[go: up one dir, main page]

JPH0143465B2 - - Google Patents

Info

Publication number
JPH0143465B2
JPH0143465B2 JP57120241A JP12024182A JPH0143465B2 JP H0143465 B2 JPH0143465 B2 JP H0143465B2 JP 57120241 A JP57120241 A JP 57120241A JP 12024182 A JP12024182 A JP 12024182A JP H0143465 B2 JPH0143465 B2 JP H0143465B2
Authority
JP
Japan
Prior art keywords
semiconductor
layer
type
resistance
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57120241A
Other languages
Japanese (ja)
Other versions
JPS599957A (en
Inventor
Katsuaki Sumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57120241A priority Critical patent/JPS599957A/en
Publication of JPS599957A publication Critical patent/JPS599957A/en
Publication of JPH0143465B2 publication Critical patent/JPH0143465B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/60Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D10/00 or H10D18/00, e.g. integration of BJTs
    • H10D84/611Combinations of BJTs and one or more of diodes, resistors or capacitors
    • H10D84/613Combinations of vertical BJTs and one or more of diodes, resistors or capacitors
    • H10D84/615Combinations of vertical BJTs and one or more of resistors or capacitors

Landscapes

  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 この発明は半導体基板の主面上に形成されたエ
ピタキシヤル成長半導体層(以下「エピタキシヤ
ル層」と呼ぶ)の所要部分を取り囲むように設け
られた半導体分離層を有する半導体集積回路装置
(IC)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a semiconductor separation layer provided so as to surround a required portion of an epitaxially grown semiconductor layer (hereinafter referred to as "epitaxial layer") formed on the main surface of a semiconductor substrate. It relates to semiconductor integrated circuit devices (ICs).

以下、縦形pnpトランジスタを構成要素とする
ICを例にとり説明する。
Below, vertical PNP transistors are used as constituent elements.
This will be explained using an IC as an example.

第1図AおよびBはそれぞれ従来のICの一例
の要部を示す断面図およびその動作を説明するた
めの等価回路図である。
FIGS. 1A and 1B are a sectional view showing a main part of an example of a conventional IC and an equivalent circuit diagram for explaining its operation, respectively.

第1図Aにおいて、1はp形半導体基板、2は
p形半導体基板1の主面上に形成されたn-形エ
ピタキシヤル層、3aはn-形エピタキシヤル層
2の縦形pnpトランジスタを形成するための所要
部分2aを取り囲んでその表面からp形半導体基
板1に達するようにp形不純物を導入して形成さ
れたp形分離層、3bはp形分離層3aと同様
に、n-形エピタキシヤル層2の別の縦形pnpトラ
ンジスタを形成するための所要部分2bを取り囲
んで形成されたp形分離層、4はn-形エピタキ
シヤル層2aの表面部の一部にp形不純物を導入
して形成されたp形エミツタ領域、5はn-形エ
ピタキシヤル層2aのp形エミツタ領域4の形成
部分以外の部分にn形不純物を拡散して形成され
たn形ベース電極接着用拡散領域、6はp形エミ
ツタ領域4をエミツタとしn-形エピタキシヤル
層2aをベースとしp形半導体基板1をコレクタ
とする縦形pnpトランジスタである。7はp形分
離層3a,3b、p形エミツタ領域4、n形ベー
ス電極接着用拡散領域5およびn-形エピタキシ
ヤル層2,2a,2bの各表面上にわたつて形成
された酸化シリコン(SiO2)などの絶縁膜、8,
9および10はそれぞれ絶縁膜7を貫通してp形
エミツタ領域4、n形ベース電極接着用拡散領域
5およびp形分離層3aに接続されたエミツタ電
極、ベース電極およびコレクタ電極である。11
は絶縁膜7を貫通してp形分離層3bに接続さ
れ、n-形エピタキシヤル層2bの表面部に形成
されたp形エミツタ領域(図示せず)をエミツタ
としn-形エピタキシヤル層2bをベースとしp
形半導体基板1をコレクタとする別の縦形pnpト
ランジスタのコレクタ電極である。なお、図示し
てないが、コレクタ電極10,11はそれぞれ絶
縁膜7の表面上に形成された接地用配線層を介し
て接地端子に接続されている。R1aはp形半導体
基板1のp形エミツタ領域4に対応する部分とp
形分離層3aに接する部分との間の基板抵抗、
R1bはp形半導体基板1の両p形分離層3a,3
bにそれぞれ接する部分間の基板抵抗、R3aはp
形分離層3aのコレクタ電極10とp形半導体基
板1との間の分離層抵抗、R3bはp形分離層3b
のコレクタ電極11とp形半導体基板1との間の
分離層抵抗である。第1図Bにおいて、12は電
源に接続される電源端子、13は接地される接地
端子、14はエミツタ電極8に接続された出力端
子、REはエミツタ電極8と電源端子12との間
に接続されたエミツタ抵抗、R10はコレクタ電極
10と接地端子13とを接続する接地用配線層の
接地配線抵抗、R11はコレクタ電極11と接地端
子13とを接続する接地用配線層の接地配線抵抗
である。
In FIG. 1A, 1 is a p-type semiconductor substrate, 2 is an n - type epitaxial layer formed on the main surface of the p-type semiconductor substrate 1, and 3a is a vertical pnp transistor of the n - type epitaxial layer 2. Similar to the p-type isolation layer 3a, the p-type isolation layer 3b is formed by introducing p-type impurities so as to surround the required portion 2a and reach the p-type semiconductor substrate 1 from its surface . A p-type isolation layer 4 is formed surrounding a required portion 2b of the epitaxial layer 2 for forming another vertical pnp transistor, and 4 is a p-type impurity introduced into a part of the surface of the n - type epitaxial layer 2a. 5 is a diffusion region for bonding an n - type base electrode, which is formed by diffusing n-type impurities into a portion of the n - type epitaxial layer 2a other than the portion where the p-type emitter region 4 is formed. , 6 is a vertical pnp transistor having the p-type emitter region 4 as the emitter, the n - type epitaxial layer 2a as the base, and the p-type semiconductor substrate 1 as the collector. 7 is silicon oxide formed over each surface of the p-type separation layers 3a, 3b, the p-type emitter region 4, the n-type base electrode bonding diffusion region 5, and the n - type epitaxial layers 2, 2a, 2b. Insulating films such as SiO 2 ), 8,
Reference numerals 9 and 10 denote an emitter electrode, a base electrode, and a collector electrode, which penetrate through the insulating film 7 and are connected to the p-type emitter region 4, the n-type base electrode adhesion diffusion region 5, and the p-type isolation layer 3a, respectively. 11
is connected to the p-type isolation layer 3b through the insulating film 7, and uses as an emitter a p - type emitter region (not shown) formed on the surface of the n - type epitaxial layer 2b. Based on p
This is the collector electrode of another vertical PNP transistor whose collector is the shaped semiconductor substrate 1. Although not shown, the collector electrodes 10 and 11 are each connected to a ground terminal via a ground wiring layer formed on the surface of the insulating film 7. R 1a is the portion corresponding to the p-type emitter region 4 of the p-type semiconductor substrate 1 and the p-type
substrate resistance between the part in contact with the shape separation layer 3a,
R 1b is both p-type isolation layers 3a, 3 of p-type semiconductor substrate 1
The substrate resistance between the parts in contact with b, R 3a is p
The separation layer resistance R 3b between the collector electrode 10 of the type separation layer 3a and the p-type semiconductor substrate 1 is the p-type separation layer 3b.
is the separation layer resistance between the collector electrode 11 and the p-type semiconductor substrate 1. In FIG. 1B, 12 is a power supply terminal connected to the power supply, 13 is a ground terminal that is grounded, 14 is an output terminal connected to the emitter electrode 8, and R E is between the emitter electrode 8 and the power supply terminal 12. The connected emitter resistance, R 10 is the grounding wiring resistance of the grounding wiring layer that connects the collector electrode 10 and the ground terminal 13 , and R 11 is the grounding wiring of the grounding wiring layer that connects the collector electrode 11 and the grounding terminal 13 It is resistance.

次に、この従来例の動作を第1図Bについて説
明する。
Next, the operation of this conventional example will be explained with reference to FIG. 1B.

電源端子12と接地端子13との間に電圧を印
加し、ベース電極9に信号電流を入力すると、こ
の信号電流は縦形pnpトランジスタ6によつて増
幅される。この増幅された電流は電源端子12か
ら負荷抵抗RL、縦形pnpトランジスタ6、基板抵
抗R1a、分離層抵抗3aおよび接地配線抵抗R10
を通つて接地端子13へ流れ、出力端子14から
出力が得られる。
When a voltage is applied between the power supply terminal 12 and the ground terminal 13 and a signal current is input to the base electrode 9, this signal current is amplified by the vertical PNP transistor 6. This amplified current flows from the power supply terminal 12 to the load resistance R L , the vertical PNP transistor 6, the substrate resistance R 1a , the separation layer resistance 3a and the ground wiring resistance R 10
It flows through to the ground terminal 13, and an output is obtained from the output terminal 14.

ところで、この従来例では、縦形pnpトランジ
スタ6のコレクタすなわちp形半導体基板1に流
れ込む増幅電流が基板抵抗R1a、分離抵抗R3a
よび接地配線抵抗R10を通つて接地端子13へ流
れるので、基板抵抗R1a,R1bおよび分離層抵抗
R3aが一点に会する接続点〔第1図Bに図示イ〕
に電圧V1が生ずる。この電圧V1によつて、接続
点イから基板抵抗R1b、分離層抵抗R3bおよび接
地配線抵抗R11を通つて接地端子13へ電流が流
れ、コレクタ電極11に電圧V2〔V2=V1×R11
(R1b+R3b+R11)〕が生ずる。ここで、R1b=R3b
=R11であるとすれば電圧V2は電圧V1の1/3にな
る。このような電圧V2がコレクタ電極11に生
ずると、第1図Aに示したn-形エピタキシヤル
層2bに形成されている別の縦形pnpトランジス
タを用いて利得の高い増幅回路が構成されている
場合には、この増幅回路の出力が電圧V2によつ
て影響されるという欠点があつた。
By the way, in this conventional example, since the amplified current flowing into the collector of the vertical pnp transistor 6, that is, the p-type semiconductor substrate 1, flows to the ground terminal 13 through the substrate resistance R 1a , the separation resistance R 3a , and the ground wiring resistance R 10 , the substrate Resistance R 1a , R 1b and separation layer resistance
Connection point where R 3a meets at one point [Illustrated in Figure 1B]
A voltage V 1 is generated at . Due to this voltage V 1 , a current flows from the connection point A to the ground terminal 13 through the substrate resistance R 1b , the separation layer resistance R 3b and the ground wiring resistance R 11 , and the voltage V 2 [V 2 = V 1 × R 11 /
(R 1b + R 3b + R 11 )] is generated. Here, R 1b = R 3b
= R 11 , the voltage V 2 will be 1/3 of the voltage V 1 . When such a voltage V 2 is generated at the collector electrode 11, a high gain amplifier circuit is constructed using another vertical pnp transistor formed in the n - type epitaxial layer 2b shown in FIG. 1A. In this case, the disadvantage was that the output of this amplifier circuit was influenced by the voltage V2 .

この発明は、上述の欠点に鑑みてなされたもの
で、半導体基板の主面上に形成されたエピタキシ
ヤル層の所要部分を取り囲んで分離する半導体分
離層と間隔をおいて取り囲んで上記半導体分離層
とは別の半導体分離層を形成して、上記半導体基
板の上記両半導体分離層とそれぞれ接する部分間
の基板抵抗によつて、上記半導体分離層で分離さ
れた上記エピタキシヤル層の部分とこの部分に対
応する上記半導体基板の部分とで構成された半導
体素子の、上記別の半導体分離層の外側の上記エ
ピタキシヤル層の所要部分とこの部分に対応する
上記半導体基板の部分とで構成された他の半導体
素子への影響を低減するようにしたICを提供す
ることを目的とする。
The present invention was made in view of the above-mentioned drawbacks, and includes a semiconductor separation layer that surrounds and separates a required portion of an epitaxial layer formed on a main surface of a semiconductor substrate, and a semiconductor separation layer that surrounds and separates a required portion of an epitaxial layer formed on a main surface of a semiconductor substrate. forming a semiconductor separation layer separate from the semiconductor separation layer, and forming a semiconductor separation layer between the parts of the epitaxial layer separated by the semiconductor separation layer and this part by the substrate resistance between the parts of the semiconductor substrate that are in contact with both the semiconductor separation layers, respectively; and a portion of the semiconductor substrate corresponding to the required portion of the epitaxial layer outside the another semiconductor isolation layer, and a portion of the semiconductor substrate corresponding to this portion. The purpose of the present invention is to provide an IC that reduces the influence of

第2図AおよびBはそれぞれこの発明の一実施
例のICの要部を示す断面図およびその動作を説
明するための等価回路図である。
FIGS. 2A and 2B are a sectional view showing a main part of an IC according to an embodiment of the present invention and an equivalent circuit diagram for explaining its operation, respectively.

図において、第1図に示した従来例の符号と同
一符号は同等部分を示す。3a1はn-形エピタ
キシヤル層2の縦形pnpトランジスタを形成する
ための所要部分2aを取り囲んでその表面からp
形半導体基板1に達するように形成された第1の
p形分離層、3a2は第1のp形分離層3a1と
間隔をおいてこれを取り囲んでn-形エピタキシ
ヤル層2の表面からp形半導体基板1に達するよ
うに形成された第2のp形分離層、10aは第1
のp形分離層3a1および第2のp形分離層3a
2に絶縁膜7を貫通して共通に接続された縦形
pnpトランジスタ6のコレクタ電極である。な
お、第2図Aでは図示してないが、コレクタ電極
10aは絶縁膜7の表面上に形成された接地用配
線層を介して接地端子に接続されている。R1a1
p形半導体基板1のp形エミツタ領域4に対応す
る部分と第1のp形分離層3a1に接する部分と
の間の基板抵抗、R1a2はp形半導体基板1の両p
形分離層3a1,3a2にそれぞれ接する部分間
の基板抵抗、R3a1およびR3a2はそれぞれ第1のp
形分離層3a1および第2のp形分離層3a2の
コレクタ電極10aとp形半導体基板1との間の
分離層抵抗、R10aはコレクタ電極10aと接地端
子13とを接続する接地用配線層の接地配線抵抗
である。なお、この実施例のR1bはp形半導体基
板1の両p形分離層3a2,3bにそれぞれ接す
る部分間の基板抵抗である。
In the figure, the same reference numerals as those in the conventional example shown in FIG. 1 indicate equivalent parts. 3a1 surrounds a required portion 2a of the n - type epitaxial layer 2 for forming a vertical pnp transistor and extends p from its surface.
The first p-type isolation layer 3a2 is formed to reach the p-type semiconductor substrate 1, and surrounds the first p-type isolation layer 3a1 with a space therebetween, and extends the p-type from the surface of the n - type epitaxial layer 2. A second p-type isolation layer 10a formed to reach the semiconductor substrate 1 is a first
p-type separation layer 3a1 and second p-type separation layer 3a
2 and commonly connected vertically through the insulating film 7.
This is the collector electrode of the pnp transistor 6. Although not shown in FIG. 2A, the collector electrode 10a is connected to a ground terminal via a ground wiring layer formed on the surface of the insulating film 7. R 1a1 is the substrate resistance between the part of the p-type semiconductor substrate 1 corresponding to the p-type emitter region 4 and the part in contact with the first p-type separation layer 3a1, and R 1a2 is the resistance of both p-type semiconductor substrate 1
The substrate resistances R 3a1 and R 3a2 between the portions in contact with the type separation layers 3a1 and 3a2 are respectively the first p
The separation layer resistance R10a between the collector electrode 10a of the type separation layer 3a1 and the second p-type separation layer 3a2 and the p-type semiconductor substrate 1 is the resistance of the ground wiring layer connecting the collector electrode 10a and the ground terminal 13. This is the ground wiring resistance. Note that R 1b in this embodiment is the substrate resistance between the portions of the p-type semiconductor substrate 1 that are in contact with both the p-type separation layers 3a2 and 3b, respectively.

この実施例の構成では、第2図Bに示すよう
に、電源端子12と接地端子13との間に電圧を
印加し、ベース電極9に信号電流を入力すると、
この信号電流が縦形pnpトランジスタ6によつて
増幅される。この増幅された電流は電源端子12
からエミツタ抵抗RE、縦形pnpトランジスタ6、
基板抵抗R1a1、分離層抵抗R3a1および接地配線抵
抗R10aを通つて接地端子13へ流れ、出力端子1
4から出力が得られる。そして、この増幅電流が
流れると、基板抵抗R1a1,R1a2および分離層抵抗
R3a1が一点に会する接続点〔第2図Bに図示ロ〕
に第1図Bに図示した接続点イの電圧V1とほぼ
同一の電圧V3が生ずる。この電圧V3によつて、
接続点ロから基板抵抗R1a2,R1b、分離層抵抗R3b
および接地配線抵抗R11を通つて接地端子13へ
電流が流れ、コレクタ端子11に電圧V4が生ず
る。この電圧V4は、基板抵抗R1a2,R1bの接続点
とコレクタ電極10aとの間に分離層抵抗R3a2
接続されているので、分離層抵抗R3a2が基板抵抗
R1a2に比べて極めて大きい場合にはV3×R11
(R1a2+R1b+R3b+R11)となるが、通常、分離層
抵抗R3a2は基板抵抗R1a2に比べて小さいからV3×
R11/(R1a2+R1b+R3b+R11)以下となる。ここ
で、R1a2=R1b=R3b=R11であるとすれば、電圧
V4は電圧V3の1/4以下になる。従つて、この実施
例では、縦形pnpトランジスタ6の第2図Aに示
したn-形エピタキシヤル層2bに形成されてい
る別の縦形pnpトランジスタへの影響を、第1図
に示した従来例の場合のそれより低減することが
できる。
In the configuration of this embodiment, as shown in FIG. 2B, when a voltage is applied between the power supply terminal 12 and the ground terminal 13 and a signal current is input to the base electrode 9,
This signal current is amplified by the vertical pnp transistor 6. This amplified current is transmitted to the power supply terminal 12.
from emitter resistance R E , vertical pnp transistor 6,
The flow passes through the substrate resistance R 1a1 , the separation layer resistance R 3a1 and the ground wiring resistance R 10a to the ground terminal 13, and the output terminal 1
Output is obtained from 4. When this amplified current flows, the substrate resistances R 1a1 and R 1a2 and the separation layer resistance
Connection point where R 3a1 meets at one point [Illustrated in Figure 2 B]
At this time, a voltage V 3 approximately equal to the voltage V 1 at the node A shown in FIG. 1B is generated. With this voltage V 3 ,
From connection point RO to substrate resistance R 1a2 , R 1b , separation layer resistance R 3b
A current flows to the ground terminal 13 through the ground wiring resistor R 11 and a voltage V 4 is generated at the collector terminal 11. Since the separation layer resistance R 3a2 is connected between the connection point of the substrate resistances R 1a2 and R 1b and the collector electrode 10a, this voltage V 4 is caused by the separation layer resistance R 3a2 being the substrate resistance .
If it is extremely large compared to R 1a2 , V 3 × R 11 /
(R 1a2 + R 1b + R 3b + R 11 ) However, since the separation layer resistance R 3a2 is usually smaller than the substrate resistance R 1a2 , V 3 ×
R 11 /(R 1a2 + R 1b + R 3b + R 11 ) or less. Here, if R 1a2 = R 1b = R 3b = R 11 , then the voltage
V 4 is less than 1/4 of the voltage V 3 . Therefore, in this embodiment, the effect on another vertical pnp transistor formed in the n - type epitaxial layer 2b shown in FIG. 2A of the vertical pnp transistor 6 is compared with the conventional example shown in FIG. can be reduced from that in the case of

なお、この実施例では、p形分離層3a1,3
a2の2重の分離層を用いたが、必ずしもこれは
2重に限定する必要がなく、2重以上であつても
よい。また、この実施例では、縦形pnpトランジ
スタ6を構成要素とする場合を例にとり述べた
が、必ずしもこれは縦形pnpトランジスタに限定
する必要がなく、p形分離層3a1によつて取り
囲まれたn-形エピタキシヤル層2aとp形半導
体基板1とで構成された半導体容量素子などのそ
の他の半導体素子を構成要素とする場合にも、こ
の実施例と同様の効果がある。また、この実施例
では、p形半導体基板1を用いる場合について説
明したが、この発明はn形半導体基板を用いる場
合にも適用することができる。
In addition, in this embodiment, the p-type separation layers 3a1, 3
Although the double separation layer a2 is used, it is not necessarily limited to two layers and may be two or more layers. Furthermore, although this embodiment has been described with reference to the case where the vertical pnp transistor 6 is used as a component, it is not necessarily limited to the vertical pnp transistor, and the n - The same effects as in this embodiment can be obtained even when other semiconductor elements such as a semiconductor capacitive element constituted by a p-type epitaxial layer 2a and a p-type semiconductor substrate 1 are used as constituent elements. Further, in this embodiment, the case where a p-type semiconductor substrate 1 is used has been described, but the present invention can also be applied to a case where an n-type semiconductor substrate is used.

以上、説明したように、この発明のICでは、
半導体基板の主面上に形成されたエピタキシヤル
層の所要部分を取り囲んで分離する第1の半導体
分離層と間隔をおいてこれを取り囲んで第2の半
導体分離層を形成したので、上記半導体基板の上
記第1および第2の半導体分離層とそれぞれ接す
る部分間の基板抵抗によつて、上記第1の半導体
分離層で分離された上記エピタキシヤル層の部分
とこの部分に対応する上記半導体基板の部分とで
構成された半導体素子の、上記第2の半導体分離
層の外側の上記エピタキシヤル層の所要部分とこ
の部分に対応する上記半導体基板の部分とで構成
された他の半導体素子への影響を低減することが
できる。
As explained above, in the IC of this invention,
Since the second semiconductor isolation layer was formed to surround and separate a required portion of the epitaxial layer formed on the main surface of the semiconductor substrate at a distance from the first semiconductor isolation layer, the semiconductor substrate The portion of the epitaxial layer separated by the first semiconductor separation layer and the portion of the semiconductor substrate corresponding to this portion are separated by the substrate resistance between the portions in contact with the first and second semiconductor separation layers, respectively. an influence on another semiconductor element, which is made up of a required part of the epitaxial layer outside the second semiconductor isolation layer and a part of the semiconductor substrate corresponding to this part; can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図AおよびBはそれぞれ従来のICの一例
の要部を示す断面図およびその動作を説明するた
めの等価回路図、第2図AおよびBはそれぞれこ
の発明の一実施例のICの要部を示す断面図およ
びその動作を説明するための等価回路図である。 図において、1はp形半導体基板(第1伝導形
の半導体基板)、2はn-形エピタキシヤル層(第
2伝導形のエピタキシヤル成長半導体層)、3a
1は第1のp形分離層(第1伝導形の第1の半導
体分離層)、3a2は第2のp形分離層(第1伝
導形の第2の半導体分離層)、6は縦形pnpトラ
ンジスタ(半導体素子)、10aはコレクタ電極
(半導体素子の電極)、R1a2は基板抵抗である。な
お、図中同一符号はそれぞれ同一もしくは相当部
分を示す。
1A and 1B are a cross-sectional view showing the main parts of an example of a conventional IC and an equivalent circuit diagram for explaining its operation, and FIGS. 2A and 2B are main parts of an IC according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a portion and an equivalent circuit diagram for explaining its operation. In the figure, 1 is a p-type semiconductor substrate (semiconductor substrate of first conductivity type), 2 is an n - type epitaxial layer (epitaxially grown semiconductor layer of second conductivity type), and 3a
1 is the first p-type separation layer (the first semiconductor separation layer of the first conductivity type), 3a2 is the second p-type separation layer (the second semiconductor separation layer of the first conduction type), and 6 is the vertical pnp. In the transistor (semiconductor element), 10a is a collector electrode (electrode of the semiconductor element), and R1a2 is a substrate resistance. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 第1伝導形の半導体基板、この半導体基板の
主面上に形成された第2伝導形のエピタキシヤル
成長半導体層、およびこのエピタキシヤル成長半
導体層の所要部分を取り囲んでその表面から上記
半導体基板に達するように形成され表面に電極が
接着された第1伝導形の第1の半導体分離層とこ
の第1の半導体分離層で取り囲まれた上記エピタ
キシヤル成長半導体層の部分と上記エピタキシヤ
ル成長半導体層の上記部分に対応する上記半導体
基板の部分とで構成された半導体素子を備えたも
のにおいて、上記第1の半導体分離層と間隔をお
いてこれを取り囲んで上記エピタキシヤル成長半
導体層の表面から上記半導体基板に達するように
第1伝導形の第2の半導体分離層を形成し、この
第2の半導体分離層の表面に第1の半導体分離層
の上記電極に接続された電極を設けこの電極は上
記半導体素子の電極取り出し領域の一つを構成す
ることを特徴とする半導体集積回路装置。
1 A semiconductor substrate of a first conductivity type, an epitaxially grown semiconductor layer of a second conductivity type formed on the main surface of this semiconductor substrate, and a semiconductor substrate that surrounds a required portion of this epitaxially grown semiconductor layer from its surface. a first semiconductor separation layer of a first conductivity type formed to reach the surface thereof and having an electrode bonded to its surface; a portion of the epitaxially grown semiconductor layer surrounded by the first semiconductor separation layer; and a portion of the epitaxially grown semiconductor layer that is surrounded by the first semiconductor separation layer; and a portion of the semiconductor substrate corresponding to the portion of the layer, the first semiconductor isolation layer and a portion surrounding the first semiconductor isolation layer at a distance from the surface of the epitaxially grown semiconductor layer. A second semiconductor isolation layer of a first conductivity type is formed to reach the semiconductor substrate, and an electrode connected to the electrode of the first semiconductor isolation layer is provided on the surface of the second semiconductor isolation layer. A semiconductor integrated circuit device comprising one of the electrode lead-out regions of the semiconductor element.
JP57120241A 1982-07-08 1982-07-08 Semiconductor integrated circuit device Granted JPS599957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57120241A JPS599957A (en) 1982-07-08 1982-07-08 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57120241A JPS599957A (en) 1982-07-08 1982-07-08 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS599957A JPS599957A (en) 1984-01-19
JPH0143465B2 true JPH0143465B2 (en) 1989-09-20

Family

ID=14781332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57120241A Granted JPS599957A (en) 1982-07-08 1982-07-08 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS599957A (en)

Also Published As

Publication number Publication date
JPS599957A (en) 1984-01-19

Similar Documents

Publication Publication Date Title
US5994740A (en) Semiconductor device
JP2998662B2 (en) Semiconductor device
JP3530414B2 (en) Semiconductor device
JP4838421B2 (en) Analog switch
JPH0143465B2 (en)
JPS6211787B2 (en)
JPS6410101B2 (en)
JP2690201B2 (en) Semiconductor integrated circuit
JPH0738054A (en) Semiconductor device
JPH0974140A (en) Composite circuit component
JPH02260561A (en) Semiconductor device
JP2901275B2 (en) Semiconductor integrated circuit device
JP2944115B2 (en) Composite transistor circuit device
JPS601843A (en) Semiconductor integrated circuit
JP2001127167A (en) Semiconductor device
JPS6223466B2 (en)
JPS6231502B2 (en)
JPH07104743B2 (en) Power supply circuit
JPS5931061A (en) High voltage semiconductor device
JPH05315554A (en) Semiconductor integrated circuit
JPH0558256B2 (en)
JPH0336308B2 (en)
JPH0314224B2 (en)
JPS61110456A (en) Semiconductor device
JPS6224659A (en) Composite junction capacitor