[go: up one dir, main page]

JPH0146538B2 - - Google Patents

Info

Publication number
JPH0146538B2
JPH0146538B2 JP54074909A JP7490979A JPH0146538B2 JP H0146538 B2 JPH0146538 B2 JP H0146538B2 JP 54074909 A JP54074909 A JP 54074909A JP 7490979 A JP7490979 A JP 7490979A JP H0146538 B2 JPH0146538 B2 JP H0146538B2
Authority
JP
Japan
Prior art keywords
calcium carbonate
weight
particle size
parts
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54074909A
Other languages
Japanese (ja)
Other versions
JPS55165960A (en
Inventor
Koji Shibazaki
Setsuji Edakawa
Hisashi Hasegawa
Minoru Funatsu
Noboru Moryama
Yasuhisa Fukumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Shiraishi Kogyo Kaisha Ltd
Original Assignee
Kao Corp
Shiraishi Kogyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Shiraishi Kogyo Kaisha Ltd filed Critical Kao Corp
Priority to JP7490979A priority Critical patent/JPS55165960A/en
Publication of JPS55165960A publication Critical patent/JPS55165960A/en
Publication of JPH0146538B2 publication Critical patent/JPH0146538B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、プラスチツク用炭酸カルシウム填剤
に関する。 炭酸カルシウムは、種々の用途に使用され、例
えばプラスチツク用填剤として有用である。通
常、プラスチツク充填用の炭酸カルシウムとして
は、顔料特性を一般に示す平均粒径20μm以下の
範囲のものが使用されている。ここに、炭酸カル
シウムの平均粒径とは、BET法により求めた比
表面積から立方形結晶として換算した一辺の長さ
をいうものとし、以下単に「粒径」という。この
粒径20μm以下の炭酸カルシウムは、大別して次
の3種類に分類することができる。 (a) 20〜1μm (b) 1.0〜0.1μm (c) 0.10〜0.12μm 上記a)の範囲に属する炭酸カルシウムとして
は、主として粒径20〜4μm程度の異方形粗大粒子
である重質炭酸カルシウム及び粒径4〜1μm程度
の軽微性炭酸カルシウムの2種類が挙げられる。
この粒径範囲の炭酸カルシウムは、プラスチツク
用顔料として使用する場合、分散向上用の特殊な
表面処理を行なわずとも、そのままでプラスチツ
ク中での良好な分散性を有するものの、これを充
填されたプラスチツク組成物は光沢が極めて低
い、物性強度に劣る等の欠点があり、単に増量剤
としての効果しか望み得ない。 また、上記c)の範囲に属する膠質炭酸カルシ
ウムは、プラスチツク中での分散を充分に行なう
ことができれば光沢、物性強度共に優れたものと
なるであろうことが予想されるが、現実には表面
活性が大きい為、何らの表面処理も行なわれなけ
れば、乾燥粉末化に際して粒子が互いに凝集し、
2次、3次凝集体となることが多い。このため、
結果的には、粒径1μm以上の炭酸カルシウムを用
いた場合と同等程度の光沢、物性強度しか得られ
なかつた。そこで、膠質炭酸カルシウムの乾燥粉
末化時に、該炭酸カルシウム粒子間の凝集を防止
すべく、該炭酸カルシウム水懸濁液に高級脂肪
酸、樹脂酸ソーダ等の溶液を添加することにより
粒子個々の表面を高級脂肪酸、樹脂酸等のカルシ
ウム塩で被覆する方法が採用された。しかし、斯
かる方法をもつてしても尚充分な分散性を得るこ
とができず、光沢、物性強度の面においてもその
粒径から期待される効果は発揮されない。 一方、上記b)の粒径1.0〜0.1μmの炭酸カルシ
ウムは、従来の水酸化カルシウム懸濁液中へ炭酸
ガスを吹込む方法ではいかなる条件下でも得られ
なかつたものではあるが、核剤として微細立方形
炭酸カルシウムを添加した水酸化カルシウム懸濁
液を炭酸ガス気流中に連続的に噴霧し、該核剤の
上に結晶を順次成長させる方法により初めて収得
できるようになつたものである(特開昭53―
43694号公報)。この方法により得られる炭酸カル
シウムは、乾燥凝集を起こさない最小粒径である
粒径1.0〜0.1μmの立方形であり、しかもその表面
活性も高くなり、良好な光沢を与えるものであつ
た。しかるに、これを充填したプラスチツク組成
物の物性強度は必ずしも満足し得るものではなか
つた。そこで、この粒径1.0〜0.1μmの炭酸カルシ
ウムに、アクリル酸重合体を被覆乃至吸着させた
ものが開発された(特開昭53―119299号公報)。
この炭酸カルシウムは、プラスチツク組成物の光
沢や白色度をかなり向上させると共に物性強度を
も向上させるものではあるが、しかし、尚、使用
目的等によつて必ずしも完全には満足し得るもの
ではなかつた。 斯かる現状に鑑み、本発明者は、上記a)の粒
径20〜1.0μm程度の炭酸カルシウムを母体とする
場合でも光沢を顕著に向上させると共に物性強度
をも向上させ、上記c)の粒径0.10〜0.02μm程度
の炭酸カルシウムを母体とする場合でも分散性を
向上させ、これに伴い光沢、白色度及び物性強度
を向上させ、更に上記b)の粒径1.0〜0.1μm程度
の炭酸カルシウムを母体とする場合でも、一段と
光沢及び白色度を向上させると共に物性強度を向
上させ得るという、夫々の粒径範囲の各欠点を一
挙に解消し得るプラスチツク用炭酸カルシウム填
剤を得ることを目的として研究を重ねた。その結
果、炭酸カルシウムに、アクリル酸とアクリル酸
アルキルエステルとの共重合物の塩を吸着させた
ものが、この目的を達成することを見出した。 即ち、本発明は、炭酸カルシウムに、アクリル
酸と一般式 〔式中、R1は炭素数2〜11のアルコキシカルボ
ニル基を示す。〕で表わされる化合物との共重合
物の塩を吸着させてなるプラスチツク用炭酸カル
シウム填剤に係るものである。 本発明のプラスチツク用炭酸カルシウム填剤
は、a)の粒径20〜1μm程度のものを母体とする
場合には、従来の最大の欠点であつたプラスチツ
ク組成物の光沢を顕著に改善すると共に白色度や
物性強度の面においても向上をもたらす。また、
c)の粒径0.10〜0.02μm程度の炭酸カルシウムを
母体とする場合にも、従来の高級脂肪酸、樹脂酸
等で表面処理したものに比し、特に光沢及び白色
度に優れると共に物性強度をも向上させる。更
に、b)の粒径1.0〜0.1μm程度の炭酸カルシウム
を母体とする場合には、従来のアクリル酸重合体
処理品に比しても、顕著に光沢、白色度を向上さ
せると共に物性強度をも極めて大巾に向上させ
る。即ち、いずれの粒径の炭酸カルシウムを母体
とする場合でも、本発明のプラスチツク用炭酸カ
ルシウム填剤は、同一粒径で比較した場合、従来
の表面処理品に比し、表面光沢の向上の度合いは
実に15〜20%程度以上にも達し、その他白色度、
物性強度においても顕著な向上がもたらされる。 本発明において炭酸カルシウムとしては、通
常、顔料特性を示す粒径20μm以下のものであれ
ば、特に制限されることなく使用できる。この範
囲の粒径を有する炭酸カルシウムのうち、本来乾
燥凝集を起こさない最小範囲にあり、分散性良好
なる粒径1.0〜0.1μm程度のものが、特に優れた光
沢、物性強度、白色度を与えるので、より好まし
く使用できる。 本発明においては、アクリル酸と一般式()
の化合物(即ち、アクリル酸エステル)との共重
合の塩を上記炭酸カルシウムに吸着せしめる。こ
こに「吸着」という語は、上記共重合物中のカル
ボキシル基と炭酸カルシウムのカルシウム原子と
が塩形成した結合、物理吸着等の態様を含むもの
とする。上記共重合中の構成成分のモル比は、ア
クリル酸100モルに対し、一般式()のアクリ
ル酸エステル20〜500モル程度、好ましくは50〜
200モル程度とするのがよい。アクリル酸100モル
に対し、一般式()のアクリル酸エステルが20
モルを下回ると、プラスチツク組成物の白色度、
光沢及び伸びが著しく低下する傾向があり、一方
500モルを上回ると、共重合物の水に対する溶解
度が低下し、炭酸カルシウム粒子個々の表面に均
一に吸着することが困難となることがある。共重
合物の分子量は、構成成分の種類、構成モル比等
により変わり得るが、通常600〜50000程度、好ま
しくは1000〜15000程度とするのがよい。分子量
が600を下回ると吸着率が低下する傾向があり、
また50000を上回ると、その共重合物の製造が困
難であり、粘度上昇も著しい。また、炭酸カルシ
ウム懸濁液に添加した場合、その凝集剤的効果に
より粒子表面への均一な吸着が困難となることが
ある。炭酸カルシウムに対する共重合物の吸着乃
至被覆量は、炭酸カルシウム100重量部当り、
0.01〜10.0重量部程度、好ましくは0.1〜5.0重量
部とするのがよい。吸着量が0.01重量部を下回る
と、その処理効果において、無処理品との差が顕
著でなくなる。一方、10.0重量部を上回ると、吸
着率が低下すると共に、白色度、光沢等の外観効
果及び物性強度において、更に顕著な効果の向上
が期待できず、経済的にも有利でなくなることが
多い。 アクリル酸と一般式()の化合物との共重合
物は、通常その塩、例えばアルカリ金属塩、アン
モニウム塩等の形態で使用され、これは、例え
ば、通常の溶液重合法等により容易に製造でき
る。例えば、上記アクリル酸と一般式()の化
合物とを既知の重合開始剤、例えばアゾビスイソ
ブチロニトリル等の有機アゾ化合物、過酸化ベン
ゾイル等の有機過酸化物等を全単量体重量の0.01
〜10%程度使用し、エタノール、イソプロパノー
ル、ベンゼン、トルエン等の有機溶剤中で、50〜
150℃程度の温度下、1〜20時間程度反応させる
ことにより共重合物を得る。次いで溶剤除去後、
アルカリ金属水酸化物水溶液、アンモニア水等で
中和することにより、該共重合物の塩を得ること
ができる。なお、アクリル酸のアルカリ金属塩、
アンモニウム塩等を原料モノマーとして用いた場
合には、上記中和反応は省略することができる。 本発明のプラスチツク用炭酸カルシウム填剤
は、上記した炭酸カルシウム及び共重合物の塩を
使用し、次のようにして製造される。例えば、炭
酸カルシウムの懸濁液に上記共重合物の塩の少な
くとも1種を添加し、撹拌等により均一に混合し
て炭酸カルシウム粒子に該共重合物を吸着させた
後、常法により、フイルタープレス等にて脱水
し、乾燥、解砕、分級し、粉末化することにより
得ることができる。上記炭酸カルシウム懸濁液の
濃度としては、特に制限はないが、粘性を低く
し、作業能率を高める観点からは約5〜20重量%
程度とするのが好ましい。また共重合物の塩の添
加量は、その吸着率を勘案して予め算定される
が、固形分換算で、炭酸カルシウム100重量部に
対し、通常、0.01〜10.0重量部程度、好ましくは
0.1〜5.0重量部程度の吸着量となるような量とす
ればよい。ここに、上記吸着率は、共重合物の塩
の種類、分子量、モル比及び処理すべき炭酸カル
シウムの粒径、処理条件等によつても異るが、通
常70〜100%程度である。本発明炭酸カルシウム
填剤は、上記方法に代えて、次の方法によつても
製造できる。即ち、粉末化した炭酸カルシウムを
流動化させておき、この流動床に上記共重合物の
塩の水溶液を噴霧吸着させる方法である。共重合
物の塩の水溶液の濃度は、10%程度とし、添加量
は、固形分換算で、炭酸カルシウム100重量部に
対し共重合物塩0.01〜10.0重量部、好ましくは0.1
〜5.0重量部程度とすればよい。 斯くして得られる本発明のプラスチツク用炭酸
カルシウム填剤は、熱可塑性樹脂、熱硬化性樹脂
の別を問わず広い範囲の合成樹脂に有効に使用で
き、いずれのプラスチツクに使用した場合にも、
優れた光沢、白色度、物性強度を与えるものであ
る。プラスチツクに対する本発明炭酸カルシウム
填剤の使用量は、使用目的等によつても変わり得
るが、通常、樹脂100重量部に対し、5〜150重量
部程度とすれば、所望の特性を有する樹脂組成物
を得ることができる。 本発明炭酸カルシウム填剤の適用可能樹脂とし
ては広い範囲のものを例示できる。熱可塑性樹脂
としては、ポリエチレン、ポリプロピレン、ポリ
スチレン、ポリ酢酸ビニル、ポリアクリル酸エス
テル、ポリアクリル酸アミド、ポリエステル、ポ
リアクリロニトリル、ポリアミド、ポリ塩化ビニ
ル、ポリ塩化ビニリデン等が例示できる。また、
熱硬化性樹脂としては、フエノール樹脂、エポキ
シ樹脂、不飽和ポリエステル樹脂、アルキド樹
脂、尿素樹脂、メラミン樹脂、ウレタン樹脂、ケ
イ素樹脂等が例示できる。これらのうちでも、一
般に、熱可塑性樹脂に対して、本発明炭酸カルシ
ウム填剤はより良好な光沢、白色度、物性強度を
与える。なお、本発明炭酸カルシウム填剤は、プ
ラスチツク用として従来から使用されている各種
の添加剤、例えば安定剤、可塑剤、滑剤、架橋
剤、顔料、難燃剤、帯電防止剤、増粘剤、発泡
剤、補強剤等と併用することもできる。 実施例 1 濃度5重量%、温度50℃に調整した粒径
0.08μmの極微細立方形炭酸カルシウム水懸濁液
を2000Kg/hrの速度で、また濃度3.7重量%、温
度50℃に調整した石灰乳を500Kg/hrの速度でパ
イプラインミキサーに導入し、両者を混合する。
濃度25容量%、温度20℃の炭酸ガスが空塔速度
0.7m/secで上昇しつつある反応塔の頂部から該
混合水懸濁液250Kg/hrを噴霧し、反応後の混合
懸濁液のPHが10.5〜11.0となるまで炭酸化反応さ
せる。 この反応により粒径0.10μmに成長した炭酸カ
ルシウムを含有する第1段反応終了後の懸濁液に
更に濃度3.5重量%、温度50℃に調整した石灰乳
を混合し、最初の反応条件と同様にして炭酸化反
応させ、粒径0.11μmに成長した第2段反応物が
得られる。この第2段反応と同様の操作を更に2
回行うことにより粒径0.15μmの立方形炭酸カル
シウムを得た。 この5重量%の炭酸カルシウム水懸濁液に対し
モル比100:100、分子量5000のアクリル酸―アク
リル酸ブチル共重合物のナトリウム塩の10重量%
水溶液を、固形分換算で炭酸カルシウム100重量
部に対し、2重量部の割合で添加混合する。次い
で、フイルタープレスで脱水したペーストを乾
燥、分級することにより、アクリル酸―アクリル
酸ブチル共重合物を1.6重量%吸着した粒径
0.15μmの本発明プラスチツク用炭酸カルシウム
填剤を得る。 実施例 2 濃度5重量%、温度20℃の水酸化カルシウム懸
濁液に炭酸ガスを吹込むバツチ式製造法で得た粒
径0.06μmの炭酸カルシウム水懸濁液(濃度5重
量%、温度30℃)に、実施例1で使用したアクリ
ル酸―アクリル酸ブチル共重合物のナトリウム塩
を固形分換算で炭酸カルシウム100重量部に対し
3重量部の割合で添加する。次いで、実施例1と
同様にして粉末化することによりアクリル酸―ア
クリル酸ブチル共重合物を2.4重量%含有する粒
径0.06μmの本発明プラスチツク用炭酸カルシウ
ム填剤を得る。 実施例 3 粒径4.0μmの重質炭酸カルシウムを母体として
使用し、該炭酸カルシウム100重量部に対し実施
例1で使用したアクリル酸―アクリル酸ブチル共
重合物のナトリウム塩を0.5重量部添加する以外
は実施例1と同様にして、上記共重合物を0.4重
量%含有する粒径4.0μmの本発明プラスチツク用
炭酸カルシウム填剤を得る。 実施例 4 モル比100:100、分子量3000のアクリル酸―ア
クリル酸エチル共重合物のナトリウム塩を使用す
る以外は実施例1と同様にして、上記共重合物を
1.6重量%吸着した粒径0.15μmの本発明プラスチ
ツク用炭酸カルシウム填剤を得る。 実施例 5 モル比100:100、分子量3000のアクリル酸―ア
クリル酸2―エチルヘキシル共重合物のナトリウ
ム塩を使用する以外は実施例1と同様にして、上
記共重合物を1.6重量%吸着した粒径0.15μmの本
発明プラスチツク用炭酸カルシウム填剤を得る。 実施例 6 実施例1の本発明のプラスチツク用炭酸カルシ
ウム填剤50重量部及びポリプロピレン樹脂(商標
名「ノーブレンW101S」住友化学工業(株)製、メ
ルトインデツクス8.0)100重量部を予備混合後、
200℃で10分間ロール混練し、シート状に取出し、
ペレタイザーでペレツト化することにより本発明
のポリプロピレン組成物を得る。 実施例 7〜10 実施例2〜5の本発明のプラスチツク用炭酸カ
ルシウム填剤をそれぞれ用いる以外は実施例6と
同様にして本発明のポリプロピレン組成物を得
る。 比較例 1〜5 下記の比較炭酸カルシウム填剤を用いる以外は
実施例6と同様にして比較ポリプロピレン組成物
を得る。比較例 比較炭酸カルシウム填剤 1 実施例1の粒径0.15μmの立方形炭酸カ
ルシウムを無処理のまま乾燥粉末化した
もの。 2 実施例1の粒径0.15μmの立方形炭酸カ
ルシウムにステアリン酸を1.6重量%吸
着させてなるもの。 3 実施例2で使用した粒径0.06μmの炭酸
カルシウムに、ステアリン酸を2.4重量
%吸着させてなるもの。 4 実施例3で使用した粒径4.0μmの炭酸カ
ルシウム(無処理)。 5 実施例1で使用した粒径0.15μmの立方
形炭酸カルシウムに、アクリル酸ソーダ
を吸着させ、アクリル酸重合物として
1.6重量%吸着させてなるもの。 参考例 1 実施例6〜10の本発明ポリプロピレン組成物及
び比較例1〜5の比較ポリプロピレン組成物を、
夫々、射出成形機により樹脂温度230℃で、
ASTM規格試験片を作成し、下記方法に従い、
白色度、光沢、衝撃強さ及び伸びを測定する。 Γ白色度…JIS P 8123(45゜−0゜) Γ光沢…ASTM D 523(60゜−60゜) Γ衝撃強さ…ASTM D 256 Γ伸 び…ASTM D 638 結果を第1表に示す。本発明の炭酸カルシウム
填剤は、同一粒径で比較した場合、従来の填剤に
比し、いずれも白色度、光沢を大幅に向上させ、
しかも物性強度をも向上させることが明らかであ
る。特に、白色度及び光沢は、2〜3%程度の向
上により一見してその相違が伴別できることを考
慮すれば、その効果の顕著なることが判る。
The present invention relates to calcium carbonate fillers for plastics. Calcium carbonate is used in a variety of applications, such as being useful as a filler for plastics. Usually, calcium carbonate for filling plastics has an average particle size of 20 μm or less, which generally exhibits pigment properties. Here, the average particle size of calcium carbonate refers to the length of one side calculated as a cubic crystal from the specific surface area determined by the BET method, and is hereinafter simply referred to as "particle size." Calcium carbonate with a particle size of 20 μm or less can be broadly classified into the following three types. (a) 20 to 1 μm (b) 1.0 to 0.1 μm (c) 0.10 to 0.12 μm Calcium carbonate that falls within the range of a) above is mainly heavy calcium carbonate, which is anisotropic coarse particles with a particle size of about 20 to 4 μm. and minor calcium carbonate with a particle size of about 4 to 1 μm.
When calcium carbonate in this particle size range is used as a pigment for plastics, it has good dispersibility in plastic as it is without any special surface treatment to improve dispersion. The composition has drawbacks such as extremely low gloss and poor physical strength, and can only be expected to be effective as an extender. In addition, colloidal calcium carbonate falling within the range c) above is expected to have excellent gloss and physical strength if it is sufficiently dispersed in plastic, but in reality, the surface Due to its high activity, if no surface treatment is performed, the particles will agglomerate together during dry powdering.
They often form secondary or tertiary aggregates. For this reason,
As a result, it was possible to obtain only the same level of gloss and physical strength as when using calcium carbonate with a particle size of 1 μm or more. Therefore, when drying and powdering colloidal calcium carbonate, in order to prevent agglomeration between the calcium carbonate particles, a solution of higher fatty acids, soda resin, etc. is added to the calcium carbonate aqueous suspension, thereby cleaning the surface of each particle. A method of coating with calcium salts such as higher fatty acids and resin acids was adopted. However, even with such a method, sufficient dispersibility cannot be obtained, and the effects expected from the particle size in terms of gloss and physical strength are not exhibited. On the other hand, although calcium carbonate with a particle size of 1.0 to 0.1 μm described in b) above cannot be obtained under any conditions by the conventional method of blowing carbon dioxide into a calcium hydroxide suspension, it can be used as a nucleating agent. It became possible to obtain it for the first time by continuously spraying a calcium hydroxide suspension to which fine cubic calcium carbonate was added into a carbon dioxide gas stream and growing crystals sequentially on the nucleating agent ( Japanese Patent Application Publication 1973-
Publication No. 43694). The calcium carbonate obtained by this method had a cubic shape with a particle size of 1.0 to 0.1 μm, which is the minimum particle size that would not cause dry agglomeration, and also had high surface activity and gave good gloss. However, the physical strength of the plastic composition filled with this material was not necessarily satisfactory. Therefore, calcium carbonate having a particle size of 1.0 to 0.1 μm coated with or adsorbed with an acrylic acid polymer was developed (Japanese Unexamined Patent Publication No. 119299/1983).
Although this calcium carbonate considerably improves the gloss and whiteness of plastic compositions and also improves the physical strength, it is not always completely satisfactory depending on the purpose of use. . In view of the current situation, the present inventors have developed a method to significantly improve gloss and physical strength even when calcium carbonate having a particle size of about 20 to 1.0 μm as described in a) above is used as a matrix, and to improve the physical strength of particles as described in c) above. Even when calcium carbonate with a diameter of about 0.10 to 0.02 μm is used as a matrix, dispersibility is improved, and gloss, whiteness, and physical strength are improved accordingly, and calcium carbonate with a particle diameter of about 1.0 to 0.1 μm as described in b) above is improved. The purpose of the present invention is to obtain a calcium carbonate filler for plastics that can further improve gloss and whiteness as well as improve physical strength, even when using calcium carbonate as a matrix, which can eliminate all the drawbacks of each particle size range at once. I did a lot of research. As a result, they found that calcium carbonate adsorbed with a salt of a copolymer of acrylic acid and an acrylic acid alkyl ester achieved this objective. That is, the present invention combines calcium carbonate with acrylic acid and the general formula [In the formula, R 1 represents an alkoxycarbonyl group having 2 to 11 carbon atoms. ] This relates to a calcium carbonate filler for plastics, which is made by adsorbing a salt of a copolymer with the compound represented by the following formula. When the calcium carbonate filler for plastics of the present invention uses a) particles with a particle size of about 20 to 1 μm as a base material, it can significantly improve the gloss of plastic compositions, which was the biggest drawback of the conventional ones, and also improve whiteness. It also brings about improvements in terms of strength and physical properties. Also,
Even when calcium carbonate with a particle size of about 0.10 to 0.02 μm is used as a base material, it has particularly excellent gloss and whiteness as well as physical strength compared to conventional surface treatments with higher fatty acids, resin acids, etc. Improve. Furthermore, when calcium carbonate with a particle size of about 1.0 to 0.1 μm is used as the base material (b), the gloss and whiteness are significantly improved, as well as the physical strength, compared to conventional acrylic acid polymer-treated products. It will also greatly improve the results. That is, regardless of the particle size of calcium carbonate used as a matrix, the calcium carbonate filler for plastics of the present invention has a higher degree of improvement in surface gloss than conventional surface-treated products when compared with the same particle size. In fact, it reaches over 15-20%, and other whiteness,
A remarkable improvement is also brought about in physical strength. In the present invention, calcium carbonate can be used without any particular restriction as long as it exhibits pigmentary properties and has a particle size of 20 μm or less. Among calcium carbonate particles with a particle size within this range, those with a particle size of about 1.0 to 0.1 μm, which are in the minimum range that does not naturally cause drying agglomeration and have good dispersibility, provide particularly excellent gloss, physical strength, and whiteness. Therefore, it can be used more preferably. In the present invention, acrylic acid and the general formula ()
A salt copolymerized with a compound (ie, an acrylic ester) is adsorbed onto the calcium carbonate. The term "adsorption" herein includes embodiments such as bonding in which a carboxyl group in the above-mentioned copolymer and a calcium atom of calcium carbonate form a salt, physical adsorption, and the like. The molar ratio of the constituent components during the above copolymerization is approximately 20 to 500 mol, preferably 50 to 500 mol, of the acrylic ester of general formula () to 100 mol of acrylic acid.
It is recommended that the amount be about 200 moles. For 100 moles of acrylic acid, 20 acrylic esters of general formula ()
Below molar, the whiteness of the plastic composition,
Gloss and elongation tend to decrease significantly;
When the amount exceeds 500 mol, the solubility of the copolymer in water decreases, and it may become difficult to uniformly adsorb onto the surfaces of individual calcium carbonate particles. The molecular weight of the copolymer may vary depending on the types of constituent components, their constituent molar ratios, etc., but it is usually about 600 to 50,000, preferably about 1,000 to 15,000. When the molecular weight is less than 600, the adsorption rate tends to decrease.
Moreover, when it exceeds 50,000, it is difficult to produce the copolymer and the viscosity increases significantly. Furthermore, when added to a calcium carbonate suspension, its flocculant effect may make it difficult to uniformly adsorb onto the particle surface. The adsorption or coating amount of the copolymer on calcium carbonate is per 100 parts by weight of calcium carbonate,
The amount is preferably about 0.01 to 10.0 parts by weight, preferably 0.1 to 5.0 parts by weight. When the amount of adsorption is less than 0.01 parts by weight, the difference in treatment effect from that of untreated products is no longer significant. On the other hand, if it exceeds 10.0 parts by weight, the adsorption rate will decrease, and further significant improvements in appearance effects such as whiteness and gloss and physical strength cannot be expected, and it is often not economically advantageous. . A copolymer of acrylic acid and a compound of general formula () is usually used in the form of its salt, such as an alkali metal salt or ammonium salt, which can be easily produced by, for example, a usual solution polymerization method. . For example, the above acrylic acid and the compound of general formula () are combined with a known polymerization initiator, such as an organic azo compound such as azobisisobutyronitrile, an organic peroxide such as benzoyl peroxide, etc. 0.01
~10%, and 50 ~
A copolymer is obtained by reacting at a temperature of about 150°C for about 1 to 20 hours. Then, after removing the solvent,
A salt of the copolymer can be obtained by neutralizing with an aqueous alkali metal hydroxide solution, aqueous ammonia, or the like. In addition, alkali metal salts of acrylic acid,
When ammonium salt or the like is used as a raw material monomer, the above neutralization reaction can be omitted. The calcium carbonate filler for plastics of the present invention is produced in the following manner using the above-described calcium carbonate and copolymer salt. For example, at least one of the above copolymer salts is added to a suspension of calcium carbonate, mixed uniformly by stirring or the like to cause the copolymer to be adsorbed onto calcium carbonate particles, and then filtered by a conventional method. It can be obtained by dehydrating with a press or the like, drying, crushing, classifying, and powdering. There is no particular limit to the concentration of the calcium carbonate suspension, but from the viewpoint of lowering the viscosity and increasing work efficiency, it is approximately 5 to 20% by weight.
It is preferable to set it as approximately. The amount of the copolymer salt to be added is calculated in advance taking into account its adsorption rate, but it is usually about 0.01 to 10.0 parts by weight, preferably about 0.01 to 10.0 parts by weight, based on solid content, per 100 parts by weight of calcium carbonate.
The amount may be set so that the adsorption amount is about 0.1 to 5.0 parts by weight. Here, the adsorption rate is usually about 70 to 100%, although it varies depending on the type of salt of the copolymer, the molecular weight, the molar ratio, the particle size of the calcium carbonate to be treated, the treatment conditions, etc. The calcium carbonate filler of the present invention can also be produced by the following method instead of the above method. That is, this is a method in which powdered calcium carbonate is fluidized and an aqueous solution of the salt of the copolymer is sprayed and adsorbed onto the fluidized bed. The concentration of the aqueous solution of the copolymer salt is about 10%, and the amount added is 0.01 to 10.0 parts by weight, preferably 0.1 parts by weight of the copolymer salt per 100 parts by weight of calcium carbonate, in terms of solid content.
The amount may be approximately 5.0 parts by weight. The thus obtained calcium carbonate filler for plastics of the present invention can be effectively used in a wide range of synthetic resins, regardless of whether they are thermoplastic resins or thermosetting resins, and when used in any plastic,
It provides excellent gloss, whiteness, and physical strength. The amount of the calcium carbonate filler of the present invention to be used in plastics may vary depending on the purpose of use, etc., but generally, if it is about 5 to 150 parts by weight per 100 parts by weight of the resin, a resin composition having the desired properties can be obtained. can get things. A wide range of resins can be used as the resin to which the calcium carbonate filler of the present invention can be applied. Examples of thermoplastic resins include polyethylene, polypropylene, polystyrene, polyvinyl acetate, polyacrylic ester, polyacrylic amide, polyester, polyacrylonitrile, polyamide, polyvinyl chloride, polyvinylidene chloride, and the like. Also,
Examples of thermosetting resins include phenolic resins, epoxy resins, unsaturated polyester resins, alkyd resins, urea resins, melamine resins, urethane resins, and silicone resins. Among these, the calcium carbonate filler of the present invention generally provides better gloss, whiteness, and physical strength to thermoplastic resins. The calcium carbonate filler of the present invention contains various additives conventionally used for plastics, such as stabilizers, plasticizers, lubricants, crosslinking agents, pigments, flame retardants, antistatic agents, thickeners, and foaming agents. It can also be used in combination with agents, reinforcing agents, etc. Example 1 Particle size adjusted to a concentration of 5% by weight and a temperature of 50°C
An aqueous suspension of ultrafine cubic calcium carbonate of 0.08 μm was introduced into a pipeline mixer at a rate of 2000 Kg/hr, and milk of lime adjusted to a concentration of 3.7% by weight and a temperature of 50°C was introduced into a pipeline mixer at a rate of 500 Kg/hr. Mix.
Carbon dioxide gas at a concentration of 25% by volume and a temperature of 20°C has a superficial velocity
250 kg/hr of the mixed aqueous suspension is sprayed from the top of the reaction tower, which is rising at a rate of 0.7 m/sec, and the carbonation reaction is carried out until the pH of the mixed suspension after the reaction becomes 10.5 to 11.0. Milk of lime adjusted to a concentration of 3.5% by weight and a temperature of 50°C was further mixed into the suspension containing calcium carbonate that had grown to a particle size of 0.10 μm through this reaction after the completion of the first stage reaction, and the same conditions as the first reaction were used. A second-stage reaction product having a particle size of 0.11 μm is obtained by carbonation reaction. The same operation as this second stage reaction was repeated two more times.
By repeating this process twice, cubic calcium carbonate with a particle size of 0.15 μm was obtained. 10% by weight of sodium salt of acrylic acid-butyl acrylate copolymer with a molar ratio of 100:100 and a molecular weight of 5000 to this 5% by weight aqueous suspension of calcium carbonate.
The aqueous solution is added and mixed in a ratio of 2 parts by weight to 100 parts by weight of calcium carbonate in terms of solid content. Next, by drying and classifying the dehydrated paste with a filter press, the particle size that adsorbed 1.6% by weight of acrylic acid-butyl acrylate copolymer was determined.
A calcium carbonate filler for plastics of the present invention having a thickness of 0.15 μm is obtained. Example 2 A calcium carbonate aqueous suspension with a particle size of 0.06 μm obtained by a batch production method in which carbon dioxide gas is blown into a calcium hydroxide suspension at a concentration of 5% by weight and a temperature of 20°C (concentration of 5% by weight and a temperature of 30°C). ℃), the sodium salt of the acrylic acid-butyl acrylate copolymer used in Example 1 is added at a ratio of 3 parts by weight per 100 parts by weight of calcium carbonate in terms of solid content. Next, the powder was pulverized in the same manner as in Example 1 to obtain a calcium carbonate filler for plastics of the present invention containing 2.4% by weight of acrylic acid-butyl acrylate copolymer and having a particle size of 0.06 μm. Example 3 Heavy calcium carbonate with a particle size of 4.0 μm is used as a base material, and 0.5 parts by weight of the sodium salt of the acrylic acid-butyl acrylate copolymer used in Example 1 is added to 100 parts by weight of the calcium carbonate. A calcium carbonate filler for plastics of the present invention containing 0.4% by weight of the above copolymer and having a particle size of 4.0 μm was obtained in the same manner as in Example 1 except for this. Example 4 The above copolymer was prepared in the same manner as in Example 1 except that the sodium salt of acrylic acid-ethyl acrylate copolymer with a molar ratio of 100:100 and a molecular weight of 3000 was used.
A calcium carbonate filler for plastics of the present invention having a particle size of 0.15 μm and adsorbing 1.6% by weight is obtained. Example 5 Particles with 1.6% by weight of the above copolymer adsorbed were prepared in the same manner as in Example 1 except that sodium salt of acrylic acid-2-ethylhexyl acrylate copolymer with a molar ratio of 100:100 and a molecular weight of 3000 was used. A calcium carbonate filler for plastics of the present invention having a diameter of 0.15 μm is obtained. Example 6 After premixing 50 parts by weight of the calcium carbonate filler for plastics of the present invention of Example 1 and 100 parts by weight of polypropylene resin (trade name "Noblen W101S" manufactured by Sumitomo Chemical Co., Ltd., melt index 8.0),
Roll knead for 10 minutes at 200℃, take out into a sheet,
The polypropylene composition of the present invention is obtained by pelletizing with a pelletizer. Examples 7 to 10 Polypropylene compositions of the present invention were obtained in the same manner as in Example 6, except that the calcium carbonate fillers for plastics of the present invention of Examples 2 to 5 were used, respectively. Comparative Examples 1 to 5 Comparative polypropylene compositions were obtained in the same manner as in Example 6, except that the following comparative calcium carbonate filler was used. Comparative Example Comparative Calcium Carbonate Filler 1 The cubic calcium carbonate of Example 1 with a particle size of 0.15 μm was dried and powdered without treatment. 2 A product obtained by adsorbing 1.6% by weight of stearic acid on the cubic calcium carbonate of Example 1 with a particle size of 0.15 μm. 3. Calcium carbonate with a particle size of 0.06 μm used in Example 2 adsorbs 2.4% by weight of stearic acid. 4 Calcium carbonate with a particle size of 4.0 μm used in Example 3 (untreated). 5 Sodium acrylate was adsorbed onto the cubic calcium carbonate with a particle size of 0.15 μm used in Example 1 to form an acrylic acid polymer.
Made by adsorbing 1.6% by weight. Reference Example 1 The polypropylene compositions of the present invention of Examples 6 to 10 and the comparative polypropylene compositions of Comparative Examples 1 to 5,
Each was molded using an injection molding machine at a resin temperature of 230°C.
Create an ASTM standard test piece and follow the method below.
Measure whiteness, gloss, impact strength and elongation. Γ Whiteness: JIS P 8123 (45°-0°) Γ Gloss: ASTM D 523 (60°-60°) Γ Impact strength: ASTM D 256 Γ Elongation: ASTM D 638 The results are shown in Table 1. When compared with the same particle size, the calcium carbonate filler of the present invention significantly improves whiteness and gloss compared to conventional fillers.
Moreover, it is clear that the physical properties and strength are also improved. In particular, considering that the difference in whiteness and gloss can be distinguished at first glance by an improvement of about 2 to 3%, it can be seen that the effect is remarkable.

【表】 実施例 11〜13 実施例1、4及び5の本発明のプラスチツク用
炭酸カルシウム填剤夫々50重量部及び高密度ポリ
エチレン樹脂(商標名「Hizex2100J」三井石油
化学(株)製、メルトインデツクス6.5)100重量部を
予備混合後、200℃で10分間ロール混練し、シー
ト状に取出し、ペレタイザーでペレツト化するこ
とによりポリエチレン組成物を得る。 比較例 6及び7 下記の比較炭酸カルシウム填剤を用いる以外は
実施例11〜13と夫々同様にして比較ポリエチレン
組成物を得る。比較例 比較炭酸カルシウム填剤 6 比較例1と同じもの。 7 比較例5と同じもの。 参考例 2 実施例11〜13並びに比較例5及び7のポリエチ
レン組成物を射出成形機により樹脂温度230℃で
ASTM規格試験片を作成し、参考例1と同様に
して試験片の諸特性を測定する。 結果を第2表に示す。
[Table] Examples 11 to 13 50 parts by weight of each of the calcium carbonate fillers for plastics of the present invention of Examples 1, 4, and 5 and high-density polyethylene resin (trade name "Hizex2100J" manufactured by Mitsui Petrochemical Co., Ltd., Melt Ind. After premixing 100 parts by weight of 6.5), the mixture is roll kneaded at 200°C for 10 minutes, taken out into a sheet, and pelletized using a pelletizer to obtain a polyethylene composition. Comparative Examples 6 and 7 Comparative polyethylene compositions were obtained in the same manner as in Examples 11 to 13, respectively, except that the following comparative calcium carbonate filler was used. Comparative Example Comparative Calcium Carbonate Filler 6 Same as Comparative Example 1. 7 Same as Comparative Example 5. Reference Example 2 The polyethylene compositions of Examples 11 to 13 and Comparative Examples 5 and 7 were molded using an injection molding machine at a resin temperature of 230°C.
An ASTM standard test piece is prepared, and various properties of the test piece are measured in the same manner as in Reference Example 1. The results are shown in Table 2.

【表】 実施例 14〜16 実施例1、4及び5の本発明のプラスチツク用
炭酸カルシウム填剤夫々15重量部、硬質ポリ塩化
ビニル樹脂(商標名「Geon103EP8」、日本ビオ
ン(株)製)100重量部、三塩基性硫酸鉛3重量部、
ステアリン酸鉛2.5重量部及びステアリン酸カル
シウム0.7重量部を予備混合し、165℃で10分間ロ
ール混練し、シート状に取出し、ペレタイザーで
ペレツト化することによりポリ塩化ビニル組成物
を得る。 比較例 8及び9 下記比較炭酸カルシウム填剤を用いる以外は実
施例14〜16と同様にして、比較ポリ塩化ビニル組
成物を得る。比較例 比較炭酸カルシウム填剤 8 比較例1と同じもの。 9 比較例5と同じもの。 参考例 3 実施例14〜16の本発明ポリ塩化ビニル組成物並
びに比較例8及び9の比較ポリ塩化ピニル組成物
を、165℃にてロール混練後、170℃にてプレス成
形することにより試験片を得、参考例1と同様に
して諸特性を測定した。 結果を第3表に示す。本発明炭酸カルシウム填
剤は、極めて優れた白色度及び光沢を与えると共
に、物性強度をも大幅に向上せしめることが判
る。
[Table] Examples 14 to 16 15 parts by weight of each of the calcium carbonate fillers for plastics of the present invention of Examples 1, 4, and 5, 100 parts of hard polyvinyl chloride resin (trade name "Geon103EP8", manufactured by Nippon Bion Co., Ltd.) parts by weight, 3 parts by weight of tribasic lead sulfate,
A polyvinyl chloride composition is obtained by premixing 2.5 parts by weight of lead stearate and 0.7 parts by weight of calcium stearate, rolling kneading at 165° C. for 10 minutes, taking out a sheet, and pelletizing with a pelletizer. Comparative Examples 8 and 9 Comparative polyvinyl chloride compositions were obtained in the same manner as in Examples 14 to 16, except that the following comparative calcium carbonate filler was used. Comparative Example Comparative Calcium Carbonate Filler 8 Same as Comparative Example 1. 9 Same as Comparative Example 5. Reference Example 3 The polyvinyl chloride compositions of the present invention in Examples 14 to 16 and the comparative polyvinyl chloride compositions in Comparative Examples 8 and 9 were roll-kneaded at 165°C and then press-molded at 170°C to form test pieces. was obtained, and various properties were measured in the same manner as in Reference Example 1. The results are shown in Table 3. It can be seen that the calcium carbonate filler of the present invention not only provides extremely excellent whiteness and gloss, but also significantly improves physical strength.

【表】【table】

Claims (1)

【特許請求の範囲】 1 炭酸カルシウムに、アクリル酸と一般式 〔式中、R1は炭素数2〜11のアルコキシカルボ
ニル基を示す。〕で表わされる化合物との共重合
物の塩を吸着させてなるプラスチツク用炭酸カル
シウム填剤。
[Claims] 1 Calcium carbonate, acrylic acid and the general formula [In the formula, R 1 represents an alkoxycarbonyl group having 2 to 11 carbon atoms. A calcium carbonate filler for plastics, which is made by adsorbing a salt of a copolymer with a compound represented by
JP7490979A 1979-06-13 1979-06-13 Calcium carbonate filler and production thereof Granted JPS55165960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7490979A JPS55165960A (en) 1979-06-13 1979-06-13 Calcium carbonate filler and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7490979A JPS55165960A (en) 1979-06-13 1979-06-13 Calcium carbonate filler and production thereof

Publications (2)

Publication Number Publication Date
JPS55165960A JPS55165960A (en) 1980-12-24
JPH0146538B2 true JPH0146538B2 (en) 1989-10-09

Family

ID=13560976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7490979A Granted JPS55165960A (en) 1979-06-13 1979-06-13 Calcium carbonate filler and production thereof

Country Status (1)

Country Link
JP (1) JPS55165960A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8421288D0 (en) * 1984-08-22 1984-09-26 Ici Plc Filler
JPS61177227A (en) * 1985-02-04 1986-08-08 Toyobo Co Ltd Orientated polyester film
JPS62212479A (en) * 1986-03-14 1987-09-18 Maruo Calcium Kk Filler for water-based coating
JPH0778158B2 (en) * 1986-11-04 1995-08-23 旭有機材工業株式会社 Powdered phenolic resin composition for binder
EP0292233A3 (en) * 1987-05-22 1989-01-25 Imperial Chemical Industries Plc Fillers
US5135967A (en) * 1988-01-21 1992-08-04 Deutsche Solvay-Werke Gmbh Underseal composition, and process for the production thereof
DE3900054A1 (en) * 1989-01-03 1990-07-12 Solvay Werke Gmbh UNDERFLOOR PROTECTION MASS AND METHOD FOR THE PRODUCTION THEREOF
FR2896171B1 (en) * 2006-01-19 2010-12-17 Omya Development Ag PROCESS FOR MANUFACTURING PARTICLES BASED ON NATURAL CALCIUM CARBONATE AND SALTS OF ETHYLENE ACRYLIC ACID, SUSPENSIONS AND DRY PIGMENTS OBTAINED, AND USES THEREOF
EP2447328B1 (en) * 2010-10-29 2014-12-17 Omya International AG Method for improving handleability of calcium carbonate containing materials
JP6704151B1 (en) * 2019-04-15 2020-06-03 株式会社Tbm Inorganic substance powder-filled resin composition and molded article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155612A (en) * 1976-06-22 1977-12-24 Nagoya Yukagaku Kogyo Kk Medium compositions for ceramics painting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155612A (en) * 1976-06-22 1977-12-24 Nagoya Yukagaku Kogyo Kk Medium compositions for ceramics painting

Also Published As

Publication number Publication date
JPS55165960A (en) 1980-12-24

Similar Documents

Publication Publication Date Title
US10633259B2 (en) Wet surface treatment of surface-modified calcium carbonate
DE60124082T2 (en) FILLER CONCENTRATES USED IN THERMOPLASTS
DE60133829T2 (en) COMPOSITE OF DYE AND INORGANIC COMPOUND AND METHOD FOR THE PRODUCTION AND RUBBER COMPOSITION THEREOF
US4927618A (en) Process for the preparation of large surface area, finely divided precipitated calcium carbonate and filled polymeric compositions of matter containing said calcium carbonate
CN101405350A (en) Process for manufacturing particles based on natural calcium carbonate and salts of acrylic acid-ethylene, suspensions and dry pigments obtained, and uses thereof
US4124688A (en) Process for preparing cubic crystals of calcium carbonate
JP4208838B2 (en) Surface-treated calcium carbonate and resin composition containing the same
KR20070024723A (en) Novel dry inorganic pigments containing calcium carbonate, aqueous suspension preparations containing the pigments, and uses thereof
JPH0146538B2 (en)
CN100473671C (en) Agents binding and modifying rheology
US5750086A (en) Process for producing ultrafine particles of colloidal calcium carbonate
JPS5891736A (en) Filler granulation method
JP2010510149A (en) Calcium carbonate hydroxodialuminate containing hexagonal platelet phase
US2892807A (en) Treated pigments and method of preparing same
WO2006012505A1 (en) Method for improved melt flow rate of filled polymeric resin
JPS6160731A (en) Filler and polymer composition containing same
US6323269B1 (en) Mineral containing thermoplastic granules
JP2933234B2 (en) Method for stabilizing vaterite-type calcium carbonate
JPS6363596B2 (en)
JPH11349851A (en) Production of coupling agent-treated inorganic particle and its use
JPH054929B2 (en)
JPS5943057B2 (en) Inorganic filler-containing resin composition
JPH0346404B2 (en)
JP7149535B2 (en) Vinyl chloride-vinyl acetate copolymer resin composition
CA1203946A (en) Process for suppressing the formation of oversized particles of thermoplastic resin produced by an aqueous dispersion procedure