[go: up one dir, main page]

JPH0146962B2 - - Google Patents

Info

Publication number
JPH0146962B2
JPH0146962B2 JP54119908A JP11990879A JPH0146962B2 JP H0146962 B2 JPH0146962 B2 JP H0146962B2 JP 54119908 A JP54119908 A JP 54119908A JP 11990879 A JP11990879 A JP 11990879A JP H0146962 B2 JPH0146962 B2 JP H0146962B2
Authority
JP
Japan
Prior art keywords
billet
composite
superconducting
extrusion
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54119908A
Other languages
Japanese (ja)
Other versions
JPS5645517A (en
Inventor
Sadahiko Sanki
Masahiro Kyofuji
Yasuhiko Myake
Juji Ishigami
Hidesumi Moriai
Akimitsu Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11990879A priority Critical patent/JPS5645517A/en
Publication of JPS5645517A publication Critical patent/JPS5645517A/en
Publication of JPH0146962B2 publication Critical patent/JPH0146962B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は多心超電導線の製造方法、特に静水
圧押出しを利用した方法に関する。 多心超電導線は、第6図にも示すように、銅、
アルミ等からなる安定化材のマトリツクス21中
に、Nb−Ti,Nb−Zr,Nb3Sn,V3Ga等からな
る複数の超電導材31を配置してなるものであ
る。 斯かる構成の多心超電導線の製造は従来次のよ
うな方法によつている。 (1) 予め用意した安定化材製の管内に、別に用意
した超電導材製の線または棒を挿入して得た複
合素材の複数本を、別に用意した安定化材製の
大径の管内に挿入し、その大径管の端部を真空
脱気後電子ビーム溶接などによつてシールして
複合ビレツトを作成する。 その後、この複合ビレツトを熱間押出しまた
は静水圧押出しし、しかる後要すれば引抜き等
により減面加工して細線化する。 (2) 予め用意した安定化材製の多孔棒(ビレツ
ト)の各孔内に、別に用意した超電導材製の棒
または線も夫々挿入してその端部を真空脱気し
た後電子ビーム溶接等よりシールして(1)と同様
に加工する。 何れの方法においても、複合ビレツト組立時点
で超電導材製の棒または線と、これを収容する安
定化材製の管または多孔棒(ビレツト)とは互に
嵌合挿入させるためにクリアランスが必要であ
り、挿入後も両者の間には間隙が存在する。 すなわち両者は機械的に嵌合しているのみであ
る。この間隙が大き過ぎると押出しの際、管の内
面にしわができ、線や棒との密着性が低下し、押
出し加工の失敗、あるいはその後の引抜き等の減
面加工で断線の原因となる。 一方、嵌合の際の作業性を犠性にしてクリアラ
ンスを小さくしようとすると、その間隙に入つた
空気、水分等が真空脱気の際に取切れず、これが
押出し加工中に膨脹し、外側層の膨れ、破裂、あ
るいは超電導材と安定化材との接着性低下、それ
による減面加工中の断線等の原因となる。 従つて押出前の複合ビレツトにおいては安定化
材と超電導材との間に間隙がなく、しかもその界
面に空気、水分もない状態とすることが望まし
い。この発明の目的は、前記した従来技術の欠点
を解消し、押出し並びにその後の減面加工が円滑
に実施でき、かつ接着性の優れた多心超電導線を
製造することのできる方法を提供することにあ
る。 この発明に依れば、斯かる目的は、複合ビレツ
トの構造部材の1つである複合素材を静水圧押出
しによつて、要すれば引抜き加工を加えることに
よつて形成し、これを用いた複合ビレツトも静水
圧押出しすることによつて達成することができ
る。この場合、安定化材としては一般に電気並び
に熱の伝導性が良好な高純度な銅やアルミニウム
が用いられるが、多心超電導線における超電導部
が化合物系である場合には、それらの化合物の成
分の一方を含む合金を用いることもできる。 従つて、超電導材としても一般に用いられる合
金系に限らず、化合物系の成分の残余の成分から
なる超電導素材を用いることができる。 勿論超電導線の製造上、または性能上必要な場
合には、安定化材及び超電導材以外の材料、例え
ばTa,Nb、銅、Cu−Ni合金等も複合ビレツト
組立の際その構成材の一部として用いることがで
きる。以下図面を参照して説明するに、第1図は
複合素材用のビレツトを示している。 このビレツトは安定化材、例えば無酸素銅製の
パイプ2と超電導材、例えばNb−Ti合金のビレ
ツト3と、これらの前後をシールするプラグ4
1,42とから成つている。 このビレツトの作成は、用意されたビレツト3
とパイプ2とを互に嵌挿し、プラグ41,42を
装着した状態において内部を真空脱気し、パイプ
2と、プラグ41,42との境界を電子ビーム溶
接することによつて行なわれる。 プラグ41の先端は、予め加工さけているか溶
接後加工してもよい。勿論プラグ41,42の何
れか一方は、予めパイプ2の端部に気密に固定し
ておいてもよい。 このビレツト1はこの後第2図に示すように、
加圧媒体6が満たされた静水圧押出機のコンテナ
5内に収容され、ステム7を移動させ加圧媒体6
を更に加圧することによつてダイス8から押出さ
れ、所望の形状寸法をもつた複合素材11とな
る。 押出し時の温度はビレツト1に十分な変形能が
得られ、かつ構成材への熱影響、相互反応の危険
性などがないか、あつても最小となるような温度
が選択される。 普通の押出しでは変形能の取得が優先されるた
め、例えば、銅とNb−Ti合金との組合せでは
450〜650℃、Cu−Su合金とNbとの組合せでは
600〜750℃というように可成り高い温度水準が必
要であり、実際には構成材料への熱影響、構成材
料相互反応の危険性は非常に高い。 しかし静水圧押出しの場合には相当低い温度で
も工業的に十分な加工度をとることができるた
め、普通の押出しの場合の温度以下好ましくは
450℃以下、室温までの可成り広い範囲にわたつ
て選択することができる。 斯くして得られた複合素材11は、その後必要
に応じて引抜加工され、所定の形状寸法に形成さ
れる。複合素材11の断面形状は多くの場合第3
図に示すように、六角形とされるが、他の形状で
あつても差支えない。 この複合素材11の成形は、その素材の嵌挿作
業が大きいサイズのときに行なわれるため、細い
もの同志を嵌挿する場合に比べ遥かに容易であ
る。また長尺の複合素材11が得られることから
長尺の複合ビレツトの組立を向上させることもで
きる。第3図は斯かる複合素材11を用いて組立
てた複合ビレツトを示している。このビレツト9
は前のビレツト1とほぼ同様にして作成される。 即ち前の工程で得られた所定長さの複合素材1
1を例えば無酸素銅製のパイプ2内に所定本数整
然と挿入した後、その内部を真空脱気してプラグ
41,42とパイプ2との間を溶接シールする。
この場合、パイプ2内には必要に応じて複合素材
11だけでなく、他の材料例えば無酸素銅製の線
その他も挿入することができる。 しかして、この複合ビレツト9は、第5図に示
すように静水圧押出しされ、その後必要に応じて
引抜き、複合ビレツト化、静水圧押出し等の工程
を経て第6図に示すような銅安定化超電導線91
として実用に供される。 この複合ビレツト9の静水圧押出しは、Cuと
Nb−Ti合金とが金属的に結合して間隙のない複
合素材11を用いているため、静水圧押出しのメ
リツトも増加されてその作業がより円滑に行なえ
るだけでなく、押出材の端部におけるメタルフロ
ーの不均一部をより短かくして押出材の歩留を一
段と向上させることができる。 得られた超電導線91は必要に応じてその後、
引抜き、複合ビレツト化、静水圧押出し等の工程
を経て細心化や多心化等が行なわれるが、それら
の各工程においても特異な複合素材11を用いる
ことのメリツトが生かされ、各工程を円滑に遂行
することができる。 以上は、特異な複合素材11を用いることのメ
リツトとして、押出加工及び後続の引抜き等の減
面加工における加工性に及ぼす優位性を述べた
が、その効果は加工性のみにあらず、完成した多
芯超電導線の超電導特性にも表われる。 Nb−Ti合金系超電導材料は、冷間加工度の増
大により液体ヘリウム中での臨界電流値が向上す
ることが知られている。この種材料を例にとれ
ば、多心ビレツトの素材として室温から450℃以
下の温度範囲で静水圧押出しした複合素材11を
用いることは、冷間加工度を極めて大きくしたこ
とを意味し、臨界電流値は向上する。また、界面
密着力が良好であり、加工時の材料流れの均一性
が良いことから、銅比及び超電導特性の長手方向
のバラツキは減少する。 ブロンズ法によるNb3Sn超電導線材を例にとれ
ば、多心用ビレツト組立て用の銅錫合金被覆ニオ
ブ線を多心材の静水圧押出しにより製作すること
は、界面の密着性を向上し、最終工程の熱処理に
おけるNb3Sn層の生成を均一にする効果があり、
臨界電流値は高く、長手方向に均一となる。 [実施例 1] 予め用意した外径160mm、肉厚13mm、長さ1200
mmの銅製の管内に、外径146mm、長さ1100mmのNb
−Ti合金のビレツトを挿入し、しかる後両端を
銅製のプラグで蓋をし、真空脱気後電気溶接でシ
ールして作成したビレツトをヒマシ油を圧力媒体
として押出温度300℃、最高押出圧力1400Kg/cm2
にて外径25mmに静水圧押出しすることにより、銅
比0.44,Nb−Ti部径約20.8mmの素材が得られた。 この素材を冷間にて伸線し、対辺距離3.14の断
面六角形の線となして1100mmの長さに切り揃え、
その1560本を、外径160mm、肉厚12mm、長さ1200
mmの無酸素銅製のパイプ内に整列充填し、その両
端を前記と同様の方法シールして複合ビレツトを
作成した。 この後、この複合ビレツトを前記と同様の圧力
媒体、押出温度、押出圧力にて外径28mmに静水圧
押出し、しかる後冷間にて外径1mmにまで伸線し
て銅比1,Nb−Ti部径が約20μの銅安定化Nb−
Ti極細多心超電導線を製造した。 [比較例 1] 予め用意した対辺距離3.14mm、肉厚0.18mm、長
さ500mmの断面六角形の銅管内に、別途用意した
対辺2.37mm、長さ500mmの断面六角形のNb−Ti線
を挿入して作成した素材の指定本数を、外径160
mm、肉厚12mm、長さ600mmの銅管内に整列充填し、
その後両端を前記と同様の方法でシールして作成
した複合ビレツトを、実施例1と同様の押出条件
で外径28mmに静水圧押出しし、しかる後同様に外
径1mmまで伸線して銅比1.1,Nb−Ti部の径が約
18μの多心超電導線を得た。 [比較例 2] 比較例1で得られた被覆ビレツトを、温度650
℃、最高押出圧力2500トンで外径50mmに熱間押出
しした後、冷間引抜きにて外径1mmにまで細線化
した。 以上の各例の実験結果を次表に示す。
The present invention relates to a method for manufacturing a multi-core superconducting wire, particularly a method using hydrostatic extrusion. As shown in Figure 6, multicore superconducting wires are made of copper,
A plurality of superconducting materials 31 made of Nb-Ti, Nb-Zr, Nb 3 Sn, V 3 Ga, etc. are arranged in a matrix 21 of a stabilizing material made of aluminum or the like. Conventionally, multi-core superconducting wires having such a configuration have been manufactured by the following method. (1) Multiple wires or rods made of superconducting material prepared separately are inserted into a tube made of stabilizing material prepared in advance, and multiple pieces of the composite material obtained are inserted into a large diameter tube made of stabilizing material prepared separately. After inserting the large diameter tube, the end of the large diameter tube is vacuum degassed and sealed by electron beam welding or the like to create a composite billet. Thereafter, this composite billet is hot extruded or isostatically extruded, and then, if necessary, the area is reduced by drawing or the like to form a thin wire. (2) Separately prepared rods or wires made of superconducting material are inserted into each hole of a perforated rod (billet) made of stabilizing material prepared in advance, and the ends are vacuum degassed and then subjected to electron beam welding, etc. Seal and process in the same way as (1). In either method, at the time of assembling the composite billet, clearance is required between the superconducting material rod or wire and the stabilizing material tube or porous rod (billet) that accommodates it so that they can be inserted into each other. There is a gap between the two even after insertion. In other words, the two are only mechanically fitted. If this gap is too large, wrinkles will form on the inner surface of the tube during extrusion, reducing adhesion to the wire or rod, leading to failure in the extrusion process or breakage during subsequent area reduction processes such as drawing. On the other hand, if you try to reduce the clearance at the expense of workability when mating, the air, moisture, etc. that have entered the gap cannot be removed during vacuum degassing, and this expands during extrusion, causing it to flow outside. This may cause blistering or rupture of the layer, or decreased adhesion between the superconducting material and the stabilizing material, resulting in wire breakage during area reduction processing. Therefore, in the composite billet before extrusion, it is desirable that there be no gaps between the stabilizing material and the superconducting material, and also that there be no air or moisture at the interface. An object of the present invention is to provide a method that eliminates the drawbacks of the prior art described above, allows smooth extrusion and subsequent area reduction processing, and allows production of multi-core superconducting wires with excellent adhesive properties. It is in. According to the present invention, such an object is achieved by forming a composite material, which is one of the structural members of a composite billet, by hydrostatic extrusion and, if necessary, adding a drawing process. Composite billets can also be achieved by isostatic extrusion. In this case, high-purity copper or aluminum, which has good electrical and thermal conductivity, is generally used as the stabilizing material, but if the superconducting part in the multi-core superconducting wire is compound-based, the components of those compounds It is also possible to use an alloy containing one of the following. Therefore, it is possible to use not only alloy-based superconducting materials that are generally used as superconducting materials, but also superconducting materials made of residual components of compound-based components. Of course, if necessary for the production or performance of superconducting wires, materials other than stabilizing materials and superconducting materials, such as Ta, Nb, copper, Cu-Ni alloys, etc., may be used as part of the composite billet assembly. It can be used as Referring now to the drawings, FIG. 1 shows a billet for composite materials. This billet includes a stabilizing material such as a pipe 2 made of oxygen-free copper, a billet 3 made of a superconducting material such as Nb-Ti alloy, and a plug 4 that seals the front and back of these.
It consists of 1,42. To create this billet, use the prepared billet 3.
This is done by fitting the pipe 2 and the pipe 2 into each other, vacuuming the inside with the plugs 41 and 42 attached, and electron beam welding the boundary between the pipe 2 and the plugs 41 and 42. The tip of the plug 41 may be processed in advance or may be processed after welding. Of course, either one of the plugs 41 and 42 may be airtightly fixed to the end of the pipe 2 in advance. As shown in Fig. 2, this billet 1 will be
The container 5 of the hydrostatic extruder is filled with a pressurized medium 6, and the stem 7 is moved to release the pressurized medium 6.
By further applying pressure, the composite material 11 is extruded from the die 8 and has the desired shape and dimensions. The temperature during extrusion is selected at such a temperature that the billet 1 has sufficient deformability, and there is no thermal influence on the constituent materials, no danger of mutual reactions, etc., or at least a minimum. In ordinary extrusion, priority is given to obtaining deformability, so for example, when combining copper and Nb-Ti alloy,
450-650℃, in combination with Cu-Su alloy and Nb
A fairly high temperature level of 600 to 750°C is required, and in reality, there is a very high risk of thermal effects on the constituent materials and mutual reactions between the constituent materials. However, in the case of isostatic extrusion, industrially sufficient processing can be achieved even at considerably low temperatures, so it is preferable that the temperature is lower than that of ordinary extrusion.
Temperatures can be selected over a fairly wide range from below 450°C to room temperature. The composite material 11 obtained in this manner is then subjected to drawing processing as required, and formed into a predetermined shape and size. In many cases, the cross-sectional shape of the composite material 11 is
As shown in the figure, it is assumed to be hexagonal, but other shapes may be used. The molding of this composite material 11 is performed when the material is of a large size, so it is much easier to form the composite material 11 than when inserting thin pieces together. Furthermore, since a long composite material 11 can be obtained, assembly of a long composite billet can also be improved. FIG. 3 shows a composite billet assembled using such composite material 11. This billet 9
is made in almost the same way as the previous billet 1. That is, the composite material 1 of a predetermined length obtained in the previous step
1 are orderly inserted into a pipe 2 made of oxygen-free copper, for example, in a predetermined number, the inside thereof is vacuum degassed, and the space between the plugs 41, 42 and the pipe 2 is welded and sealed.
In this case, not only the composite material 11 but also other materials such as wires made of oxygen-free copper or the like can be inserted into the pipe 2 as required. The composite billet 9 is then hydrostatically extruded as shown in FIG. 5, and then subjected to processes such as drawing, forming a composite billet, and isostatically extruding as required to form a stabilized copper material as shown in FIG. superconducting wire 91
It is put into practical use as Hydrostatic extrusion of this composite billet 9
Since the composite material 11 is metallically bonded to the Nb-Ti alloy and has no gaps, the advantages of hydrostatic extrusion are increased, and the work can be carried out more smoothly. The yield of extruded material can be further improved by making the non-uniform portion of the metal flow shorter. The obtained superconducting wire 91 is then processed as necessary.
Fine detailing and multi-core construction are carried out through processes such as drawing, composite billet formation, and hydrostatic extrusion, but the advantages of using the unique composite material 11 are utilized in each of these processes, making each process smooth. can be carried out. The above has described the advantages of using the unique composite material 11 in terms of workability in extrusion and subsequent area reduction processes such as drawing. This phenomenon also appears in the superconducting properties of multicore superconducting wires. It is known that the critical current value of Nb-Ti alloy superconducting materials in liquid helium increases as the degree of cold working increases. Taking this type of material as an example, using a composite material 11 that is hydrostatically extruded at a temperature range from room temperature to 450°C or less as a material for a multi-core billet means that the degree of cold working is extremely increased, and the critical The current value will improve. Furthermore, since the interfacial adhesion is good and the material flow is uniform during processing, variations in the copper ratio and superconducting properties in the longitudinal direction are reduced. Taking Nb 3 Sn superconducting wire produced by the bronze method as an example, manufacturing copper-tin alloy coated niobium wire for multi-core billet assembly by isostatic extrusion of multi-core materials improves interfacial adhesion and reduces the final process. It has the effect of uniformizing the formation of the Nb 3 Sn layer during the heat treatment of
The critical current value is high and uniform in the longitudinal direction. [Example 1] Pre-prepared outer diameter 160mm, wall thickness 13mm, length 1200mm
Nb in a mm copper tube with an outer diameter of 146 mm and a length of 1100 mm
- Insert a titanium alloy billet, then cap both ends with copper plugs, vacuum degas and seal with electric welding. Extrude the billet using castor oil as a pressure medium at a temperature of 300℃ and a maximum extrusion pressure of 1400Kg. / cm2
By isostatically extruding the material to an outer diameter of 25 mm, a material with a copper ratio of 0.44 and a Nb-Ti portion diameter of approximately 20.8 mm was obtained. This material was cold drawn, made into a hexagonal cross-sectional wire with a distance across flats of 3.14, and cut to a length of 1100 mm.
The 1560 pieces are 160mm in outer diameter, 12mm in wall thickness, and 1200 in length.
A composite billet was prepared by filling an oxygen-free copper pipe of mm in size and sealing both ends in the same manner as described above. Thereafter, this composite billet was hydrostatically extruded to an outer diameter of 28 mm using the same pressure medium, extrusion temperature, and extrusion pressure as described above, and then cold drawn to an outer diameter of 1 mm to obtain a wire with a copper ratio of 1 and an Nb- Copper-stabilized Nb− with a Ti diameter of about 20μ
We manufactured Ti ultrafine multicore superconducting wire. [Comparative Example 1] A separately prepared Nb-Ti wire with a hexagonal cross-section of 2.37 mm on opposite sides and 500 mm in length was placed inside a copper tube with a hexagonal cross-section of 3.14 mm on opposite sides, 0.18 mm in wall thickness, and 500 mm in length. The specified number of material created by inserting the
Aligned and filled into a copper tube with a wall thickness of 12 mm and a length of 600 mm.
Thereafter, a composite billet prepared by sealing both ends in the same manner as described above was hydrostatically extruded to an outer diameter of 28 mm under the same extrusion conditions as in Example 1, and then wire-drawn to an outer diameter of 1 mm in the same manner as described above. 1.1, the diameter of the Nb-Ti part is approx.
A 18μ multicore superconducting wire was obtained. [Comparative Example 2] The coated billet obtained in Comparative Example 1 was heated to a temperature of 650°C.
After hot extrusion to an outer diameter of 50 mm at a maximum extrusion pressure of 2,500 tons at ℃, the wire was thinned to an outer diameter of 1 mm by cold drawing. The experimental results for each of the above examples are shown in the table below.

【表】 表中臨界電流値は、製作した外径1mmの多心超
電導線を4.2Kのヘリウム中で7.5Tの磁場下で測
定したものである。 この結果から明らかなように、この発明に係る
実施例1は、各特性とも良好な結果を示している
が、比較例1では素材内のギヤツプに起因してビ
レツト表面に強いしわが発生する傾向があり、実
施例1に比べて押出しは不安定であり、その後の
引抜性にも不安がある。さらに、臨界電流値につ
いては、銅比が多少大きくなつているせいもある
が、実施例1より2割程度特性が劣化している。 また、比較例2では、ビレツト坐屈による押出
し困難、あるいはしわ発生に伴う引抜性に不安が
残る。 また、押出時の温度が高いため、銅Nb−Tiと
の界面に脆い反応物が生成し、フイラメント自体
の不均一性も影響してその後の引抜性を低下させ
る場合も認められる。さらに、臨界電流値につい
ては、実施例1より3割程度低下しており、650
℃での熱間押出しによる熱劣化及びフイラメント
の不均一変化が原因してこのように低い特性を示
したものと考える。 [実施例 2] 予め用意した外径160mm、内径91mm、長さ1200
mmをもつCu−10%Sn製の中空ビレツト内に、外
径90mm、長さ1100mmのNb中空ビレツトを挿入し、
両端を前の例と同様にシールして形成したビレツ
トを、ヒマシ油を圧力媒体として押出温度350℃、
最高押出圧力1400Kg/cm2にて外径29mmに静水圧押
出しすることにより、Cu−Sn合金比が2,Nb部
径約16mmの素材が得られた。 これを冷間引抜きと中間焼鈍を繰返して対辺距
離2.1mmの断面六角線と成し、この線の所定長さ
をもつもの4300本を、外径160mm、肉厚6mm、長
さ1200mmの銅管内に配列充填し、その両端を前の
例と同様にシールした複合ビレツトを前記と同じ
押出条件で外径25mmに静水圧押出ししたところ、
押出しは極めて順調で押出材に膨れ、しわ等は見
られず、非常に健全であつた。 押出材をその後、冷間引抜と中間焼鈍を繰返し
て減面加工したが、膨れ、くびれ、あるいは断線
等のトラブルは一切発生せず、円滑に作業を遂行
することができた。 以上の説明から明らかなように、この発明によ
れば、複合素材及び多心超電導材の成形の何れに
も、静水圧押出しを利用することにより、押出し
やその後の減面加工を円滑に実施できると共に、
接着性に優れ超電導特性が良好な高品質の極細素
多心超電導線を歩留りよく得ることができ、その
産業上利用価値は極めて大なるものがある。 尚、接着性に優れた複合素材を得る方法とし
て、例えば銅管にNb−Ti合金のロツドを挿入を
して引抜加工することが考えられるが、この方法
の場合、管の内面及びロードの表面を十分清浄に
すると共に、減面率で70%以上の冷間加工度を付
与しなければならない。 前の例は、何れも安定化材が銅の場合である
が、この発明は、アルミニウムまたはその合金を
安定化材とする超電導線の製造にあるいは単心線
の周囲にCu−Ni合金を被覆後多心線としたよう
な超電導線の製造も利用できることは勿論であ
る。
[Table] The critical current values in the table were measured using a manufactured multi-core superconducting wire with an outer diameter of 1 mm in 4.2K helium under a 7.5T magnetic field. As is clear from these results, Example 1 according to the present invention shows good results in all characteristics, but Comparative Example 1 tends to have strong wrinkles on the billet surface due to gaps in the material. Therefore, the extrusion is unstable compared to Example 1, and there is also concern about the subsequent pullability. Furthermore, regarding the critical current value, the characteristics deteriorated by about 20% compared to Example 1, although this may be due to the somewhat increased copper ratio. Furthermore, in Comparative Example 2, there remain concerns about difficulty in extrusion due to buckling of the billet, or about pullability due to the occurrence of wrinkles. Furthermore, because the temperature during extrusion is high, brittle reactants are generated at the interface with copper, Nb-Ti, and the non-uniformity of the filament itself is also affected, which may reduce subsequent drawing performance. Furthermore, the critical current value is approximately 30% lower than that of Example 1, which is 650
It is believed that such poor properties were caused by thermal deterioration due to hot extrusion at .degree. C. and non-uniform changes in the filament. [Example 2] Pre-prepared outer diameter 160mm, inner diameter 91mm, length 1200mm
A Nb hollow billet with an outer diameter of 90 mm and a length of 1100 mm was inserted into a Cu-10% Sn hollow billet with a
A billet formed by sealing both ends in the same manner as in the previous example was extruded at a temperature of 350°C using castor oil as a pressure medium.
By hydrostatically extruding the material to an outer diameter of 29 mm at a maximum extrusion pressure of 1400 Kg/cm 2 , a material with a Cu-Sn alloy ratio of 2 and a Nb portion diameter of approximately 16 mm was obtained. This was repeatedly cold drawn and intermediate annealed to form a hexagonal cross-section wire with a distance across flats of 2.1 mm, and 4,300 wires of a specified length were made into copper tubes with an outer diameter of 160 mm, a wall thickness of 6 mm, and a length of 1200 mm. When the composite billet, which was packed in an array and sealed at both ends in the same manner as in the previous example, was hydrostatically extruded to an outer diameter of 25 mm under the same extrusion conditions as above,
Extrusion was extremely smooth, and the extruded material did not show any swelling or wrinkles, and was very sound. The extruded material was then subjected to repeated cold drawing and intermediate annealing to reduce its area, but the work was carried out smoothly without any problems such as blistering, constriction, or wire breakage. As is clear from the above description, according to the present invention, extrusion and subsequent area reduction processing can be carried out smoothly by using hydrostatic extrusion in both molding of composite materials and multi-core superconducting materials. With,
High-quality ultrafine multicore superconducting wires with excellent adhesive properties and good superconducting properties can be obtained at a high yield, and their industrial utility value is extremely high. One way to obtain a composite material with excellent adhesive properties is to insert a Nb-Ti alloy rod into a copper tube and then draw it out. It must be sufficiently cleaned and cold worked with an area reduction rate of 70% or more. In all of the previous examples, the stabilizing material is copper, but the present invention is applicable to the production of superconducting wires using aluminum or its alloy as a stabilizing material, or to coating a single core wire with a Cu-Ni alloy. Of course, it is also possible to manufacture superconducting wires such as multi-core wires.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は、この発明に係る方法の
一例を示す説明図、第6図は多心超電導線の例を
示す説明図である。 1……ビレツト、2……安定化材性のパイプ、
3……超電導材のビレツト、41及び42……プ
ラグ、5……静水圧押出機のコンテナ、6……圧
力媒体、7……ステム、8……ダイス、9……複
合ビレツト、11……複合素材、91……超電導
線。
1 to 5 are explanatory diagrams showing an example of the method according to the present invention, and FIG. 6 is an explanatory diagram showing an example of a multicore superconducting wire. 1... billet, 2... stabilizing material pipe,
3... Billet of superconducting material, 41 and 42... Plug, 5... Container of hydrostatic extruder, 6... Pressure medium, 7... Stem, 8... Die, 9... Composite billet, 11... Composite material, 91...Superconducting wire.

Claims (1)

【特許請求の範囲】[Claims] 1 安定化材製の中空体内に超伝導材製の中実ビ
レツトを挿入して得たビレツトを静水圧押出しに
よつて複合素材となし、この複合素材の複数本を
安定化材製の中空体内に充填して得た複合ビレツ
トを静水圧押出しする方法であつて、前記静水圧
押出しを、夫々450℃以下のビレツト温度で行う
ことを特徴とする多心超伝導線の製造方法。
1 A solid billet made of a superconducting material is inserted into a hollow body made of a stabilizing material, the resulting billet is made into a composite material by hydrostatic extrusion, and multiple pieces of this composite material are inserted into a hollow body made of a stabilizing material. 1. A method for producing a multicore superconducting wire, the method comprising isostatically extruding a composite billet obtained by filling a composite billet into a composite billet, characterized in that the hydrostatic extrusion is carried out at a billet temperature of 450° C. or lower.
JP11990879A 1979-09-18 1979-09-18 Producing multicored superconductive wire Granted JPS5645517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11990879A JPS5645517A (en) 1979-09-18 1979-09-18 Producing multicored superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11990879A JPS5645517A (en) 1979-09-18 1979-09-18 Producing multicored superconductive wire

Publications (2)

Publication Number Publication Date
JPS5645517A JPS5645517A (en) 1981-04-25
JPH0146962B2 true JPH0146962B2 (en) 1989-10-12

Family

ID=14773171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11990879A Granted JPS5645517A (en) 1979-09-18 1979-09-18 Producing multicored superconductive wire

Country Status (1)

Country Link
JP (1) JPS5645517A (en)

Also Published As

Publication number Publication date
JPS5645517A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
US3623221A (en) Method of fabricating a tubular superconductor assembly
US4973365A (en) Process for producing monocore precursor Nb3 Sn superconductor wire
US3631586A (en) Manufacture of copper-clad aluminum rod
US4674009A (en) Tantalum capacitor lead wire
US4646197A (en) Tantalum capacitor lead wire
JPH0146962B2 (en)
US5228928A (en) Method of manufacturing Nb3 Sn superconducting wire
US4734827A (en) Tantalum capacitor lead wire
JP2917603B2 (en) Manufacturing method of aluminum composite superconducting wire
JPS6233688B2 (en)
JP3050576B2 (en) Method for producing compound linear body
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JP3061208B2 (en) Method for producing copper-stabilized multi-core Nb-Ti superconducting wire
JPS6029165B2 (en) Superconducting compound wire and its manufacturing method
JPH04129105A (en) Manufacture of copper-stabilized fine multicore superconductor cable
JPH03236118A (en) Manufacture of superconducting billet
JPH04155714A (en) Manufacture of nb3 sn type superconducting wire material
JPH0512939A (en) Method for manufacturing aluminum composite superconducting wire
JPS63274022A (en) Manufacture of multicore superconductive wire
JPH0558807B2 (en)
JPH0554742A (en) Manufacture of superconducting wire
JPH0362416A (en) Oxide superconducting wire
JPH09171727A (en) Manufacture of metal-based superconductive wire
JPS63310978A (en) Production of composite metallic wire
JPS6329921B2 (en)