[go: up one dir, main page]

JPH0145A - Method for producing 2-chloropropionaldehyde - Google Patents

Method for producing 2-chloropropionaldehyde

Info

Publication number
JPH0145A
JPH0145A JP62-154294A JP15429487A JPH0145A JP H0145 A JPH0145 A JP H0145A JP 15429487 A JP15429487 A JP 15429487A JP H0145 A JPH0145 A JP H0145A
Authority
JP
Japan
Prior art keywords
reaction
rhodium
compound
chloropropionaldehyde
guanidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62-154294A
Other languages
Japanese (ja)
Other versions
JPS6445A (en
Inventor
博司 小野
春日 隆晴
藤田 義博
Original Assignee
三井東圧化学株式会社
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP15429487A priority Critical patent/JPS6445A/en
Priority claimed from JP15429487A external-priority patent/JPS6445A/en
Publication of JPH0145A publication Critical patent/JPH0145A/en
Publication of JPS6445A publication Critical patent/JPS6445A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (Wll上上利用分野) 本発明は、次の反応式 (1) %式%(1) に従った塩化ビニル、一酸化炭素および水素を原料とす
る2−クロロプロピオンアルデヒドの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of application on Wll) The present invention is directed to the production of 2-chloropropion using vinyl chloride, carbon monoxide, and hydrogen as raw materials according to the following reaction formula (1). This invention relates to a method for producing aldehydes.

2−クロロプロピオンアルデヒドは化学品および農医薬
等の有用な中間体として用いることができる。
2-Chloropropionaldehyde can be used as a useful intermediate for chemicals, agricultural medicines, etc.

(従来の技術および発明が解決しようとする問題点) 塩化ビニル、一酸化炭素および水素を原料とする2−ク
ロロプロピオンアルデヒドの製造方法は公知で、例えば
、フランス特許第1.397.779号やヘルベチカ・
キミカ・アクタ(HELVETICA CHIMICA
ACTA)、48巻、第5号、115!頁〜1157頁
に示されている。これらの方法はいずれもコバルトカル
ボニルを触媒として用い、例えば、前記フランス特許第
1 、397 、779号によれば、反応温度110℃
、反応圧力200気圧の条件下において、90分間反応
を行わせ、塩化ビニルの転化率57.4%、2−クロロ
プロピオンアルデヒドの選択率86.2%の反応成績を
得ている。しかし、これらのコバルトカルボニルを触媒
として用いる方法では、コバルト当りの触媒活性は極め
て低く、この為に、多量のコバルトカルボニルと160
〜200気圧という高い反応圧力を必要とする上に、反
応温度75〜125°Cのもとで90〜120分間にわ
たり反応を行わせる方法がとられている。目的生成物で
ある2−クロロプロピオンアルデヒドは熱的に不安定な
物質で、このような反応温度と反応時間のもとではかな
りの割合が逐次反応で消費されて反応収率を低めるため
にこの方法は再現性に乏しく、さらにはこの逐次反応ま
たは他の副反応により塩化水素が副生じ、これが反応器
の材料を激しく腐食する上にコバルトカルボニル触媒と
反応して塩化コバルトとなるために触媒の再使用にも支
障をきたすという問題点を有している。
(Prior art and problems to be solved by the invention) A method for producing 2-chloropropionaldehyde using vinyl chloride, carbon monoxide and hydrogen as raw materials is known, for example, as described in French Patent No. 1.397.779 and Helvetica
HELVETICA CHIMICA
ACTA), Volume 48, No. 5, 115! Pages 1157-1157. All of these methods use cobalt carbonyl as a catalyst, and for example, according to the above-mentioned French Patent No. 1,397,779, the reaction temperature is 110°C.
The reaction was carried out for 90 minutes under the conditions of a reaction pressure of 200 atm, and a reaction result of 57.4% conversion of vinyl chloride and 86.2% selectivity of 2-chloropropionaldehyde was obtained. However, in these methods using cobalt carbonyl as a catalyst, the catalytic activity per cobalt is extremely low, and therefore a large amount of cobalt carbonyl and 160
In addition to requiring a high reaction pressure of ~200 atm, a method is used in which the reaction is carried out for 90 to 120 minutes at a reaction temperature of 75 to 125°C. The desired product, 2-chloropropionaldehyde, is a thermally unstable substance, and at such reaction temperatures and times, a considerable proportion of it is consumed in successive reactions, and this treatment is necessary to reduce the reaction yield. The process is not reproducible, and furthermore, this sequential reaction or other side reactions produce hydrogen chloride, which severely corrodes the reactor material and reacts with the cobalt carbonyl catalyst to form cobalt chloride, causing a loss of catalyst strength. It also has the problem of hindering reuse.

本発明者等は、これらの改良法として、例えば特開昭6
1−126046号、特開昭62−10038号及び特
開昭62−22738号等に示す様に塩化ビニル、一酸
化炭素および水素とを、ロジウム化合物、及び塩基の存
在下に反応させる方法を見出している。この方法による
と、従来のコバルトカルボニルM媒を用いる方法にくら
べ、より低温・低圧下で反応が進行し、かつ、充分な目
的生成物への選択性が得られる。これらの方法では、水
の存在下または不存在下において塩基として一般弐P 
(R’ R”R” )(ここにPは燐原子を示シ、R1
、R1゜R3はそれぞれアルキル基、アリール基、シク
ロアルキル基、アルコキシ基、アリールオキシ基または
シクロアルコキシ基を示す)で表わされる化合物の少な
くとも一種以上と、pKaが4〜11の含窒素化合物と
の組合せが好ましく用いられる。これらpKaが4〜1
1の含窒素化合物の中でも、ピリジン化合物、キノリン
化合物、イミダゾール化合物、トリアゾール化合物およ
びモルフォリン化合物等が反応成績等の面から特に好ま
しく用いられているが、これらの塩基はいずれも比較的
高価な化合物であるために工業的に使用するにあたって
はその損失量を最小限にすべく、例えばこれらの回収装
置等を設置すること等を必要とする。また、これらはい
ずれも反応性に富む化合物であるために長時間の使用に
際し徐々にではあるが消耗していく、このため操作もこ
れらの損失を極力抑制するように行うことを必要とする
が、この操作条件は必ずしも2−クロロプロピオンアル
デヒドの合成に有利な条件と一敗しない、このため、こ
れらの消耗および最適合成条件から若干外れた所での反
応は目的生成物である2−クロロプロピオンアルデヒド
の製造コストに少なからぬ影響を及ぼすという問題点を
有している。また、ピリジン化合物、キノリン化合物ま
たはモルフォリン化合物等の中には比較的沸点の低いも
のが多いが、これらは、反応生成物である2−クロルプ
ロピオンアルデヒドを蒸留によって反応液等から分離す
る際に低沸点の2−クロロプロピオンアルデヒドに少量
ではあるが混入し、製品の2−クロロプロピオンアルデ
ヒドの純度低下をきたすばかりでな(,2−クロロプロ
ピオンアルデヒドを酸化して2−クロロプロピオン酸を
製造する際の酸化反応を著しく阻害するという問題点を
も有している。
The present inventors have proposed, for example, Japanese Unexamined Patent Publication No. 6
1-126046, JP-A-62-10038, JP-A-62-22738, etc., discovered a method of reacting vinyl chloride, carbon monoxide, and hydrogen in the presence of a rhodium compound and a base. ing. According to this method, compared to the conventional method using a cobalt carbonyl M medium, the reaction proceeds at a lower temperature and lower pressure, and sufficient selectivity to the target product can be obtained. In these methods, general 2P is used as a base in the presence or absence of water.
(R'R"R") (where P represents a phosphorus atom, R1
, R1゜R3 respectively represent an alkyl group, an aryl group, a cycloalkyl group, an alkoxy group, an aryloxy group or a cycloalkoxy group) and a nitrogen-containing compound having a pKa of 4 to 11. Combinations are preferably used. These pKas are 4 to 1
Among the nitrogen-containing compounds in 1, pyridine compounds, quinoline compounds, imidazole compounds, triazole compounds, morpholine compounds, etc. are particularly preferably used from the viewpoint of reaction results, etc. However, all of these bases are relatively expensive compounds. Therefore, for industrial use, it is necessary to install, for example, a recovery device for these in order to minimize the amount of loss. In addition, since these are highly reactive compounds, they will gradually wear out when used for a long time, so it is necessary to operate in a way that suppresses their loss as much as possible. However, these operating conditions are not necessarily favorable for the synthesis of 2-chloropropionaldehyde, and therefore, these exhaustion and the reaction at a point slightly deviating from the optimum synthesis conditions will result in less production of the desired product, 2-chloropropion. This problem has a considerable impact on the production cost of aldehydes. In addition, many pyridine compounds, quinoline compounds, and morpholine compounds have relatively low boiling points, but these are difficult to use when separating the reaction product 2-chloropropionaldehyde from the reaction solution by distillation. A small amount of 2-chloropropionaldehyde is mixed with low-boiling point 2-chloropropionaldehyde, resulting in a decrease in the purity of the product (2-chloropropionaldehyde is oxidized to produce 2-chloropropionic acid). It also has the problem of significantly inhibiting the oxidation reaction.

本発明の課題は従来技術のこのような問題点を解決した
2−クロロプロピオンアルデヒドの製造方法を提供する
ことである。
An object of the present invention is to provide a method for producing 2-chloropropionaldehyde that solves the problems of the prior art.

(問題点を解決するための手段および作用)本発明者等
は、これらの課題解決の為の詳細な研究を行った。その
結果、塩化ビニル、一酸化炭素及び水素とをロジウム化
合物および三価の有機燐化合物もしくは三価の有機燐化
合物のオキサイドの存在下に反応させて2−クロロプロ
ピオンアルデヒドを製造するにあたり、グアニジン化合
物またはその弱酸塩を共存させれば効率良く反応が進行
する上に先に述べたようなロジウム及び塩基よりなる触
媒の問題点が解決されることを見い出し本発明を完成す
るに至った。
(Means and effects for solving the problems) The present inventors conducted detailed research to solve these problems. As a result, when producing 2-chloropropionaldehyde by reacting vinyl chloride, carbon monoxide, and hydrogen in the presence of a rhodium compound and a trivalent organic phosphorus compound or an oxide of a trivalent organic phosphorus compound, a guanidine compound The present inventors have discovered that if a weak acid salt thereof is allowed to coexist, the reaction can proceed efficiently and the problems of catalysts made of rhodium and a base as described above can be solved, and the present invention has been completed.

即ち本発明は、ロジウム化合物および三価の有機燐化合
物または三価の有機燐化合物のオキサイドの存在下に、
塩化ビニル、一酸化炭素および水素を反応させて2−ク
ロロプロピオンアルデヒドを製造するにあたり、反応を
グアニジン化合物またはその弱酸塩の少なくとも一種の
共存下に行うことを特徴とする2−クロロプロビオンア
ルデヒドの製造方法である。
That is, in the presence of a rhodium compound and a trivalent organic phosphorus compound or an oxide of a trivalent organic phosphorus compound,
2-chloropropionaldehyde is produced by reacting vinyl chloride, carbon monoxide and hydrogen, the reaction being carried out in the coexistence of at least one guanidine compound or a weak acid salt thereof. This is the manufacturing method.

本発明の方法において用いられる三価の有機燐化合物ま
たは三価の有機燐化合物のオキサイドは次のように例示
される。
The trivalent organic phosphorus compound or the oxide of the trivalent organic phosphorus compound used in the method of the present invention is exemplified as follows.

即ち、三価の有機燐化合物としては、一般弐P (R’
 R” R’ )(ここにPは燐原子を示し、R1、R
t 、R3はそれぞれ同一もしくは異種のアルキル、ア
リール、シクロアルキル、アルコキシ、アリールオキシ
またはシクロアルコキシ基を示す)で表わされる三価の
有機燐化合物が挙げられ、具体的には、トリメチルホス
フィン、トリエチルホスフィン、トリプロピルホスフィ
ン、トリブチルホスフィン、トリオクチルホスフィン、
トリフェニルホスフィン、トリシクロヘキシルホスフィ
ン、トリベンジルホスフィンなどのホスフィン類や、ト
リメチルホスファイト、トリエチルホスファイト、トリ
プロピルホスファイト、トリブチルホスファイト、トリ
オクチルホスファイト、トリフェニルホスファイト、ト
リシクロヘキシルホスファイト、トリベンジルホスファ
イトなどのホスファイト類が挙げられる。
That is, as a trivalent organic phosphorus compound, general 2P (R'
R"R' ) (where P represents a phosphorus atom, R1, R
t and R3 are the same or different alkyl, aryl, cycloalkyl, alkoxy, aryloxy or cycloalkoxy groups, respectively), and specifically, trimethylphosphine, triethylphosphine, etc. , tripropylphosphine, tributylphosphine, trioctylphosphine,
Phosphines such as triphenylphosphine, tricyclohexylphosphine, tribenzylphosphine, trimethylphosphite, triethylphosphite, tripropylphosphite, tributylphosphite, trioctylphosphite, triphenylphosphite, tricyclohexylphosphite, Examples include phosphites such as benzyl phosphite.

また、ホスフィン類の特殊なものとして、上記一般弐P
 (R’ R” R3)で表わされるもののほかに、ビ
スジフェニルホスフィノメタン、ビスジフェニルホスフ
ィノエタンなどのジホスフィン類や、架橋ポリスチレン
に結合したホスフィン類等も好ましく用いられる。
In addition, as a special type of phosphine, the above general 2P
In addition to those represented by (R'R'' R3), diphosphines such as bisdiphenylphosphinomethane and bisdiphenylphosphinoethane, phosphines bonded to crosslinked polystyrene, and the like are also preferably used.

また、三価の有機燐化合物のオキサイドとしてはトリエ
チルホスフィンオキサイド、トリブチルホスフィンオキ
サイド、トリオクチルホスフィンオキサイド等のアルキ
ルホスフィンオキサイド、トリフェニルホスフィンオキ
サイド、トリトリルホスフィンオキサイド等のアリール
ホスフィンオキサイド、もしくはアルキル基とアリール
基とを合わせも一つアルキルアリールホスフィンオキサ
イド等が例示される。またこのほか、トリエチルホスフ
ァイトオキサイド、トリブチルホスファイトオキサイド
、トリフェニルホスファイトオキサイド等のアルキルも
しくはアリールホスファイトオキサイド類や、アルキル
基とアリール基とを合わせもつアルキルアリールホスフ
ァイトオキサイド類等も用いることができる。さらには
、ビス−1,2−ジフェニルホスフィノメタンジオキサ
イドなどの多座ホスフィンのオキサイド等も用いること
ができる。
In addition, as the oxide of the trivalent organic phosphorus compound, alkylphosphine oxide such as triethylphosphine oxide, tributylphosphine oxide, and trioctylphosphine oxide, arylphosphine oxide such as triphenylphosphine oxide and tritolylphosphine oxide, or an alkyl group and an aryl Examples include alkylarylphosphine oxide when combined with the group. In addition, alkyl or aryl phosphite oxides such as triethyl phosphite oxide, tributyl phosphite oxide, triphenyl phosphite oxide, and alkylaryl phosphite oxides having both an alkyl group and an aryl group can also be used. can. Furthermore, polydentate phosphine oxides such as bis-1,2-diphenylphosphinomethane dioxide and the like can also be used.

また、グアニジン化合物又はその弱酸塩は具体的には次
のように例示される。即ち、グアニジン化合物としては
、グアニジンの他に、グアニジンのアミノ基についた水
素の少なくとも一つが、アルキル基、シクロアルキル基
、アリール基、アルキルアリール基、アミノ基またはヒ
ドロキシアルキル基で置換されな化合物があり、これら
の例としては、l−メチルグアニジン、1−エチルグア
ニジン、1−フェニルグアニジン、1.1−ジメチルグ
アニジン、1.3−ジフェニルグアニジン、N−アミノ
グアニジン、モノメチロールグアニジン、1.3−ジメ
チロールグアニジン等が挙げられる。
Further, specific examples of the guanidine compound or its weak acid salt are as follows. That is, in addition to guanidine, guanidine compounds include compounds in which at least one hydrogen attached to the amino group of guanidine is substituted with an alkyl group, cycloalkyl group, aryl group, alkylaryl group, amino group, or hydroxyalkyl group. Examples of these include l-methylguanidine, 1-ethylguanidine, 1-phenylguanidine, 1,1-dimethylguanidine, 1,3-diphenylguanidine, N-aminoguanidine, monomethylolguanidine, 1,3- Examples include dimethylolguanidine.

また、グアニジン化合物の弱酸塩の例としては、蟻酸グ
アニジン、酢酸グアニジン、プロピオン酸グアニジン、
酪酸グアニジン、安息香酸グアニジン、フタル酸モノグ
アニジン、フタル酸ジグアニジン等のグアニジンカルボ
ン酸塩や、炭酸グアニジン、炭酸水素グアニジン等のグ
アニジン炭酸塩が挙げられる。また、燐酸三グアニジン
や燐酸−水素二グアニジンも好ましい例に含まれる。ま
た、これらのグアニジン塩において、グアニジンの代わ
りに先に述べた各種のグアニジン化合物を用いたグアニ
ジン化合物の塩も好ましく用いられ、これらの例として
は、1−メチルグアニジン酢酸塩、1−エチルグアニジ
ン酢酸塩、1−フェニルグアニジン酢酸塩、1.1−ジ
メチルグアニジン安息香酸塩、フタル酸のモノまたはジ
ー1.3−ジフェニルグアニジン塩及び酢酸アミノグア
ニジン等が挙げられる。
In addition, examples of weak acid salts of guanidine compounds include guanidine formate, guanidine acetate, guanidine propionate,
Examples include guanidine carboxylates such as guanidine butyrate, guanidine benzoate, monoguanidine phthalate, and diguanidine phthalate, and guanidine carbonates such as guanidine carbonate and guanidine hydrogen carbonate. Preferred examples also include triguanidine phosphate and diguanidine hydrogen phosphate. In addition, among these guanidine salts, salts of guanidine compounds using the various guanidine compounds mentioned above in place of guanidine are also preferably used, examples of which include 1-methylguanidine acetate, 1-ethylguanidine acetate, Examples include 1-phenylguanidine acetate, 1,1-dimethylguanidine benzoate, mono- or di-1,3-diphenylguanidine phthalic acid salt, and aminoguanidine acetate.

本発明の方法において用いられるロジウム化合物として
は、ロジウムの酸化物、鉱酸塩、有機酸塩またはロジウ
ム錯化合物などがある。これらの各種ロジウム化合物の
中でも、特にハロゲンを含まないロジウム化合物が好ま
しい、これらの例としては酸化ロジウム、硝酸ロジウム
、硫酸口ジウム、酢酸ロジウム、トリアセチルアセトナ
ートロジウム、ジカルボニルアセチルアセトナートロジ
ウム、ドデカカルボニルテトラロジウム、ヘキサデカカ
ルボニルへキサロジウム等が挙げられ、また、ロジウム
錯化合物としてはこれらのほかに、ロジウムと塩基とで
錯化合物を形成したものも更に好ましく用いられる。該
塩基としては、本発明の方法において好ましく用いられ
る塩基であっても良いが、他の塩基でも良い、これらの
例としては、たとえば、ヒドリドカルボニルトリストリ
フェニルホスフィンロジウム(RhH(Co)(PPh
i)i)、ニトロシルトリストリフェニルホスフィンロ
ジウム(Rh(No)(PPhz)s ) 、η−シク
ロペンタジェニルビストリフェニルホスフィンロジウム
(Rh (CsHs)(PPhi) z )などが挙げ
られる。
Examples of the rhodium compound used in the method of the present invention include rhodium oxides, mineral acid salts, organic acid salts, and rhodium complex compounds. Among these various rhodium compounds, rhodium compounds that do not contain halogens are particularly preferred. Examples of these include rhodium oxide, rhodium nitrate, rhodium sulfate, rhodium acetate, rhodium triacetylacetonato, rhodium dicarbonylacetylacetonate, and rhodium dodeca. Examples include carbonyltetrarhodium, hexadecacarbonylhexalodium, and the like. In addition to these rhodium complex compounds, complex compounds formed by rhodium and a base are also preferably used. The base may be a base preferably used in the method of the present invention, but may also be other bases, such as hydridocarbonyltritriphenylphosphine rhodium (RhH(Co)(PPh)
i)i), nitrosyltristriphenylphosphine rhodium (Rh(No)(PPhz)s), η-cyclopentadienylbistriphenylphosphine rhodium (Rh(CsHs)(PPhi)z), and the like.

また、塩化ロジウム、臭化ロジウム、沃化ロジウムまた
はジクロロテトラカルボニルジロジウム等のハロゲン含
有ロジウム化合物を用い、反応系内にこれらのハロゲン
原子に対し当量以上のアルカリ性化合物、例えば、水酸
化ナトリウム、水酸化カリウム、炭酸カリウム、トリメ
チルアミン、トリエチルアミン等を加えることも、ハロ
ゲンを含有しないロジウム化合物を反応系内において生
成させる手段として用いることができる。
In addition, a halogen-containing rhodium compound such as rhodium chloride, rhodium bromide, rhodium iodide, or dichlorotetracarbonyl dirhodium is used, and an alkaline compound such as sodium hydroxide, water, etc. Addition of potassium oxide, potassium carbonate, trimethylamine, triethylamine, etc. can also be used as a means for producing a halogen-free rhodium compound in the reaction system.

本発明の方法では、前記ロジウム化合物は、反応系内の
液相lリットルあたりロジウム原子として、o、ooo
i〜1000 ミリグラム原子、好ましくは0.001
〜100 ミリグラム原子の範囲に相当する量で使用さ
れる。また、本発明の方法で使用される前記塩基は、そ
れぞれロジウム1グラム原子に対し0.1〜500モル
、好ましくは0.5〜100モルの範囲で使用される。
In the method of the present invention, the rhodium compound is o, ooo as rhodium atoms per liter of liquid phase in the reaction system.
i~1000 milligram atoms, preferably 0.001
It is used in amounts corresponding to a range of ~100 milligram atoms. The base used in the method of the present invention is used in an amount of 0.1 to 500 mol, preferably 0.5 to 100 mol, per gram atom of rhodium.

本発明の方法においては、反応溶媒を用いなくとも反応
は進行するが、通常は反応溶媒の存在下に反応を行わせ
る0反応溶媒としては、反応に悪影響を及ぼさないもの
であればいずれも用いることが可能である。このような
溶媒として特に好ましいのは炭化水素類である。より具
体的には、ヘキサン、ヘプタン、オクタン、ノナン、デ
カン等17)I[1炭化水素や、ベンゼン、トルエン、
キシレン等の芳香族炭化水素などが好ましく用いられ、
また、炭化水素類の混合物として工業的に得られるリグ
ロイン、ケロシン、軽油、ディーゼル油等もこれらの例
に含まれる。このほか、ジプロピルエーテル、ジブチル
エーテルなどのエーテル類、ジイソブチルケトン、ホロ
ンなどのケトン類、酪酸ブチル、安息香酸ブチルなどの
エステル類なども好ましい溶媒の例として挙げられる。
In the method of the present invention, the reaction proceeds even without the use of a reaction solvent, but the reaction is usually carried out in the presence of a reaction solvent.As the reaction solvent, any solvent can be used as long as it does not adversely affect the reaction. Is possible. Hydrocarbons are particularly preferred as such solvents. More specifically, hexane, heptane, octane, nonane, decane, etc. 17) I[1 hydrocarbons, benzene, toluene,
Aromatic hydrocarbons such as xylene are preferably used,
These examples also include ligroin, kerosene, light oil, diesel oil, etc., which are industrially obtained as mixtures of hydrocarbons. In addition, examples of preferred solvents include ethers such as dipropyl ether and dibutyl ether, ketones such as diisobutyl ketone and holon, and esters such as butyl butyrate and butyl benzoate.

本発明の方法においては、反応系内に水を共存させる方
法が更に好ましく行われる。このような方法をとること
により触媒活性は更に向上する。
In the method of the present invention, a method in which water is allowed to coexist in the reaction system is more preferably carried out. By adopting such a method, the catalytic activity is further improved.

本発明の方法において反応時に存在させる水の量につい
ては特に制限はないが、極端に少量の場合にはその効果
は小さくなり、また、極端に多量用いても反応成績はあ
る程度以上は上がらない0通常、水の量は原料として反
応器へ供給する塩化ビニルに対して重量比で0,01以
上、1000以下の範囲が好ましい、特に、0.1〜1
00の範囲が更に好ましく用いられる。
There is no particular limit to the amount of water present during the reaction in the method of the present invention, but if it is used in an extremely small amount, the effect will be small, and even if it is used in an extremely large amount, the reaction results will not improve beyond a certain level. Usually, the amount of water is preferably in the range of 0.01 or more and 1000 or less, particularly 0.1 to 1, in terms of weight ratio to the vinyl chloride supplied to the reactor as a raw material.
A range of 00 is more preferably used.

本発明の方法の実施にあたっては、反応系内に他の成分
、例えばロジウム触媒の安定性を改良するための添加剤
や、触媒の活性や選択性を改良するための添加剤、例え
ばカルボン酸等が共存していても特に支障はない。
When carrying out the method of the present invention, other components such as additives to improve the stability of the rhodium catalyst, additives to improve the activity and selectivity of the catalyst, such as carboxylic acids, etc., may be added to the reaction system. There is no particular problem even if they coexist.

本発明の方法は、通常、反応温度10〜150℃、反応
圧力10〜300Kg/cjゲージの範囲、好ましくは
30〜150Kg/Cjゲージの範囲で行われる0反応
温度は生成する2−クロロプロピオンアルデヒドの熱安
定性の面から低温はど好ましく、このため、20〜80
℃が特に好ましい温度範囲である。また、原料の一酸化
炭素および水素の混合モル比は、通常10〜0.1の範
囲であり、好ましくは4〜0.2の範囲である。一酸化
炭素および水素は前記の組成比で両成分を含有する混合
ガスであればよく、水性ガスや、水性ガスにメタン、窒
素などの反応に不活性なガス、または二酸化炭素などが
含有されたものが用いられる。もう一方の原料である塩
化ビニルは、ガス状、液状、あるいは反応に用いる溶媒
に溶解した溶液の形で使用される0本発明の方法は、回
分法、半回分法、連続法のいずれの方法によっても実施
できる0例えば、回分法の場合の例としては、ロジウム
化合物、三価の有機燐化合物または三価の有機燐化合物
のオキサイド、グアニジン化合物またはその弱酸塩、お
よび必要に応じて反応溶媒および水を仕込んだオートク
レーブに、塩化ビニルをガス、液、あるいは溶液状で加
え、これに一酸化炭素および水素を含有するガスを所定
の圧力まで導入し、好ましくは撹拌下で加温することに
より反応は進行する。また、連続法の場合の例としては
、ロジウム化合物、三価の有機燐化合物または三価の有
機燐化合物のオキサイド、グアニジン化合物またはその
弱酸塩、および必要に応じて反応溶媒および水と、原料
の塩化ビニル、一酸化炭素および水素とを、耐圧の反応
器の一方に連続的に供給し、反応温度下、撹拌条件下に
、他方から反応混合物と、未反応塩化ビニル、一酸化炭
素および水素とを連続的に抜出すことにより反応が行わ
れる。
The method of the present invention is usually carried out at a reaction temperature of 10 to 150°C and a reaction pressure of 10 to 300 kg/cj gauge, preferably 30 to 150 kg/cj gauge. Low temperature is preferable from the viewpoint of thermal stability of 20 to 80
℃ is a particularly preferred temperature range. Further, the mixing molar ratio of raw materials carbon monoxide and hydrogen is usually in the range of 10 to 0.1, preferably in the range of 4 to 0.2. Carbon monoxide and hydrogen may be mixed gases containing both components in the above-mentioned composition ratio. things are used. The other raw material, vinyl chloride, is used in the form of a gas, liquid, or solution dissolved in the solvent used for the reaction. For example, in the case of a batch method, a rhodium compound, a trivalent organic phosphorus compound or an oxide of a trivalent organic phosphorus compound, a guanidine compound or its weak acid salt, and if necessary a reaction solvent and Vinyl chloride is added in the form of a gas, liquid, or solution to an autoclave filled with water, and a gas containing carbon monoxide and hydrogen is introduced to the autoclave to a predetermined pressure, and the reaction is carried out by heating, preferably with stirring. progresses. In addition, as an example of a continuous method, a rhodium compound, a trivalent organic phosphorus compound or an oxide of a trivalent organic phosphorus compound, a guanidine compound or its weak acid salt, and if necessary a reaction solvent and water, and the raw material Vinyl chloride, carbon monoxide and hydrogen are continuously fed into one side of a pressure-resistant reactor, and the reaction mixture and unreacted vinyl chloride, carbon monoxide and hydrogen are fed from the other side under stirring conditions at reaction temperature. The reaction is carried out by continuously withdrawing .

(実施例) 以下、実施例により本発明の方法を更に具体的に説明す
る。
(Example) Hereinafter, the method of the present invention will be explained in more detail with reference to Examples.

実施例1 撹拌装置を備えた内容積100dのステンレス製オート
クレーブの内部を窒素ガスで置換した後、ヘキサデカカ
ルボニルへキサロジウム36■(Rh0.2ミリグラム
原子)とトリフェニルホスフィン157■(0,6ミリ
モル)、酢酸グアニジン119■(1ミリモル)および
水20gを入れ、これに塩化ビニル1.88 g (3
0ミリモル)を含む塩化ヒニルのトルエン溶液20−を
加えた。このオートクレーブに、一酸化炭素および水素
のモル比が1=2の混合ガスを室温で圧力が80Kg/
c−ゲージになるまで圧入した後に60℃まで昇温し、
20分間反応させた。オートクレーブを室温まで冷却し
てから未反応の原料混合ガスをガスサンプリング用袋に
捕集した後オートクレーブを開け、触媒、溶媒及び反応
生成物を含む反応混合液を取り出した。ガスおよび液を
ガスクロマトグラフィーで定量した結果、塩化ビニルの
転化率は15.5%、2−クロロプロピオンアルデヒド
の生成量は4.2ミリモル(転化した塩化ビニル基準の
選択率は90.3%)であった。
Example 1 After purging the inside of a stainless steel autoclave with an internal volume of 100 d and equipped with a stirring device with nitrogen gas, 36 mm of hexadecacarbonyl hexalodium (0.2 milligram atoms of Rh) and 157 mm of triphenylphosphine (0.6 mmol) were added. ), 119 μg (1 mmol) of guanidine acetate and 20 g of water were added, and 1.88 g (3 mmol) of vinyl chloride was added thereto.
20 mmoles of a toluene solution of hinyl chloride containing 0 mmol) was added. A mixed gas of carbon monoxide and hydrogen with a molar ratio of 1=2 was placed in this autoclave at a pressure of 80 kg/m at room temperature.
After press-fitting until it reaches C-gauge, the temperature is raised to 60℃,
The reaction was allowed to proceed for 20 minutes. After the autoclave was cooled to room temperature and unreacted raw material mixed gas was collected in a gas sampling bag, the autoclave was opened and the reaction mixture containing the catalyst, solvent, and reaction product was taken out. As a result of quantifying the gas and liquid by gas chromatography, the conversion rate of vinyl chloride was 15.5%, and the amount of 2-chloropropionaldehyde produced was 4.2 mmol (selectivity based on converted vinyl chloride was 90.3%). )Met.

実施例2〜5 実施例1の方法において反応温度、反応圧力、一酸化炭
素と水素のモル比および反応時間を変えて反応を行わせ
た。結果を表1に示す。
Examples 2 to 5 Reactions were conducted in the method of Example 1 by changing the reaction temperature, reaction pressure, molar ratio of carbon monoxide to hydrogen, and reaction time. The results are shown in Table 1.

(以下余白) 実施例6〜9 実施例1の方法において、反応温度を50°Cとし、ロ
ジウム化合物および塩基の種類を変えて反応を行わせた
。ロジウム化合物の量はいずれもロジウムが0.2ミリ
グラム原子となるような量とした。結果を表2に示す。
(Left below) Examples 6 to 9 In the method of Example 1, the reaction was carried out at a reaction temperature of 50°C and with different types of rhodium compound and base. The amount of rhodium compound was set to 0.2 milligram atom of rhodium in each case. The results are shown in Table 2.

実施例10 実施例1において、水の不存在以外は同じ方法で反応を
行わせた。
Example 10 The reaction was carried out in the same manner as in Example 1 except for the absence of water.

分析の結果、塩化ビニルの転化率3.1%、2−クロロ
プロピオンアルデヒド選択率90.1%の反応成績を得
た。
As a result of the analysis, reaction results were obtained with a vinyl chloride conversion rate of 3.1% and a 2-chloropropionaldehyde selectivity of 90.1%.

(発明の効果) 本発明により、塩化ビニル、一酸化炭素および水素を原
料として、低温・低圧下において高収率で2−クロロプ
ロピオンアルデヒドを製造することができる。特に、本
発明の方法により、従来法のように塩基の回収や2−ク
ロロプロピオンアルデヒド中に混入する塩基の除去のた
めの装置を必要としたり、塩基の損失を極力抑制する条
件を選んだりすることなく、簡素な装置を用いて安定し
て長時間にわたり反応を進行させることが可能となる。
(Effects of the Invention) According to the present invention, 2-chloropropionaldehyde can be produced in high yield at low temperature and low pressure using vinyl chloride, carbon monoxide, and hydrogen as raw materials. In particular, unlike conventional methods, the method of the present invention does not require equipment for recovering the base or removing the base mixed in 2-chloropropionaldehyde, and the conditions must be selected to suppress the loss of base as much as possible. It becomes possible to proceed with the reaction stably over a long period of time using a simple device.

特許出願人 三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)ロジウム化合物および三価の有機燐化合物または
三価の有機燐化合物のオキサイドの存在下に、塩化ビニ
ル、一酸化炭素および水素を反応させて2−クロロプロ
ピオンアルデヒドを製造するにあたり、反応をグアニジ
ン化合物またはその弱酸塩の少なくとも一種の共存下に
行うことを特徴とする2−クロロプロピオンアルデヒド
の製造方法。
(1) In producing 2-chloropropionaldehyde by reacting vinyl chloride, carbon monoxide, and hydrogen in the presence of a rhodium compound and a trivalent organic phosphorus compound or an oxide of a trivalent organic phosphorous compound, the reaction is carried out. A method for producing 2-chloropropionaldehyde, which is carried out in the coexistence of at least one guanidine compound or a weak acid salt thereof.
(2)反応を水の存在下で行う特許請求の範囲第1項記
載の方法。
(2) The method according to claim 1, wherein the reaction is carried out in the presence of water.
(3)反応を温度20〜80℃の範囲で行う特許請求の
範囲第1項ないし第2項記載の方法。
(3) The method according to claim 1 or 2, wherein the reaction is carried out at a temperature in the range of 20 to 80°C.
JP15429487A 1987-06-23 1987-06-23 Production of 2-chloropropionaldehyde Pending JPS6445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15429487A JPS6445A (en) 1987-06-23 1987-06-23 Production of 2-chloropropionaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15429487A JPS6445A (en) 1987-06-23 1987-06-23 Production of 2-chloropropionaldehyde

Publications (2)

Publication Number Publication Date
JPH0145A true JPH0145A (en) 1989-01-05
JPS6445A JPS6445A (en) 1989-01-05

Family

ID=15580993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15429487A Pending JPS6445A (en) 1987-06-23 1987-06-23 Production of 2-chloropropionaldehyde

Country Status (1)

Country Link
JP (1) JPS6445A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822673B1 (en) * 2006-04-06 2008-04-17 김규진 Washing machine consisting of old washing tank
CN101568372B (en) 2006-12-23 2012-02-29 澳泽化学特罗斯特贝格有限公司 Use of aqueous guanidinium formiate solutions for the selective catalytic reduction of nitrogen oxides in exhaust gases of vehicles

Similar Documents

Publication Publication Date Title
US4593126A (en) Process for preparing aldehydes
CA2833042C (en) Methods to store transition metal organophosphorous ligand based catalysts
US4990639A (en) Novel recovery process
UA82881C2 (en) Carbonylation process using metal-tridentate ligand catalysts
EP0068499B1 (en) Catalyst and process for the conversion of methanol to acetaldehyde
CA1155458A (en) Process for the selective hydroformylation of methanol to acetaldehyde
JPH0145A (en) Method for producing 2-chloropropionaldehyde
US4292448A (en) Process for the hydroformylation of olefins
JPS6372643A (en) Production of 2-chloropropionaldehyde
US4825003A (en) Production process of 2-chloropropionaldehyde
US4885400A (en) Production process of 2-chloropropionaldehyde
JPS63316751A (en) Production of 2-chloropropionaldehyde
JPH0627088B2 (en) Method for producing 2-chloropropionaldehyde
JP7355230B2 (en) Aldehyde manufacturing method and catalyst manufacturing method
CA1231967A (en) Production of carboxylic acids from organic formate esters
JPH013143A (en) Method for producing 2-chloropropionaldehyde
JP4183303B2 (en) Use of pentavalent VA group oxide in acetic acid production
JPS63316752A (en) Production of 2-chloropropionaldehyde
JPH085833B2 (en) Method for producing 2-chloropropionaldehyde
KR100308731B1 (en) Hydrogenation of carbon dioxide and hydroformylation using rhodium catalyst/salt co-catalyst system
JPH0720905B2 (en) Method for producing 2-chloropropionaldehyde
JPS6210038A (en) Production of 2-chloropropionaldehyde
JPH0720906B2 (en) Method for producing 2-chloropropionaldehyde
JPS62273939A (en) Production of dl-alanine
JPH0737406B2 (en) Method for producing 2-chloropropionaldehyde