[go: up one dir, main page]

JPH0146676B2 - - Google Patents

Info

Publication number
JPH0146676B2
JPH0146676B2 JP22199784A JP22199784A JPH0146676B2 JP H0146676 B2 JPH0146676 B2 JP H0146676B2 JP 22199784 A JP22199784 A JP 22199784A JP 22199784 A JP22199784 A JP 22199784A JP H0146676 B2 JPH0146676 B2 JP H0146676B2
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation device
inspection work
pillar
work space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22199784A
Other languages
Japanese (ja)
Other versions
JPS61102973A (en
Inventor
Michio Kuramochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22199784A priority Critical patent/JPS61102973A/en
Publication of JPS61102973A publication Critical patent/JPS61102973A/en
Publication of JPH0146676B2 publication Critical patent/JPH0146676B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】 この発明は建造物に作用する地震力を軽減する
ことを目的にした建造物免震装置に関するもので
ある。地震に対して安全な建造物を造るには、地
震力を受けても建造物が破壊したり大変形したり
しないように、柱、はり、床板、壁などの建造物
の骨組を丈夫に造る、いわゆる、建造物を耐震構
造にするやり方と、建造物に免震装置を設け、建
造物に作用する地震力そのものを軽減する、いわ
ゆる、建造物を免震構造にするやり方とがある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a building seismic isolation device for the purpose of reducing seismic forces acting on a building. In order to build a building that is safe against earthquakes, the framework of the building, such as columns, beams, floor plates, and walls, must be made strong so that the building will not be destroyed or significantly deformed even when subjected to earthquake forces. There is a so-called method of building a building with an earthquake-resistant structure, and a method of installing a seismic isolation device on the building to reduce the seismic force acting on the structure itself, which is a method of making the building a seismic-isolated structure.

耐震構造に対して免震構造は次のような点で有
利である。(1)柱、はり、基礎等の構造部材の断面
が小さくてすみ、耐震壁が不要になるから鋼材、
コンクリート等の建築材料がかなり節約できる。
(2)構造部材の接合部に作用する応力が小さいか
ら、鉄筋コンクリート部材を使つた組立式工法が
容易になり、工場生産部材を建設現場で組み立て
る近代的生産方式を推進することができる。(3)地
震時に建造物に作用する水平加速度が小さいか
ら、室内の家具類の転倒、移動が防止され、居住
者の不安感も軽減される。
Seismic isolation structures have the following advantages over earthquake-resistant structures. (1) The cross sections of structural members such as columns, beams, and foundations can be small, eliminating the need for earthquake-resistant walls;
Significant savings can be made in building materials such as concrete.
(2) Since the stress acting on the joints of structural members is small, prefabricated construction methods using reinforced concrete members become easier, and modern production methods that assemble factory-produced components at construction sites can be promoted. (3) Since the horizontal acceleration that acts on the building during an earthquake is small, indoor furniture is prevented from falling over or being moved, and residents' feelings of anxiety are also reduced.

本発明は、特許公開昭58−91247の発明「固有
周期変動型免震装置」(以下単に原発明または原
発明の免震装置と呼ぶ)を改良したものである。
The present invention is an improvement on the invention "Natural Period Variation Type Seismic Isolation Device" (hereinafter simply referred to as the original invention or the seismic isolation device of the original invention) disclosed in Japanese Patent Publication No. 58-91247.

原発明の実施例2は次のように構成される。基
礎上に固着した截頭円錐筒状の支持台の内部に截
頭円錐筒状の第1遊動体、截頭円錐筒状の第2遊
動体、および、円筒状体に截頭円錐筒状体をはか
ま状に取り付けた支持脚を互に間隔をとつて入子
状に収容し、複数のつり材を使つて第1遊動体を
支持台に、第2遊動体を第1遊動体に、支持脚を
第2遊動体にそれぞれつつて支持装置を形成す
る。第1遊動体に対する支持脚の水平方向相対変
位を制御する支持脚側変位拘束装置を次のように
形成する。下面に円錐状凹面を持つ筒状滑動体を
支持脚の円筒状体にそう入し、第1遊動体の底板
上面に形成した円錐状凸面に筒状滑動体を載置す
る。上部構造物の床板から柱の下部にかけて設け
た中空部に、筒状滑動体に下部を連結した円筒状
の座屈変形装置保持部を収容し、座屈変形装置保
持部の仕切り板の上部に上部座屈変形装置を装着
する。上部座屈変形装置は、座屈拘束装置を持つ
2個の積層体と、マイクロコンピユータによつて
制御される電磁弁を持つ調節装置を接続板を介し
て直列に並べたもので、最下部の積層体は仕切り
板に載置され、最上部の調節装置は柱の中空部天
井に連結される。積層体は円筒殻状にわずかに湾
曲された長方形の金属薄板を多数重ね合わせて形
成される。座屈拘束装置は、積層体を密封するゴ
ム製被覆と、真空ポンプを備えた真空タンクおよ
び両者をつなぐ連通管によつて形成されており、
ゴム製被覆および連通管にはマイクロコンピユー
タによつて制御される電磁弁がそれぞれ設けられ
る。
Embodiment 2 of the original invention is configured as follows. A truncated conical cylindrical first floating body, a truncated conical cylindrical second floating body, and a truncated conical cylindrical body inside the truncated conical cylindrical support fixed on the foundation. The support legs attached in the shape of a hook are housed in a nested manner with a space between them, and a plurality of hanging members are used to support the first floating body as a support base and the second floating body as a first floating body. The legs are each attached to the second floating body to form a support device. A support leg side displacement restraint device for controlling horizontal relative displacement of the support leg with respect to the first floating body is formed as follows. A cylindrical sliding body having a conical concave surface on the lower surface is inserted into the cylindrical body of the support leg, and the cylindrical sliding body is placed on the conical convex surface formed on the upper surface of the bottom plate of the first floating body. A cylindrical buckling deformation device holding part whose lower part is connected to a cylindrical sliding body is housed in a hollow part provided from the floor plate of the superstructure to the bottom of the column, and a cylindrical buckling deformation device holding part is housed in the hollow part provided from the floor plate of the superstructure to the bottom of the column. Install the upper buckling deformation device. The upper buckling deformation device consists of two laminated bodies with a buckling restraint device and an adjustment device with a solenoid valve controlled by a microcomputer, which are arranged in series via a connecting plate. The stack is placed on the partition plate, and the uppermost adjustment device is connected to the hollow ceiling of the column. The laminate is formed by stacking a number of slightly curved rectangular thin metal plates in the shape of a cylindrical shell. The buckling restraint device is formed by a rubber covering that seals the laminate, a vacuum tank equipped with a vacuum pump, and a communication pipe that connects the two.
The rubber sheath and the communication tube are each provided with a solenoid valve controlled by a microcomputer.

支持台に対する第1遊動体の水平方向相対変位
を制御する支持台側変位拘束装置を次のように形
成する。下面に円錐状凸面を備えた滑動体を、第
1遊動体底板の滑動体保持部にそう入し、基礎上
面に形成した円錐状凹面に滑動体を載置する。座
屈変形装置保持部の仕切り板の下部に下部座屈変
形装置を装着し、下部座屈変形装置と滑動体を連
結かんによつて連結する。下部座屈変形装置は、
前述のように形成した2個の積層体と、調節装置
を接続板を介して直列に並べたもので、積層体を
支持する最下部の接続板は連結かんに連結され、
最上部の調節装置は仕切り板に連結される。
A support stand-side displacement restraint device for controlling the horizontal relative displacement of the first movable body with respect to the support stand is formed as follows. A sliding body having a conical convex surface on the lower surface is inserted into the sliding body holding portion of the first floating body bottom plate, and the sliding body is placed on the conical concave surface formed on the upper surface of the base. A lower buckling deformation device is attached to the lower part of the partition plate of the buckling deformation device holding part, and the lower buckling deformation device and the sliding body are connected by a connecting link. The lower buckling deformation device is
The two laminates formed as described above and the adjustment device are arranged in series via a connecting plate, the lowest connecting plate supporting the laminates being connected to the connecting pin,
The top adjustment device is connected to the partition plate.

マイクロコンピユータ制御部は、支持台に対す
る支持脚の水平方向相対変位を検知する変位検知
器、および、積層体の座屈を検知する座屈検知器
を備えている。
The microcomputer control unit includes a displacement detector that detects horizontal relative displacement of the support leg with respect to the support base, and a buckling detector that detects buckling of the laminate.

原発明の免震装置の作用および効果は次の通り
である。
The functions and effects of the seismic isolation device of the original invention are as follows.

(1) 免震装置が作動しない場合 免震装置に水平せん断力が働くと、筒状滑動
体および滑動体は上向きの力を受ける。このた
め、上部座屈変形装置の積層体(以下単に上部
積層体と呼ぶ)と、下部座屈変形装置の積層体
(以下単に下部積層体と呼ぶ)に軸方向圧縮力
が作用するが、免震装置に作用する水平せん断
力が作動せん断力に達しない場合上部積層体お
よび下部積層体はいずれも座屈変形しない。こ
の結果、筒状滑動体および滑動体は上方へ移動
できず引続き免震装置の変形を拘束するから、
軽微な地震の場合または風圧力が作用した場合
上部構造物と基礎との間に水平方向相対変位は
おこらない。
(1) When the seismic isolation device does not operate When horizontal shear force is applied to the seismic isolation device, the cylindrical sliding body and the sliding body receive an upward force. Therefore, an axial compressive force acts on the laminate of the upper buckling deformation device (hereinafter simply referred to as the upper laminate) and the laminate of the lower buckling deformation device (hereinafter simply referred to as the lower laminate). If the horizontal shear force acting on the seismic device does not reach the operating shear force, neither the upper laminate nor the lower laminate undergoes buckling deformation. As a result, the cylindrical sliding body and the sliding body cannot move upward and continue to restrain the deformation of the seismic isolation device.
No relative horizontal displacement occurs between the superstructure and the foundation in the case of a minor earthquake or when wind pressure is applied.

(2) 免震装置の作動および長周期免震動作 免震装置を作動させる地震がおこると、免震
装置に働く水平せん断力によつて筒状滑動体お
よび滑動体は上向きの力を受け、上部積層体と
下部積層体に軸方向圧縮力が作用する。この軸
方向圧縮力によつて上部積層体は座屈変形する
から、座屈変形装置保持部、筒状滑動体および
滑動体は一体となつて上方へ移動し、支持脚お
よび第1遊動体は支持台に対して水平方向に相
対変位をおこす。このように、免震装置が作動
すると上部構造物は基礎から切り放されて独自
の長周期振動を行ない、上部構造物に作用する
水平地震力は大幅に軽減される。
(2) Activation of the seismic isolation device and long-period seismic isolation operation When an earthquake occurs that activates the seismic isolation device, the cylindrical sliding body and the sliding body receive an upward force due to the horizontal shear force acting on the seismic isolation device. An axial compressive force acts on the upper and lower laminates. This axial compressive force buckles and deforms the upper laminated body, so the buckling deformation device holding part, the cylindrical sliding body, and the sliding body move upward together, and the support leg and the first floating body move upward. A relative displacement is caused in the horizontal direction with respect to the support base. In this way, when the seismic isolation device operates, the superstructure is separated from the foundation and undergoes its own long-period vibration, which greatly reduces the horizontal seismic force acting on the superstructure.

(3) 短周期免震動作および共振の回避 免震装置が作動すると、マイクロコンピユー
タ制御部は変位検知器からの情報をもとに支持
台に対する支持脚の水平方向相対変位の監視を
始める。水平方向相対変位が次第に大きくなり
免震装置に共振の徴候が現われると、マイクロ
コンピユータ制御部は調節装置の電磁弁を開い
て上部積層体の復元を促すとともに、連通管の
電磁弁を開いてゴム製被覆内の気圧を下げ上部
積層体の座屈変形を拘束する。この状態のと
き、上部積層体および下部積層体に軸方向圧縮
力が作用すると、上部積層体は座屈変形せず下
部積層体に座屈変形がおこる。この結果、滑動
体は上方へ移動し、筒状滑動体は上方への移動
を阻止されるから、免震装置は、第1遊動体、
第2遊動体および支持脚が一体となつて支持台
に対して水平方向に相対変位する短周期免震動
作に入り、長周期振動によつて誘発された共振
は回避される。短周期免震動作のときに免震装
置に共振の徴候が現われると、マイクロコンピ
ユータ制御部は、上部積層体の座屈拘束を解除
して免震装置を前述の長周期免震動作に切り換
え短周期振動による共振を回避する。原発明の
免震装置は、このように、免震装置の固有周期
を長周期から短周期に、あるいは短周期から長
周期に変換して共振を回避しつつ免震動作を行
なう。
(3) Short-period seismic isolation operation and avoidance of resonance When the seismic isolation device operates, the microcomputer control unit starts monitoring the relative horizontal displacement of the support leg with respect to the support base based on information from the displacement detector. When the horizontal relative displacement gradually increases and signs of resonance appear in the seismic isolation device, the microcomputer control section opens the solenoid valve of the adjustment device to encourage the upper laminate to recover, and also opens the solenoid valve of the communication pipe to release the rubber. This reduces the air pressure inside the cladding and restrains the buckling deformation of the upper laminate. In this state, when an axial compressive force acts on the upper laminate and the lower laminate, the upper laminate does not undergo buckling deformation, but the lower laminate undergoes buckling deformation. As a result, the sliding body moves upward and the cylindrical sliding body is prevented from moving upward, so that the seismic isolation device includes the first floating body,
The second movable body and the support leg together enter a short-period seismic isolation operation in which they are displaced relative to the support base in the horizontal direction, and resonance induced by long-period vibration is avoided. If signs of resonance appear in the seismic isolation device during short-period seismic isolation operation, the microcomputer control unit releases the buckling restraint of the upper laminate and switches the seismic isolation device to the aforementioned long-period seismic isolation operation. Avoid resonance due to periodic vibrations. The seismic isolation device of the original invention thus performs seismic isolation while avoiding resonance by converting the natural period of the seismic isolation device from a long period to a short period or from a short period to a long period.

原発明の免震装置の欠点は、積層体、座屈拘束
装置、調節装置等の主要な制御装置が、支持装置
内または上部構造物の柱の中空部等の閉ざされた
狭い空間に設置されていることである。これらの
装置の保守、点検作業は、柱の点検口から行なわ
れるが、点検口を大きくすることは構造上好まし
くないから点検等の作業は容易ではない。
The drawback of the seismic isolation device of the original invention is that the main control devices such as the laminate, buckling restraint device, adjustment device, etc. are installed in a closed and narrow space such as inside the support device or in the hollow part of the column of the superstructure. This is what is happening. Maintenance and inspection work on these devices is carried out through the inspection port in the pillar, but since it is structurally undesirable to make the inspection port large, inspection and other work is not easy.

本発明は原発明の欠点を解消するために、免震
装置を縦長にして主要な制御装置を支持装置の下
部に設け、その周囲に作業空間をとつて、作業者
が免震装置の内部に入り作業を行なえるようにし
た。
In order to eliminate the drawbacks of the original invention, the present invention makes the seismic isolation device vertically long, provides the main control device at the bottom of the support device, and provides a work space around it so that workers can access the inside of the seismic isolation device. Enabled to perform entry work.

本発明の実施例は次の通りである。第1図は本
発明の免震装置と、基礎および上部構造物の一部
を示す縦断面図である。本発明の免震装置の支持
装置は、支持台1、第1つり材2、遊動体3、第
2つり材4、および、支持脚5によつて構成され
る。基礎6は基礎板上に基礎ばりを井げた状に組
んだもので鉄筋コンクリート製である。支持台1
は上部の小口につり材取付用の環状厚鋼板7を備
えた鉄筋コンクリート製円筒体で、PC鋼棒8に
よつて基礎6上に固着される。遊動体3は鋼製の
円筒体で、上下の小口につり材取付用の環状リブ
9を備え、かつ、底部に4基の鋼製の円錐凸面体
B10を備えている。遊動体3は複数の第1つり
材2によつて支持台1につられる。第1つり材2
は高強度丸鋼棒製の細長リングと2個のUボルト
11によつて形成され、第1図または第2図に示
すように、上端を支持台1上部の環状厚鋼板7
に、下端を遊動体3下部の環状リブ9にそれぞれ
連結される。支持脚5は鋼製で、組立上の都合か
ら上部支持脚12と下部支持脚13をボルトによ
つて連結する構造になつている。下部支持脚13
は円筒状をなし、底部につり材取付用の環状リブ
14と鋼製の円錐凹面盤A15を備えている。上
部支持脚12は円筒体と補強鋼材によつて形成さ
れており、上部に床板部取付用のフランジ16を
備え、中間部に緩衝材17を備えている。支持脚
5は複数の第2つり材4によつて遊動体3につら
れ、支持脚5の上部には上部構造物の床板部18
が載置される。第2つり材4は高強度丸鋼棒製の
細長リングと2個のUボルト19によつて形成さ
れ、第1図および第2図に示すように、上端を遊
動体3を上部の環状リブ9に、下端を支持脚5下
部の環状リブ14にそれぞれ連結される。上部構
造物の床板部18は支持脚5のフランジ16にボ
ルトおよびPC鋼棒20を用いて固着される。
Examples of the invention are as follows. FIG. 1 is a vertical cross-sectional view showing the seismic isolation device of the present invention, and a part of the foundation and superstructure. The support device of the seismic isolation device of the present invention is composed of a support base 1, a first suspension member 2, a floating body 3, a second suspension member 4, and support legs 5. The foundation 6 is made of reinforced concrete and has foundation beams set up on a foundation plate. Support stand 1
is a cylindrical body made of reinforced concrete with a ring-shaped thick steel plate 7 for attaching a hanging material to the upper edge thereof, and is fixed to the foundation 6 by PC steel rods 8. The floating body 3 is a cylindrical body made of steel, and has annular ribs 9 for attaching hanging members at the upper and lower edges, and four conical convex bodies B10 made of steel at the bottom. The floating body 3 is suspended on the support base 1 by a plurality of first hanging members 2. 1st hanging material 2
is formed by an elongated ring made of a high-strength round steel bar and two U-bolts 11, and its upper end is connected to the annular thick steel plate 7 on the upper part of the support base 1, as shown in FIG. 1 or 2.
The lower ends are respectively connected to the annular ribs 9 at the bottom of the floating body 3. The support leg 5 is made of steel, and has a structure in which an upper support leg 12 and a lower support leg 13 are connected by bolts for convenience of assembly. Lower support leg 13
has a cylindrical shape, and is provided with an annular rib 14 for attaching a hanging member and a conical concave plate A15 made of steel at the bottom. The upper support leg 12 is formed of a cylindrical body and a reinforcing steel material, and is provided with a flange 16 for attaching a floor plate part at the upper part, and a buffer material 17 at the middle part. The support leg 5 is suspended from the floating body 3 by a plurality of second hanging members 4, and the floor plate portion 18 of the upper structure is attached to the upper part of the support leg 5.
is placed. The second suspension member 4 is formed by an elongated ring made of a high-strength round steel bar and two U-bolts 19, and as shown in FIGS. 9, the lower ends are connected to the annular ribs 14 at the bottom of the support legs 5, respectively. The floor plate portion 18 of the superstructure is fixed to the flange 16 of the support leg 5 using bolts and PC steel rods 20.

本発明の免震装置のせん断力変換装置は次のよ
うに形成される。第1図および第2図に示すよう
に、鋼管を組み合わせたガイド21を支持台1に
固着し、ガイド21に円錐凸面体A22および4
基の円錐凹面盤B23を上下に滑動できるように
装着する。円錐凸面体A22は支持脚5の円錐凹
面盤A15に、円錐凹面盤B23は遊動体3の円
錐凸面体B10にそれぞれ相対して設置されてお
り、凸面体の凸円錐面と凹面盤の凹円錐面は密接
するように形成される。
The shear force conversion device of the seismic isolation device of the present invention is formed as follows. As shown in FIGS. 1 and 2, a guide 21 made of steel pipes is fixed to a support base 1, and conical convex bodies A22 and 4 are attached to the guide 21.
The base conical concave plate B23 is attached so that it can slide up and down. The conical convex body A22 is installed opposite to the conical concave plate A15 of the support leg 5, and the conical concave plate B23 is installed opposite to the conical convex body B10 of the floating body 3. The surfaces are formed in close contact.

油圧シリンダ装置は、第1図、第3図および第
4図に示すように、シリンダA24、4基のシリ
ンダB25、油圧弁装置26、油タンク27、お
よび、これらをつなぐパイプによつて構成され
る。油圧弁装置26は作業者がくぐり抜けられる
ように形成された取付台28上に載置される。シ
リンダA24は油圧弁装置26の上部中央に鉛直
に設置され、油圧弁装置26の弁シリンダA29
に接続される。シリンダA24と油タンク27
は、逆止弁A30を備えたパイプ31および電磁
切換弁A32を備えたパイプ33によつて接続さ
れる。シリンダA24のピストン34は円錐凸面
体A22に連結される。円錐凸面体A22はコイ
ルばね35によつて上方に押し上げられ支持脚5
の円錐凹面盤A15に密接する。4基のシリンダ
B25は鋼製の受ばり36上に鉛直に設置され、
パイプ37によつて油圧弁装置26の弁シリンダ
B38に接続される。なお、2基の弁シリンダB
38は連通パイプ39によつて接続される。シリ
ンダB25のピストン4はそれぞれ円錐凹面盤B
23に連結される。円錐凹面盤B23はコイルば
ね41によつて上方に押し上げられ遊動体3の円
錐凸面体B10に密接する。第5図は油圧弁装置
26を拡大して示した断面図である。油圧弁装置
26は中央の弁シリンダA29、その左右の弁シ
リンダB38、上加圧板42、中加圧板43、下
加圧板44、積層体45、積層体46、およ
び、2基の座屈拘束装置47によつて構成され
る。弁シリンダA29には流出口48が設けら
れ、流出路49が接続されている。流出路49は
パイプ50によつて油タンク27に接続されてい
る。弁シリンダA29には流出口48を開閉する
弁ピストン51がそう入されている。弁シリンダ
B38には流出口52が設けられ、流出路53が
接続されている。流出路53はパイプ54によつ
て油タンク27に接続されている。なお、弁シリ
ンダB38と油タンク27は、逆止弁B55を備
えたパイプ56によつて接続され、連通パイプ3
9と油タンク27は、電磁切換弁B57を備えた
パイプ58によつて接続される。弁シリンダB3
8には流出口52を開閉する弁ピストン59がそ
う入されている。上加圧板42は弁シリンダA2
9の弁ピストン51に連結され、ガイドレール6
0に沿つて上下に平行移動するようになつてい
る。中加圧板43は弁シリンダB38の弁ピスト
ン59に連結され、ガイドレール61に沿つて上
下に平行移動するようになつている。下加圧板4
4は油圧弁装置26の底板に固定されている。上
加圧板42には2基の変形制限装置62が設けら
れており、中加圧板43には変形制限装置63が
設けられている。積層体45および積層体4
6は、円筒殻状にわずかに湾曲させた長方形の金
属薄板を多数重ね合わせて形成されている。積層
体45は円筒軸を垂直にして上加圧板42と中
加圧板43の間に設置され、加圧板の保持装置に
よつて保持される。積層体46は円筒軸を垂直
にして中加圧板43と下加圧板44の間に設置さ
れ、加圧板の保持装置によつて保持される。積層
体46の両側に1基ずつ設置された座屈拘束装
置47は、油圧弁装置26の底板上を移動できる
ように形成された台車64、台車64に装着され
た伸縮支圧体65、台車64を移動させるソレノ
イド66によつて構成される。伸縮支圧体65は
積層体46の曲面に密接するように形成された
10数枚の軽金属板をばねを介して重合されたもの
で、上下方向に伸縮できるようになつている。ソ
レノイド66は油圧弁装置26の側板に固着され
た受台に設置されており、コンピユータ制御部の
指令によつてプランジヤーを作動させ台車64を
移動させる。伸縮支圧体65は、平常は積層体
46の板面から離れた位置に保持されているが、
ソレノイド66が励磁されると積層体46の板
面に密接するようになつている。
As shown in FIGS. 1, 3, and 4, the hydraulic cylinder device is composed of a cylinder A 24, four cylinders B 25, a hydraulic valve device 26, an oil tank 27, and a pipe connecting these. Ru. The hydraulic valve device 26 is mounted on a mounting base 28 that is formed so that an operator can pass through it. The cylinder A24 is installed vertically in the upper center of the hydraulic valve device 26, and the valve cylinder A29 of the hydraulic valve device 26
connected to. Cylinder A24 and oil tank 27
are connected by a pipe 31 equipped with a check valve A30 and a pipe 33 equipped with an electromagnetic switching valve A32. The piston 34 of the cylinder A24 is connected to the conical convex body A22. The conical convex body A22 is pushed upward by the coil spring 35 and the support leg 5
It is in close contact with the conical concave disk A15. The four cylinders B25 are installed vertically on a steel support beam 36,
It is connected by a pipe 37 to a valve cylinder B38 of the hydraulic valve device 26. In addition, two valve cylinders B
38 are connected by a communication pipe 39. Each piston 4 of the cylinder B25 is a conical concave disk B
23. The concave concave disc B23 is pushed upward by the coil spring 41 and comes into close contact with the conical convex disc B10 of the floating body 3. FIG. 5 is an enlarged sectional view of the hydraulic valve device 26. As shown in FIG. The hydraulic valve device 26 includes a central valve cylinder A29, left and right valve cylinders B38, an upper pressure plate 42, a middle pressure plate 43, a lower pressure plate 44, a laminate 45, a laminate 46, and two buckling restraint devices. 47. The valve cylinder A29 is provided with an outlet 48 and connected to an outlet passage 49. The outflow path 49 is connected to the oil tank 27 by a pipe 50. A valve piston 51 for opening and closing the outlet 48 is inserted into the valve cylinder A29. The valve cylinder B38 is provided with an outlet 52 and connected to an outlet passage 53. The outflow path 53 is connected to the oil tank 27 by a pipe 54. Note that the valve cylinder B38 and the oil tank 27 are connected by a pipe 56 equipped with a check valve B55, and the communication pipe 3
9 and the oil tank 27 are connected by a pipe 58 equipped with an electromagnetic switching valve B57. Valve cylinder B3
A valve piston 59 for opening and closing the outlet 52 is inserted in the valve 8 . The upper pressure plate 42 is the valve cylinder A2
9 is connected to the valve piston 51 of the guide rail 6.
It is designed to move parallel up and down along 0. The intermediate pressure plate 43 is connected to the valve piston 59 of the valve cylinder B38, and is configured to move vertically in parallel along the guide rail 61. Lower pressure plate 4
4 is fixed to the bottom plate of the hydraulic valve device 26. The upper pressure plate 42 is provided with two deformation limiting devices 62, and the middle pressure plate 43 is provided with a deformation limiting device 63. Laminated body 45 and laminated body 4
6 is formed by stacking a number of slightly curved rectangular thin metal plates in the shape of a cylindrical shell. The stacked body 45 is placed between the upper pressure plate 42 and the middle pressure plate 43 with the cylindrical axis vertical, and is held by the pressure plate holding device. The stacked body 46 is placed between the middle pressure plate 43 and the lower pressure plate 44 with the cylindrical axis vertical, and is held by the pressure plate holding device. The buckling restraint devices 47 installed on each side of the laminated body 46 include a truck 64 formed to be movable on the bottom plate of the hydraulic valve device 26, an expandable support body 65 attached to the truck 64, and a truck. It is constituted by a solenoid 66 that moves 64. The extensible support body 65 was formed so as to be in close contact with the curved surface of the laminate 46.
It is made of more than 10 light metal plates polymerized with springs in between, allowing it to expand and contract in the vertical direction. The solenoid 66 is installed on a pedestal fixed to the side plate of the hydraulic valve device 26, and operates the plunger to move the carriage 64 in response to a command from the computer control section. The expandable support body 65 is normally held at a position away from the plate surface of the laminate 46, but
When the solenoid 66 is energized, it comes into close contact with the plate surface of the laminate 46.

コンピユータ制御部は、支持台1に対する支持
脚5の水平方向相対変位を検知する変位検知器を
備えている。
The computer control section includes a displacement detector that detects the relative horizontal displacement of the support leg 5 with respect to the support base 1.

本発明の免震装置は上部構造物の各柱下または
主要な壁下に設置される。基礎6と一体に形成さ
れた壁、階段等の下部構造物と、上部構造物の床
板部18等の取り合わせ部は、両者の水平方向相
対変位を妨げない構造になつている。
The seismic isolation device of the present invention is installed under each column or main wall of the superstructure. The lower structures such as walls and stairs that are integrally formed with the foundation 6 and the floor plate portion 18 of the upper structure are constructed so as not to hinder relative horizontal displacement between the two.

本発明の免震装置の作用および効果は次のよう
なものである。
The functions and effects of the seismic isolation device of the present invention are as follows.

(1) 免震装置が作動しない場合 上部構造物に地震力または風圧力が作用する
と、各免震装置に水平せん断力が働き、支持脚
5は支持台1に対して水平方向に相対変位しよ
うとする。この作用によつて支持脚5の円錐凹
面盤A15は、円錐凸面体A22に下向きの力
を加える。このとき、弁シリンダA29の流出
口48、逆止弁A30、電磁切換弁A32はす
べて閉鎖されているから、シリンダA24内に
生じた油圧によつて弁ピストン51が押され、
積層体45および積層体46に軸方向圧縮
力が働く。しかし、免震装置に作用する水平せ
ん断力が作動せん断力より小さい場合積層体に
作用する軸方向圧縮力は、積層体45または
積層体46の座屈荷重より小さいから、積層
体45および積層体46はどちらも座屈変
形しない。このため、弁シリンダA29の流出
口48は弁ピストン51によつて引続き閉鎖さ
れ、円錐凸面体A22は下降を阻止される。こ
の結果、支持台1に対する支持脚5の水平方向
相対変位が拘束されるから、軽微な地震の場合
または風圧力が作用した場合、上部構造物と基
礎との間に水平方向相対変位はおこらない。
(1) When the seismic isolation devices do not operate When seismic force or wind pressure acts on the superstructure, horizontal shearing force acts on each seismic isolation device, and the support legs 5 tend to displace relative to the support base 1 in the horizontal direction. shall be. Due to this action, the concave concave disc A15 of the support leg 5 applies a downward force to the convex conical body A22. At this time, since the outlet 48 of the valve cylinder A29, the check valve A30, and the electromagnetic switching valve A32 are all closed, the valve piston 51 is pushed by the hydraulic pressure generated in the cylinder A24.
An axial compressive force acts on the laminated body 45 and the laminated body 46. However, when the horizontal shear force acting on the seismic isolation device is smaller than the operating shear force, the axial compressive force acting on the laminate is smaller than the buckling load of the laminate 45 or the laminate 46. 46 does not undergo buckling deformation. For this reason, the outlet 48 of the valve cylinder A29 continues to be closed by the valve piston 51, and the conical convex body A22 is prevented from descending. As a result, the horizontal relative displacement of the support leg 5 with respect to the support platform 1 is restrained, so no horizontal relative displacement will occur between the superstructure and the foundation in the case of a slight earthquake or when wind pressure acts. .

(2) 免震装置の作動および長周期免震動作 第6図は免震装置の長周期免震動作を示す縦
断面図である。地震がおこり免震装置に矢印で
示すような水平せん断力が作用すると、円錐凹
面体A22に下向きの力が働き、積層体45
および積層体46に軸方向圧縮力が作用す
る。積層体46の座屈荷重は積層体45の
座屈荷重より小さいから、免震装置に作用する
水平せん断力が作動せん断力に達すると、この
軸方向圧縮力によつて積層体46が座屈変形
する。積層体46の座屈変形によつて弁シリ
ンダA29の弁ピストン51、上加圧板42、
積層体45、中加圧板43、および、弁シリ
ンダB38の弁ピストン59は一体となつて下
方に移動し、弁シリンダA29の流出口48お
よび弁シリンダB38の流出口52は同時に開
放される。この結果、シリンダA24内の作動
油およびシリンダB25内の作動油に流動がお
こり、円錐凸面体A22および円錐凹面盤B2
3は拘束を解除されて下方に移動し、支持脚5
および遊動体3は支持台1に対して水平方向に
相対変位をおこす。弁シリンダA29の流出口
48から作動油が流出し、弁ピストン51に作
用する油圧が低下すると、積層体46は中加
圧板43、弁ピストン59、積層体45、上
加圧板42および弁ピストン51を押し上げて
原形に復帰し、弁シリンダA29の流出口4
8、および、弁シリンダB38の流出口52は
再び閉鎖される。また、支持脚5が原位置にも
どると、それにつれて、シリンダA24のピス
トン34と円錐凸面体A22は、コイルばね3
5によつて原位置に押し上げられ、同時に、作
動油がパイプ31の逆止弁A30を通つてシリ
ンダA24内に流入する。一方、遊動体3が原
位置にもどると、それにつれて、シリンダB2
5のピストン40と円錐凹面盤B23は、コイ
ルばね41によつて原位置に押し上げられ、同
時に、作動油がパイプ56の逆止弁B55を通
つてシリンダB25内に流入する。免震装置に
逆向きの水平せん断力が作用すると、積層体
46は再び座屈変形し、弁シリンダA29の流
出口48、および、弁シリンダB38の流出口
52は開放され、支持脚5および遊動体3は、
支持台1に対して前述とは逆の方向に水平方向
相対変位をおこす。このように、免震装置に作
用する水平せん断力が作動せん断力に達する地
震の場合、支持脚5および遊動体3は地盤の水
平振動から切り放されて独自の固有周期で長周
期振動を行なう。このため、地盤の振動がどん
なに激しくても、上部構造物にはその長周期振
動によつて生ずる水平地震力以上の水平地震力
は作用しない。
(2) Operation of the seismic isolation device and long-period seismic isolation operation Figure 6 is a longitudinal sectional view showing the long-period seismic isolation operation of the seismic isolation device. When an earthquake occurs and a horizontal shearing force as shown by the arrow acts on the seismic isolation device, a downward force acts on the conical concave body A22, causing the laminated body 45
And an axial compressive force acts on the laminate 46. Since the buckling load of the laminate 46 is smaller than the buckling load of the laminate 45, when the horizontal shear force acting on the seismic isolation device reaches the operating shear force, the axial compressive force causes the laminate 46 to buckle. transform. Due to the buckling deformation of the laminate 46, the valve piston 51 of the valve cylinder A29, the upper pressure plate 42,
The stacked body 45, the intermediate pressure plate 43, and the valve piston 59 of the valve cylinder B38 move downward together, and the outlet 48 of the valve cylinder A29 and the outlet 52 of the valve cylinder B38 are simultaneously opened. As a result, a flow occurs in the hydraulic oil in the cylinder A24 and the hydraulic oil in the cylinder B25, causing the conical convex body A22 and the conical concave disc B2 to flow.
3 is released from the restraint and moves downward, supporting leg 5
And the floating body 3 causes a relative displacement in the horizontal direction with respect to the support base 1. When hydraulic oil flows out from the outlet 48 of the valve cylinder A29 and the hydraulic pressure acting on the valve piston 51 decreases, the stacked body 46 is moved to the middle pressure plate 43, the valve piston 59, the stacked body 45, the upper pressure plate 42, and the valve piston 51. is pushed up to return to its original shape, and the outlet port 4 of the valve cylinder A29
8, and the outlet 52 of the valve cylinder B38 is closed again. Further, when the support leg 5 returns to its original position, the piston 34 of the cylinder A24 and the conical convex body A22 are moved by the coil spring 3.
5 to the original position, and at the same time, hydraulic oil flows into the cylinder A24 through the check valve A30 of the pipe 31. On the other hand, when the floating body 3 returns to its original position, the cylinder B2
The piston 40 of No. 5 and the conical concave disk B23 are pushed up to the original position by the coil spring 41, and at the same time, the hydraulic oil flows into the cylinder B25 through the check valve B55 of the pipe 56. When an opposite horizontal shear force is applied to the seismic isolation device, the stacked body 46 undergoes buckling deformation again, the outlet 48 of the valve cylinder A29 and the outlet 52 of the valve cylinder B38 are opened, and the support leg 5 and the floating Body 3 is
A relative horizontal displacement is caused to the support base 1 in the opposite direction to that described above. In this way, in the case of an earthquake in which the horizontal shear force acting on the base isolation device reaches the operating shear force, the support leg 5 and the floating body 3 are separated from the horizontal vibration of the ground and vibrate for a long period with their own natural period. . Therefore, no matter how intense the ground vibrations are, no horizontal seismic force greater than the horizontal seismic force generated by the long-period vibrations will act on the superstructure.

(3) 短周期免震動作および共振の回避 第7図は免震装置の短周期免震動作を示す縦
断面図である。矢印のように免震装置に作用す
る水平せん断力が作動せん断力に達する地震の
場合、免震装置は(2)で述べたようにまず長周期
免震動作に入る。コンピユータ制御部は、免震
装置が作動すると同時に変位検知器を使つて免
震装置の変形の監視を始め、免震装置の変形が
次第に大きくなり、共振の徴候が現われると次
のような共振を回避するプログラムを実行す
る。電磁切換弁A32と電磁切換弁B57を開
放して、シリンダA24およびシリンダB25
の油圧を下げ、積層体46の原形復帰を促
す。積層体46が原形に復帰したら座屈拘束
装置47のソレノイド66を励磁し、積層体
46の両面に伸縮支圧体65を密接させる。同
時に、電磁切換弁A32と電磁切換弁B57を
閉鎖する。座屈拘束装置47によつて積層体
46が拘束されると、積層体46の座屈荷重
は、積層体45の座屈荷重より大きくなるか
ら、免震装置に水平せん断力が働き積層体4
5および積層体46に軸方向圧縮力が作用す
ると、積層体46は座屈変形せず積層体4
5が座屈変形する。これによつて、上加圧板4
2および弁シリンダA29の弁ピストン51は
下降し、弁シリンダA29の流出口48が開放
される。一方、中加圧板43と弁シリンダB3
8の弁ピストン59は下降できないから、弁シ
リンダB38の流出口52は閉鎖されたままと
なる。このため、支持脚5は円錐凸面体A22
を押し下げて振動し、遊動体3は円錐凹面盤B
23によつて振動を拘束される。このように、
免震装置は支持台1および遊動体3に対して支
持脚5が水平方向に相対変位する短周期振動を
始め、長周期振動によつて誘発された共振は回
避される。また、この短周期免震動作のとき免
震装置に共振の徴候が現われると、コンピユー
タ制御部はソレノイド66の励磁を解き、伸縮
支圧体65を積層体46から引き離し、積層
体46の拘束を解除する。これによつて、免
震装置は(2)に述べた長周期免震動作にもどり、
短周期振動によつて誘発された共振は回避され
る。このように、免震装置の固有周期を長周期
から短周期に、あるいは、短周期から長周期に
変換して共振を回避しつつ免震動作を行なう。
(3) Short-period seismic isolation operation and avoidance of resonance Figure 7 is a longitudinal sectional view showing the short-period seismic isolation operation of the seismic isolation device. In the case of an earthquake where the horizontal shear force acting on the seismic isolation device reaches the operating shear force as shown by the arrow, the seismic isolation device first enters long-period seismic isolation operation as described in (2). The computer control unit starts monitoring the deformation of the seismic isolation device using displacement detectors at the same time as the seismic isolation device operates, and when the deformation of the seismic isolation device gradually increases and signs of resonance appear, the following resonance is detected. Run the program to avoid. Open the electromagnetic switching valve A32 and the electromagnetic switching valve B57 to open the cylinder A24 and cylinder B25.
The hydraulic pressure is lowered to encourage the stacked body 46 to return to its original shape. When the laminated body 46 returns to its original shape, the solenoid 66 of the buckling restraint device 47 is energized, and the extensible support bodies 65 are brought into close contact with both surfaces of the laminated body 46. At the same time, the electromagnetic switching valve A32 and the electromagnetic switching valve B57 are closed. When the laminated body 46 is restrained by the buckling restraint device 47, the buckling load of the laminated body 46 becomes larger than the buckling load of the laminated body 45, so a horizontal shear force acts on the seismic isolation device and the laminated body 4
5 and the laminate 46, the laminate 46 does not undergo buckling deformation and the laminate 4
5 undergoes buckling deformation. With this, the upper pressure plate 4
2 and the valve piston 51 of the valve cylinder A29 are lowered, and the outlet 48 of the valve cylinder A29 is opened. On the other hand, the middle pressure plate 43 and the valve cylinder B3
Since the valve piston 59 of No. 8 cannot be lowered, the outlet 52 of the valve cylinder B38 remains closed. Therefore, the support leg 5 is a conical convex body A22.
is pressed down to vibrate, and the floating body 3 becomes a conical concave disk B.
23 restrains the vibration. in this way,
The seismic isolation device starts short-period vibrations in which the support legs 5 are horizontally displaced relative to the support base 1 and the movable body 3, and resonance induced by long-period vibrations is avoided. Furthermore, if signs of resonance appear in the seismic isolation device during this short-period seismic isolation operation, the computer control section de-energizes the solenoid 66, pulls the telescopic support body 65 away from the laminated body 46, and releases the restraint of the laminated body 46. unlock. As a result, the seismic isolation device returns to the long-period seismic isolation operation described in (2).
Resonances induced by short period vibrations are avoided. In this way, the natural period of the seismic isolation device is converted from a long period to a short period, or from a short period to a long period, thereby performing a seismic isolation operation while avoiding resonance.

(4) その他の作用 短周期で振幅の大きい地震がおき免震装置が
作動した場合、円錐凸面体A22は急激にかな
りの距離下降する。これにつれて、積層体4
6が座屈変形し弁シリンダA29の弁ピストン
51が下降するが、積層体46の過大変形を
防ぐ変形制御装置63の働きで、弁ピストン5
1は一定距離下降すると停止する。このため、
円錐凸面体A22が急激に下降した場合、作動
油が弁シリンダA29の流出口48から流出し
きれない事態がおこる。このときは、積層体
46に引続いて積層体45が座屈変形し、変
形制御装置62の限度まで上加圧板42および
弁ピストン51を下降させ、流出口48を拡大
して作動油の流出を促進する。
(4) Other effects When a short-period, large-amplitude earthquake occurs and the seismic isolation device is activated, the conical convex body A22 suddenly descends a considerable distance. Along with this, the laminate 4
6 undergoes buckling deformation and the valve piston 51 of the valve cylinder A29 descends.
1 stops after descending a certain distance. For this reason,
If the conical convex body A22 suddenly descends, a situation occurs in which the hydraulic oil cannot completely flow out from the outlet 48 of the valve cylinder A29. At this time, the laminated body 45 is buckled and deformed following the laminated body 46, and the upper pressure plate 42 and the valve piston 51 are lowered to the limit of the deformation control device 62, and the outflow port 48 is enlarged to allow the hydraulic oil to flow out. promote.

地震がおさまると支持脚5および遊動体3は
原位置に復帰し、それにつれて、円錐凸面体A
22、円錐凹面盤B23も原位置に復帰する。
積層体46または積層体45が、シリンダ
A24またはシリンダB25の油圧に妨げられ
て原形に復帰できない事態がおこると、コンピ
ユータ制御部は、電磁切換弁A32または電磁
切換弁B57を開放し、シリンダA24または
シリンダB25の油圧を下げ積層体を復元させ
る。免震装置が完全に原形に復帰するとコンピ
ユータ制御部はその機能を停止する。
When the earthquake subsides, the supporting leg 5 and the floating body 3 return to their original positions, and accordingly, the conical convex body A
22. The conical concave disc B23 also returns to its original position.
When a situation occurs in which the stacked body 46 or the stacked body 45 cannot return to its original shape due to the hydraulic pressure of the cylinder A24 or cylinder B25, the computer control section opens the electromagnetic switching valve A32 or the electromagnetic switching valve B57, and the cylinder A24 or The oil pressure of cylinder B25 is lowered to restore the laminated body. When the seismic isolation device completely returns to its original shape, the computer control section stops its function.

本発明の免震装置は、原発明の免震装置と同
様に、水平地震力を軽減することを目的とする
ものであるから、垂直地震力に対する免震効果
は期待できない。しかし、地震力は一般に垂直
成分が水平成分にくらべてかなり小さいこと、
また、上部構造物が垂直地震力を含む鉛直荷重
に対して比較的安定した構造を持つていること
などから、水平地震力を軽減するだけで十分免
震効果を上げることができる。
The seismic isolation device of the present invention, like the seismic isolation device of the original invention, is intended to reduce horizontal seismic force, and therefore cannot be expected to have a seismic isolation effect against vertical seismic force. However, the vertical component of seismic force is generally much smaller than the horizontal component;
Furthermore, since the superstructure has a relatively stable structure against vertical loads including vertical seismic forces, it is possible to sufficiently increase the seismic isolation effect simply by reducing horizontal seismic forces.

原発明の場合、免震装置を設置することによ
つて基礎と上部構造物の床板との間に利用価値
のない空間ができる。原発明ではこの無駄な空
間を小さくするために、支持装置の高さをでき
るだけ低くし、制御装置の一部を上部構造物の
柱内に設けるなどの方法がとられた。原発明の
場合、柱と支持台に点検口を設けて制御装置ま
たは支持装置の保守、点検を行なうことになる
が、柱も支持台も巨大な鉛直荷重を支持する重
要な構造体で、点検口はその位置や大きさを制
限されるから、免震装置の保守、点検に支障が
おこるおそれがある。免震構造の上部構造物
は、免震装置がその性能を十分発揮することを
前提にして設計されるから、免震装置が正常に
働かない場合致命的な大被害を受けることにな
る。免震装置にとつて保守、点検は重要な問題
である。
In the case of the original invention, the installation of the seismic isolation device creates a space between the foundation and the floor plate of the superstructure that is of no use value. In the original invention, in order to reduce this wasted space, the height of the support device was made as low as possible, and a portion of the control device was provided within a column of the superstructure. In the case of the original invention, maintenance and inspection of the control device or support device would be carried out by providing inspection ports in the pillars and support bases, but both the pillars and support bases are important structures that support huge vertical loads, so inspections are not possible. Since the position and size of the opening are restricted, maintenance and inspection of the seismic isolation device may be hindered. A superstructure with a seismic isolation structure is designed on the assumption that the seismic isolation device will fully demonstrate its performance, so if the seismic isolation device does not function properly, it will suffer major and fatal damage. Maintenance and inspection are important issues for seismic isolation devices.

以上のようなことから、本発明の免震装置は
「保守、点検が完全にできること」を第一条件に
して造られている。本発明では免震装置の内部に
点検作業空間67をとるために、支持台1の高さ
を柱並に高くし、これにともなつて、基礎6と上
部構造物の床板部18との間にできる空間を機械
室または駐車スペースとして利用することにし
た。点検作業空間67に通じる通路68は基礎ば
りの側面に設けられている。基礎ばりは、はり幅
を大きくするなど補強が自由にできるから側面に
開口部を設けても構造上とくに問題はない。本発
明の免震装置の場合も、支持装置の保守、点検に
ついてはやや難点が残るが、防錆を完全にすれば
支持装置に致命的な故障はおこらないから実用的
にはこれで十分であると思われる。制御装置につ
いては、装置内での部材の交換を前提にして構成
部材の大きさを定めておけば、分解、組立、部材
の交換が自由にできるから原発明の欠点は完全に
解消される。
In view of the above, the seismic isolation device of the present invention is manufactured with the first condition being that it can be completely maintained and inspected. In the present invention, in order to provide an inspection work space 67 inside the seismic isolation device, the height of the support platform 1 is made as high as that of a column, and along with this, the space between the foundation 6 and the floor plate portion 18 of the superstructure is increased. We decided to use the available space as a machine room or parking space. A passage 68 leading to the inspection work space 67 is provided on the side of the foundation beam. The foundation beam can be reinforced as desired by increasing the width of the beam, so there are no structural problems even if openings are provided on the sides. In the case of the seismic isolation device of the present invention, there remain some difficulties in maintenance and inspection of the support device, but if rust prevention is completed, there will be no fatal failure of the support device, so this is sufficient for practical purposes. It appears to be. As for the control device, if the sizes of the components are determined on the assumption that the components will be replaced within the device, the drawbacks of the original invention can be completely eliminated because disassembly, assembly, and component replacement can be done freely.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による免震装置と、基礎および
上部構造物の一部を示す縦断面図である。第2図
は本発明の免震装置の支持装置およびせん断力変
換装置を示すA−A横断面図で、第3図は本発明
の免震装置の油圧シリンダ装置および基礎ばりを
示すB−B,C−C横断面図である。第4図は本
発明の免震装置の油圧シリンダ装置および基礎の
D−D縦断面図で、第5図は本発明の免震装置の
油圧弁装置を拡大して示した縦断面図である。第
6図は本発明の免震装置の長周期免震動作を示す
縦断面図で、第7図は本発明の免震装置の短周期
免震動作を示す縦断面図である。 1……支持台、2……第1つり材、3……遊動
体、4……第2つり材、5……支持脚、6……基
礎、10……円錐凸面体B、15……円錐凹面盤
A、22……円錐凸面体A、23……円錐凹面盤
B、24……シリンダA、25……シリンダB、
27……油タンク、29……弁シリンダA、38
……弁シリンダB、45……積層体、46……
積層体、47……座屈拘束装置、67……点検
作業空間。
FIG. 1 is a vertical cross-sectional view showing a base isolation device according to the present invention, and a part of the foundation and superstructure. FIG. 2 is a cross-sectional view taken along line A-A showing the support device and shear force conversion device of the seismic isolation device of the present invention, and FIG. 3 is a cross-sectional view taken along line B-B showing the hydraulic cylinder device and foundation beam of the seismic isolation device of the present invention. , CC cross-sectional view. FIG. 4 is a vertical sectional view taken along line DD of the hydraulic cylinder device and foundation of the seismic isolation device of the present invention, and FIG. 5 is a vertical sectional view showing an enlarged view of the hydraulic valve device of the seismic isolation device of the present invention. . FIG. 6 is a longitudinal sectional view showing the long-period seismic isolation operation of the seismic isolation device of the present invention, and FIG. 7 is a longitudinal sectional view showing the short-period seismic isolation operation of the seismic isolation device of the invention. DESCRIPTION OF SYMBOLS 1...Support stand, 2...First hanging member, 3...Floating body, 4...Second hanging member, 5...Support leg, 6...Foundation, 10...Conical convex body B, 15... Concave concave disk A, 22...Conical convex body A, 23...Concave concave disk B, 24...Cylinder A, 25...Cylinder B,
27...Oil tank, 29...Valve cylinder A, 38
... Valve cylinder B, 45 ... Laminate, 46 ...
Laminated body, 47... Buckling restraint device, 67... Inspection work space.

Claims (1)

【特許請求の範囲】 1 地盤に設けた下部構造物と筒状の支持台によ
つて形成した柱状中空体の内部に、筒状の遊動体
と、頂部に上部構造物支持部を持つ柱状の支持脚
を互いに間隔をおいて入子状に収容し、複数のつ
り材を用いて遊動体を支持台に、支持脚を遊動体
にそれぞれつつて支持装置を形成し、支持装置の
下方の柱状中空体の内部に点検作業空間を設ける
とともに、凹凸面を接する一組の凹面体と凸面体
のうちの一方を遊動体および支持脚の底部にそれ
ぞれ固着し、他方を柱状中空体に設置したガイド
に上下移動可能に装着してせん断力変換装置を形
成し、かつ、複数のシリンダおよびシリンダ制御
部を備えた液体シリンダ装置を柱状中空体の下部
に設置し、液体シリンダ装置のシリンダの上部に
前記のガイドに装着された凹面体または凸面体を
それぞれ連結したことを特徴とする点検作業空間
を持つ柱式建造物免震装置。 2 地盤に設けた下部構造物が、基礎板および基
礎ばりを持つ基礎構造物である特許請求の範囲第
1項記載の点検作業空間を持つ柱式建造物免震装
置。 3 つり材が、1または複数個の細長環状体と2
個のUボルトからなるものである特許請求の範囲
第1項または第2項記載の点検作業空間を持つ柱
式建造物免震装置。 4 複数のつり材が、上端を支持台の上部に連結
し下端を遊動体の下部に連結した複数の第1つり
材と、上端を遊動体の上部に連結し下端を支持脚
の下部に連結した複数の第2つり材からなるもの
である特許請求の範囲第1項または第2項、また
は第3項記載の点検作業空間を持つ柱式建造物免
震装置。 5 せん断力変換装置が、凸面部を下向きにして
遊動体底部に固着された複数の凸面体とこれに相
対してガイドに装着された複数の凹面体、およ
び、凹面部を下向きにして支持脚底部に固着され
た凹面体とこれに相対してガイドに装着された凸
面体を持つものである特許請求の範囲第1項また
は第2項、または第3項、または第4項記載の点
検作業空間を持つ柱式建造物免震装置。 6 凹面体が円錐凹面を持つ円錐凹面盤で、凸面
体が円錐凸面を持つ円錐凸面体である特許請求の
範囲第5項記載の点検作業空間を持つ柱式建造物
免震装置。 7 点検作業空間が、作業者がその中に入り点検
または保守作業を行なうことができる広さを持つ
空間である特許請求の範囲第1項または第2項、
または第3項、または第4項、または第5項、ま
たは第6項記載の点検作業空間を持つ柱式建造物
免震装置。 8 シリンダ制御部が、弾性薄板積層体および座
屈拘束装置を備えた弁装置を持つものである特許
請求の範囲第1項または第2項、または第3項、
または第4項、または第5項、または第6項、ま
たは第7項記載の点検作業空間を持つ柱式建造物
免震装置。 9 弾性薄板積層体が、円筒殻状の金属薄板を多
数重ね合わせ、それらの金属薄板の軸方向にシリ
ンダによる圧力を作用させるように形成したもの
である特許請求の範囲第8項記載の点検作業空間
を持つ柱式建造物免震装置。 10 座屈拘束装置が、少なくとも弾性薄板積層
体の板面を加圧することができる加圧装置を持
ち、かつ、この加圧装置をコンピユータ制御部の
指令によつて作動させる機構を持つものである特
許請求の範囲第8項または第9項記載の点検作業
空間を持つ柱式建造物免震装置。 11 液体シリンダ装置が、コンピユータ制御部
の指令によつて作動する弁を備えたものである特
許請求の範囲第1項または第2項、または第3
項、または第4項、または第5項、または第6
項、または第7項、または第8項、または第9
項、または第10項記載の点検作業空間を持つ柱
式建造物免震装置。 12 弁が電磁切換弁である特許請求の範囲第1
1項記載の点検作業空間を持つ柱式建造物免震装
置。 13 コンピユータ制御部が、免震装置の変形を
検知する変位検知器を持つものである特許請求の
範囲第10項または第11項、または第12項記
載の点検作業空間を持つ柱式建造物免震装置。 14 液体シリンダ装置が、油圧シリンダ装置で
ある特許請求の範囲第1項または第2項、または
第3項、または第4項、または第5項、または第
6項、または第7項、または第8項、または第9
項、または第10項、または第11項、または第
12項、または第13項記載の点検作業空間を持
つ柱式建造物免震装置。
[Scope of Claims] 1 A columnar hollow body formed by a lower structure provided on the ground and a cylindrical support base includes a cylindrical floating body and a columnar structure having an upper structure support portion at the top. The support legs are housed in a nested manner at intervals from each other, and a plurality of hanging members are used to attach the floating body to the support base and the support legs to the floating body to form a support device. A guide in which an inspection work space is provided inside the hollow body, and one of a pair of concave and convex bodies that touch uneven surfaces is fixed to the bottom of the floating body and the support leg, and the other is installed in the columnar hollow body. A liquid cylinder device is installed at the bottom of the columnar hollow body to form a shear force converting device, and is equipped with a plurality of cylinders and a cylinder control section, and the above cylinder is installed at the top of the cylinder of the liquid cylinder device to form a shear force converting device. A pillar-type building seismic isolation device having an inspection work space characterized by connecting concave or convex bodies attached to guides. 2. The seismic isolation device for a column-type building having an inspection work space as set forth in claim 1, wherein the lower structure provided on the ground is a foundation structure having a foundation plate and a foundation burr. 3 The hanging material consists of one or more elongated annular bodies and 2
A pillar-type building seismic isolation device having an inspection work space as set forth in claim 1 or 2, which comprises U-bolts. 4 A plurality of first hanging members, each having an upper end connected to the upper part of the support base and a lower end connected to the lower part of the floating body; A pillar-type building seismic isolation device having an inspection work space as set forth in claim 1, 2, or 3, which is made of a plurality of second hanging members. 5 The shear force conversion device includes a plurality of convex bodies fixed to the bottom of the floating body with the convex part facing downward, a plurality of concave bodies attached to the guide opposite thereto, and a support leg bottom with the concave part facing downward. The inspection work according to claim 1 or 2, or 3, or 4, which has a concave body fixed to the part and a convex body mounted on the guide opposite thereto. Seismic isolation device for pillar-type buildings with space. 6. The pillar-type building seismic isolation device having an inspection work space according to claim 5, wherein the concave body is a concave concave disk having a concave concave surface, and the convex body is a convex convex body having a convex conical surface. 7. Claims 1 or 2, in which the inspection work space is a space large enough for a worker to enter therein and perform inspection or maintenance work;
Or a pillar-type building seismic isolation device having an inspection work space as described in paragraph 3, paragraph 4, paragraph 5, or paragraph 6. 8. Claims 1 or 2, or 3, wherein the cylinder control section has a valve device equipped with an elastic thin plate laminate and a buckling restraint device,
Or a pillar-type building seismic isolation device having an inspection work space as described in paragraph 4, paragraph 5, paragraph 6, or paragraph 7. 9. Inspection work according to claim 8, wherein the elastic thin plate laminate is formed by stacking a large number of cylindrical shell-shaped thin metal plates and applying pressure from a cylinder in the axial direction of the thin metal plates. Seismic isolation device for pillar-type buildings with space. 10 The buckling restraint device has a pressurizing device capable of pressurizing at least the plate surface of the elastic thin plate laminate, and has a mechanism that operates this pressurizing device in response to a command from a computer control unit. A pillar-type building seismic isolation device having an inspection work space according to claim 8 or 9. 11. Claim 1 or 2, or 3, wherein the liquid cylinder device is equipped with a valve operated by a command from a computer control section.
Section, or Section 4, or Section 5, or Section 6
or Section 7, or Section 8, or Section 9.
A pillar-type building seismic isolation device having an inspection work space as described in paragraph 1 or paragraph 10. 12 Claim 1 in which the valve is a solenoid switching valve
A pillar-type building seismic isolation device with an inspection work space as described in paragraph 1. 13. A pillar-type building isolation system having an inspection work space as set forth in claim 10 or 11 or 12, wherein the computer control unit has a displacement detector for detecting deformation of the seismic isolation device. Seismic device. 14. Claim 1 or 2, or 3, or 4, or 5, or 6, or 7, or 14, wherein the liquid cylinder device is a hydraulic cylinder device. Section 8 or Section 9
A pillar-type building seismic isolation device having an inspection work space according to item 1, or 10, or 11, or 12, or 13.
JP22199784A 1984-10-24 1984-10-24 Building earthquake proof apparatus having inspection work space Granted JPS61102973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22199784A JPS61102973A (en) 1984-10-24 1984-10-24 Building earthquake proof apparatus having inspection work space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22199784A JPS61102973A (en) 1984-10-24 1984-10-24 Building earthquake proof apparatus having inspection work space

Publications (2)

Publication Number Publication Date
JPS61102973A JPS61102973A (en) 1986-05-21
JPH0146676B2 true JPH0146676B2 (en) 1989-10-09

Family

ID=16775469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22199784A Granted JPS61102973A (en) 1984-10-24 1984-10-24 Building earthquake proof apparatus having inspection work space

Country Status (1)

Country Link
JP (1) JPS61102973A (en)

Also Published As

Publication number Publication date
JPS61102973A (en) 1986-05-21

Similar Documents

Publication Publication Date Title
WO2018018913A1 (en) Flexible hanging type module building structure
JP6513387B2 (en) Vibration control device for girder bridge and reinforcement method for girder bridge
JP4658006B2 (en) Seismic isolation method for existing buildings and temporary seismic control panel
JP2018084100A (en) Base-isolated building
KR20150138785A (en) Vertical expansion remodeling method of existing building with seperate load path
CN114482515B (en) Integrated attachment device for nonstandard super high floor of super high-rise building
JPH0146676B2 (en)
JP7145746B2 (en) steel building
CN110387955A (en) A New Controlled Sway Damping Structural System
JP2014163094A (en) Base slab strengthening structure
WO2020240260A1 (en) Seesaw structural systems for seismic low-rise buildings
JP5886996B1 (en) Concrete lampway building with friction connection structure
JPH11172952A (en) Seismic and windproof structure
JP5017887B2 (en) Tower crane support structure, tower crane support method
JP5382925B2 (en) Demolition method of adjacent multi-layer building and load transmission structure for demolition
KR101403660B1 (en) Building structure for improving seismic performance
CN211523471U (en) Novel controlled swing damping structure system
Wada et al. Passive controlled slender structures having special devises at column connections
JP2003160991A (en) Uniaxial vibration absorbing unit
Davidson Development of testing facilities and procedures for seismic performance of suspended ceilings
JP4795838B2 (en) Variable floor structure and its construction method
US20010032420A1 (en) Gravity balance frame
JPH07259188A (en) Frame structure of building
JP2015143463A (en) Construction with building, reinforcing structure and supporting structure
JP5035850B2 (en) Horizontal support method and support structure for multi-story building