-06 株式会社ノーリツ bubble bath bubble squirt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913411U (en) * 1972-05-02 1974-02-04

Also Published As

Publication number Publication date
JPS60144558A (en) 1985-07-30

Similar Documents

Publication Publication Date Title
JP2009082903A (en) Microbubble generator
US5743287A (en) Automatic pool chlorinator
JP2002059186A (en) Water-jet type fine bubble generator
JPH0148464B2 (en)
TWI641562B (en) Improved submersible pool heating aeration device
JP3171591B2 (en) Aquarium equipment
JP2013146702A (en) Microbubble generator using through-flow pump
TWI652010B (en) Floating suspended pool warming aeration oxygenation device
JP2001179286A (en) Method for manufacturing and forming water cleaning apparatus
JPH11319866A (en) Water purification apparatus
GB2340767A (en) Pond skimmer
RU2026822C1 (en) Apparatus for saturating liquid with oxygen
JPH05146796A (en) Device for purifying closed natural water area
JP3936635B2 (en) Fluid convection nozzle device
JP2865630B2 (en) Hot water circulation type bathtub device
JPH0133071Y2 (en)
KR102302998B1 (en) Water stream purification apparatus for preventing from algae generation
JP2005143483A (en) Ornamental use water tank cleaning system
JPS60216898A (en) Apparatus for purifying water in closed water basin
JPS5929095A (en) Method and device for activating deep water layer of lake, pond, dam or the like
RU97119357A (en) PULSE AERATOR
RU2181343C2 (en) Aerator for liquid
JP3561212B2 (en) Freshwater organism breeding water purification method and freshwater organism breeding water purification device
JPH09215618A (en) Circulator for warm water in bathtub
JPH07194910A (en) Apparatus for purifying hot water in bathtub