[go: up one dir, main page]

JPH0143934B2 - - Google Patents

Info

Publication number
JPH0143934B2
JPH0143934B2 JP56143455A JP14345581A JPH0143934B2 JP H0143934 B2 JPH0143934 B2 JP H0143934B2 JP 56143455 A JP56143455 A JP 56143455A JP 14345581 A JP14345581 A JP 14345581A JP H0143934 B2 JPH0143934 B2 JP H0143934B2
Authority
JP
Japan
Prior art keywords
layer
oxide
proton donor
solid
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56143455A
Other languages
Japanese (ja)
Other versions
JPS5844422A (en
Inventor
Kenzo Fukuyoshi
Osahisa Matsudaira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP56143455A priority Critical patent/JPS5844422A/en
Publication of JPS5844422A publication Critical patent/JPS5844422A/en
Publication of JPH0143934B2 publication Critical patent/JPH0143934B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は、薄膜タイプのエレクトロクロミツク
表示素子(以下ECDと略称する)の改良に関し、
特にプロトン供給体層を適切な物質及び層構成と
してメモリー、および見ばえや発色特性を改善
し、さらに消費電流を低減せしめたECDに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvement of a thin film type electrochromic display device (hereinafter abbreviated as ECD).
In particular, it relates to ECDs in which the proton donor layer is made of an appropriate material and layer composition to improve memory, appearance and coloring characteristics, and further reduce current consumption.

ECDは、その基本要素である電気化学的発色
物質(以下EC層と略称する)が無機物質である
ものと有機物質であるものに大別でき、さらに
EC層を無機物質とするものはもう1つの基本要
素であるプロトンないしカチオン供給体層(以下
PS層と略称する)が固体であるものと液体であ
るものとに2分できる。EC層がバイオロゲン等
の有機物質であるもの、またはPS層が液体であ
るものは、その表示素子の構成が複雑になるため
とその製造プロセスの煩雑さのため、表示素子の
製作コストがきわめて高くなり、LEDや液晶等
の他の表示素子に比較し劣つていた。EC層とPS
層がともに固体であるものは蒸着という1つのプ
ロセスで、あるいは印刷というプロセスでも製作
できるため、コスト面において大きなメリツトが
ある。
ECDs can be broadly divided into those whose basic element, electrochemical coloring substance (hereinafter referred to as EC layer), is an inorganic substance and those whose basic element is an organic substance.
The EC layer is made of inorganic material, which is another basic element, the proton or cation donor layer (hereinafter referred to as
(abbreviated as PS layer) can be divided into solid and liquid types. If the EC layer is made of an organic substance such as biologen or the PS layer is a liquid, the manufacturing cost of the display element is extremely high due to the complicated structure of the display element and the complicated manufacturing process. Therefore, it was inferior to other display elements such as LED and liquid crystal. EC layer and PS
A structure in which both layers are solid can be manufactured by a single process called vapor deposition or by a process called printing, which has a significant cost advantage.

従来こうした全固体型のECDが実用化できな
かつたのは、寿命の短かさと、発色濃度や応答性
を含めた発色特性が悪かつたためである。本発明
は以下に詳述するようにこれらの欠点を大幅に改
良したものである。
The reason why all-solid-state ECDs could not be put to practical use in the past was due to their short lifespan and poor color development characteristics, including color density and response. The present invention significantly improves on these drawbacks, as detailed below.

本発明は複数の電極と、電気化学的発色層とプ
ロトン供給体層を有するエレクトロクロミツクデ
イスプレイにおいて、プロトン供給体層として酸
化ホウ素を含有する固体プロトン供給体層を少な
くとも一層配設したことを特徴とする表示素子に
関するものである。なお、本発明の記述において
プロトン供給体層とは、電圧印加によりプロトン
を放出し、EC層を還元発色させる役目をもつ層
をいう。
The present invention is an electrochromic display having a plurality of electrodes, an electrochemical coloring layer, and a proton donor layer, characterized in that at least one solid proton donor layer containing boron oxide is provided as the proton donor layer. The present invention relates to a display element. In the description of the present invention, the proton donor layer refers to a layer that releases protons upon application of voltage and has the role of reducing and coloring the EC layer.

またEC層とはプロトンによつて還元発消色す
る層であり、例えば酸化タングステン(WO3)、
酸化モリブデン(MoO3)、酸化バナジウム
(V2O5)、酸化チタン等の金属酸化物がある。た
だし、本発明においてEC層の物質をこれらに限
定するものでない。
In addition, the EC layer is a layer that undergoes reduction and discoloration by protons, such as tungsten oxide (WO 3 ),
Metal oxides include molybdenum oxide (MoO 3 ), vanadium oxide (V 2 O 5 ), and titanium oxide. However, in the present invention, the material of the EC layer is not limited to these.

従来の全固体型ECDは発色スピードが遅く1
〜2Vの電圧印加で数秒〜数十秒を要していた。
寿命も短かく、発消色の繰返しによつて発色濃度
が減少し、初期の発色濃度が1/2となるまでせい
ぜい104回程度の繰返し寿命しかなかつた。加え
て全固体型ECDは繰返しによつてガスが発生し、
素子構成を破損してしまうことが多く大きな欠点
となつていた。ガス発生を防ぐには印加する電圧
を極力下げることが必要であるが、このことは発
色スピードと発色濃度の低下という二律背反をも
たらしていた。
Conventional all-solid-state ECDs have slow color development speed1
It took several seconds to several tens of seconds to apply a voltage of ~2V.
It also had a short lifespan, with the color density decreasing due to repeated color development and fading, and the lifespan could be repeated no more than 104 times until the initial color density was reduced to 1/2. In addition, all-solid-state ECDs generate gas through repetition,
This has been a major drawback since it often damages the element structure. In order to prevent gas generation, it is necessary to lower the applied voltage as much as possible, but this brings about a trade-off in that the speed of color development and the density of color development decrease.

プロトン供給体層の物質は電圧印加時にプロト
ンをEC層に注入するという役目から一般に固体
酸とよばれるものが好ましく、全固体型ECDの
プロトン供給体物質として比較的有効なものには
酸化クロム(Cr2O3)、酸化タンタル(Ta2O5)、
酸化ニツケル(NiO)等がある。しかし、これら
の物質をプロトン供給体層とするECDは、低電
圧(1.3〜2V)で発色するものの経時変化(放置
しておくだけでも発色特性が劣化する)が大きく
実用化には至らなかつた。
The material for the proton donor layer is generally preferably a solid acid because of its role in injecting protons into the EC layer when a voltage is applied.Chromium oxide (chromium oxide) is a relatively effective proton donor material for all-solid-state ECDs. Cr 2 O 3 ), tantalum oxide (Ta 2 O 5 ),
Examples include nickel oxide (NiO). However, although ECDs that use these substances as proton donor layers develop color at low voltages (1.3 to 2 V), they suffer from significant changes over time (the coloring properties deteriorate even if left unattended) and have not been put into practical use. .

本発明はPS層に酸化ホウ素(B2O3)を混合成
膜させ、B2O3の添加によつて表示素子の発色特
性(発色濃度・応答性・経時変化)の大きな改善
をもたらすものである。
The present invention involves forming a mixed film of boron oxide (B 2 O 3 ) in the PS layer, and the addition of B 2 O 3 brings about a significant improvement in the coloring characteristics (coloring density, responsiveness, change over time) of display elements. It is.

ただし、酸化ホウ素は成膜において実際に
B2O3の形態をとらずにBOxないし一部ホウ酸と
して水分子を吸着し、また他に共存する固体酸と
結びついて複雑な構造をとつているものと思わ
れ、本発明は酸化ホウ素の型を特に限定するもの
でない。なお、固体酸とは、陽子供与体または電
子受容体として働く固体のことで、例えば、酸化
ケイ素、酸化アルミニウム、酸化バナジウム、酸
化チタン、酸化アンチモン、酸化スズ、酸化クロ
ム、酸化ニオブ、酸化タンタル、酸化ジルコニウ
ム、酸化タングステン、酸化モリブデン等の金属
酸化物および陽イオン交換樹脂、通常の酸を担体
に付着させた固形化酸、以上のものに結晶水や構
造水として一部に水を含有するもの、あるいはこ
れらを混合させたものをいい、本発明はこれらを
限定するものでない。本発明は、固体酸にB2O3
を混合させたPS層を開示しているが、B2O3単体
の層では膜強度が弱く、蒸着後に剥離してしま
う。膜状態を保持させるため密着強度のある物質
を担体とすることが好ましく、さらにはプロトン
枚出をさせるため固体酸の範囲にある物質である
ことが好ましい。また、本発明はB2O3の含有量
や、B2O3を含有させたプロトン供給体層の位置
を規定するものでなく、さらにB2O3の含有割合
をEC層からプロトン供給体層の範囲において順
次変えても良く、あるいは対向電極とよばれるプ
ロトン供給体層に接する電極との界面近傍におい
てB2O3の濃度を特に高くした構成であるもの、
またEC層とプロトン供給体層との界面になんら
かの中間層が配設されたものでもよく、本発明は
B2O3を含有させた形式や構成を特に限定するも
のでない。
However, boron oxide is actually used in film formation.
It is thought that water molecules are adsorbed as BOx or some boric acid without taking the form of B 2 O 3 , and that it combines with other coexisting solid acids to form a complex structure. The type is not particularly limited. Note that solid acids are solids that act as proton donors or electron acceptors, such as silicon oxide, aluminum oxide, vanadium oxide, titanium oxide, antimony oxide, tin oxide, chromium oxide, niobium oxide, tantalum oxide, Metal oxides such as zirconium oxide, tungsten oxide, and molybdenum oxide, cation exchange resins, solidified acids made by adhering ordinary acids to carriers, and the above containing some water as crystal water or structured water. , or a mixture thereof, and the present invention is not limited to these. The present invention provides solid acid with B 2 O 3
However, a layer of B 2 O 3 alone has a weak film strength and peels off after vapor deposition. In order to maintain the membrane state, it is preferable to use a substance with adhesive strength as the carrier, and further, in order to cause proton extraction, it is preferable to use a substance in the range of solid acids. Further, the present invention does not specify the content of B 2 O 3 or the position of the proton donor layer containing B 2 O 3 , and furthermore, the content ratio of B 2 O 3 is changed from the EC layer to the proton donor layer. The concentration of B 2 O 3 may be changed sequentially within the range of the layers, or the concentration of B 2 O 3 may be particularly high near the interface with the electrode in contact with the proton donor layer, which is called the counter electrode.
Further, some kind of intermediate layer may be provided at the interface between the EC layer and the proton donor layer, and the present invention
There are no particular limitations on the format or structure in which B 2 O 3 is contained.

B2O3をプロトン供給体層に含有させることに
より、発色に必要な印加電圧を下げ(0.8〜
1.5V)、発色スピードをあげ(0.1〜1秒)、きわ
めて長寿命のECDが可能となる。本発明は以上
のように従来の全固体型エレクトロクロミツクデ
イスプレイに比較して画期的な表示素子を提供す
るものである。
By including B 2 O 3 in the proton donor layer, the applied voltage required for color development can be lowered (0.8~
1.5V), increases color development speed (0.1 to 1 second), and enables extremely long-life ECD. As described above, the present invention provides an epoch-making display element compared to conventional all-solid-state electrochromic displays.

次に本発明を実施例により詳細に説明する。 Next, the present invention will be explained in detail with reference to examples.

〈実施例 1〉 第1図に示した実施例は、ガラス基板1上に酸
化スズ5%含有の酸化インジウムの透明電極2を
形成し、この上に7×10-5torrの真空度でWO3
4000Åの厚みに設けEC層3とした。さらにこの
EC層3上に3×10-4torrの真空度にてCr2O3層4
を2000Åの厚みで蒸着し、次に(SiO2+B2O3
層5をB2O3を30重量%を含むよう3×10-4torrの
真空度にて共蒸着させ1000Åの厚みで形成した。
この上にAuを150Åの厚みで積層し、対向電極6
とした。この表示素子に1.3Vの電圧を対向電極
6を正極として印加したところ1秒後で濃度0.4
の発色濃度を得た。発消色を102回繰返すと0.5秒
後で濃度0.6の発色濃度が得られ106回後もほとん
ど劣化しなかつた。リーク電流は0.4mA/cm2とき
わめて低いものであつた。
<Example 1> In the example shown in FIG. 1, a transparent electrode 2 of indium oxide containing 5% tin oxide is formed on a glass substrate 1, and WO is applied on this in a vacuum of 7×10 -5 torr. 3
The EC layer 3 was formed to a thickness of 4000 Å. Furthermore, this
Cr 2 O 3 layer 4 on the EC layer 3 at a vacuum level of 3×10 -4 torr
was deposited to a thickness of 2000 Å, then (SiO 2 + B 2 O 3 )
Layer 5 was co-deposited containing 30% by weight of B 2 O 3 in a vacuum of 3×10 -4 torr to have a thickness of 1000 Å.
On top of this, Au is laminated to a thickness of 150 Å, and the counter electrode 6
And so. When a voltage of 1.3V was applied to this display element with the counter electrode 6 as the positive electrode, the concentration was 0.4 after 1 second.
The color density was obtained. When color development and decolorization were repeated 10 2 times, a color density of 0.6 was obtained after 0.5 seconds, and there was almost no deterioration even after 10 6 times. The leakage current was extremely low at 0.4 mA/cm 2 .

〈実施例 2〉 第2図に示す実施例は、透明電極2が膜付けさ
れたガラス基板1上に実施例1と同様にEC層3
及びCr2O3層4を設け、次に水分を飽和させた酸
素ガスを真空度2×10-6torrの蒸着機内に導入
し、3×10-4torrと調圧してB2O3を約8重量%含
むよう(NiO+B2O3)層7を800Åの膜厚で積層
した。このあと、基板温度を上昇させないよう低
温スパツタリング装置にて対向電極6を酸化スズ
5%含有の酸化インジウムにて形成した。さらに
可視光の透過率をあげるため二酸化珪素を反射防
止膜8として積層した。この表示素子に対し、対
向電極6を正極として1.3Vの電圧を印加したと
ころ、0.1秒にて発色濃度0.7が得られ、106回後も
濃度の減少はほとんど観察されなかつた。
<Example 2> In the example shown in FIG.
and Cr 2 O 3 layer 4 was provided, and then oxygen gas saturated with moisture was introduced into the vapor deposition machine with a vacuum level of 2×10 -6 torr, and the pressure was adjusted to 3×10 -4 torr to form B 2 O 3 . A (NiO+B 2 O 3 ) layer 7 containing approximately 8% by weight was laminated to a thickness of 800 Å. Thereafter, a counter electrode 6 was formed from indium oxide containing 5% tin oxide using a low-temperature sputtering device so as not to increase the substrate temperature. Furthermore, silicon dioxide was laminated as an antireflection film 8 to increase the transmittance of visible light. When a voltage of 1.3 V was applied to this display element using the counter electrode 6 as a positive electrode, a color density of 0.7 was obtained in 0.1 seconds, and almost no decrease in density was observed even after 10 6 times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の全固体型のエレクト
ロクロミツク表示素子の実施例を示す部分断面図
である。 1…ガラス基板、2…透明電極、3…EC層、
4…Cr2O3層、5…(SiO2+B2O3)層、11…
(NiO+B2O3)層、6…対向電極、7…(NiO+
B2O3)層、8…反射防止膜。
1 and 2 are partial cross-sectional views showing an embodiment of an all-solid-state electrochromic display element of the present invention. 1...Glass substrate, 2...Transparent electrode, 3...EC layer,
4 ... 3 Cr2O layers, 5...( SiO2 + B2O3 ) layers, 11...
(NiO+B 2 O 3 ) layer, 6... counter electrode, 7... (NiO+
B 2 O 3 ) layer, 8... antireflection film.

Claims (1)

【特許請求の範囲】[Claims] 1 電気化学的発色層とプロトン供給体層を有す
るエレクトロクロミツク表示素子において、プロ
トン供給体層に酸化ホウ素を含有する固体プロト
ン供給体層をすくなくとも一層設けたことを特徴
とするエレクトロクロミツク表示素子。
1. An electrochromic display element having an electrochemical coloring layer and a proton donor layer, characterized in that the proton donor layer is provided with at least one solid proton donor layer containing boron oxide. .
JP56143455A 1981-09-11 1981-09-11 Electrochromic display element Granted JPS5844422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56143455A JPS5844422A (en) 1981-09-11 1981-09-11 Electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56143455A JPS5844422A (en) 1981-09-11 1981-09-11 Electrochromic display element

Publications (2)

Publication Number Publication Date
JPS5844422A JPS5844422A (en) 1983-03-15
JPH0143934B2 true JPH0143934B2 (en) 1989-09-25

Family

ID=15339097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56143455A Granted JPS5844422A (en) 1981-09-11 1981-09-11 Electrochromic display element

Country Status (1)

Country Link
JP (1) JPS5844422A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712879A (en) * 1986-04-02 1987-12-15 Donnelly Corporation Electrochromic mirror
WO2005064995A1 (en) * 2003-12-26 2005-07-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JP4200221B2 (en) * 2005-03-19 2008-12-24 国立大学法人東京農工大学 Reversible detachable color solid element, reversible conductivity changing solid element, reversible refractive index changing solid element, non-light emitting display element, current path element and optical waveguide element

Also Published As

Publication number Publication date
JPS5844422A (en) 1983-03-15

Similar Documents

Publication Publication Date Title
US4652090A (en) Dispersed iridium based complementary electrochromic device
US4294520A (en) Electrochromic display device
US6426827B1 (en) Electrochromic or photoelectrochromic device
JPS6326373B2 (en)
US4225216A (en) Tungsten niobate electrochromic device
JPS59159134A (en) Electrochromic display element
JPH0143934B2 (en)
Davazoglou et al. Electrochromism in polycrystalline WO3 thin films prepared by chemical vapour deposition at high temperature
JPS6033255B2 (en) electrochromic display device
JPS6057320A (en) Electrochromic display element
JPH0241726B2 (en)
JPH04318525A (en) Reflection type electrochromic element
JPS5891431A (en) Electrochromic display element
JPH0358496B2 (en)
JPS62295031A (en) Electrochromic display device
JPS60115916A (en) Electrochromic display element
JPS6332166B2 (en)
JPS5960424A (en) Transmission type fullly solid-state electrochromic element
JPS6175325A (en) Display cell
JPS60200235A (en) Electrochromic display device
JPH0145894B2 (en)
JPH0371112A (en) Electrochromic element
JPS6114496B2 (en)
JPS60238818A (en) Transmission type electrochromic display device
JPS60222827A (en) Electrochromic display device