[go: up one dir, main page]

JPH0143218B2 - - Google Patents

Info

Publication number
JPH0143218B2
JPH0143218B2 JP55148632A JP14863280A JPH0143218B2 JP H0143218 B2 JPH0143218 B2 JP H0143218B2 JP 55148632 A JP55148632 A JP 55148632A JP 14863280 A JP14863280 A JP 14863280A JP H0143218 B2 JPH0143218 B2 JP H0143218B2
Authority
JP
Japan
Prior art keywords
moisture
air
hydrophilic
fibers
hydrophilic fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55148632A
Other languages
Japanese (ja)
Other versions
JPS5773334A (en
Inventor
Yoshio Imamura
Takeo Nishi
Toshihiko Sonoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP14863280A priority Critical patent/JPS5773334A/en
Publication of JPS5773334A publication Critical patent/JPS5773334A/en
Publication of JPH0143218B2 publication Critical patent/JPH0143218B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 本発明は、親水性繊維を用いた冷房システムに
関する。冷房システムは、最近各ビルデイングに
装備され、更に各家庭にも普及しつつある。冷房
装置は、大別すると水を空気中に蒸発させること
によつて冷却し、この水によつて冷房する吸収型
と加圧フロンを断熱膨張させて冷却するフロン圧
縮型とがある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling system using hydrophilic fibers. Cooling systems have recently been installed in every building, and are also becoming widespread in every home. Air conditioners can be roughly divided into two types: absorption type, which cools the air by evaporating water into the air, and cools the air using this water, and fluorocarbon compression type, which cools by adiabatically expanding pressurized fluorocarbon.

上記吸収型冷房装置は、水の蒸発効率を向上さ
せるために通常、乾燥空気が使用され、その水分
吸収剤としてシリカゲル、ゼオライト、塩化リチ
ウム等が用いられている。しかし、これらの吸収
剤は、通常粉末状であるために、これらを充填し
た領域に空気を通過させる際には、大きい圧力損
失を生じ、そのためのエネルギー損失が大きい。
この欠点を改良するために上記吸収粉末をシート
状物に貼着して、このシートに平行に空気を流す
方法が提案されているが、この貼着の際に接着剤
を使用するので吸収剤の吸収能が低下するのみで
なく、脱落も多く好ましい手段とはいえない。ま
たポリウレタンフオームのような発泡体表面に上
記吸収剤を貼着し、この発泡体に空気を流す方法
も提案されているが、この方法も接着剤を使用す
るので吸収能が低下するばかりでなく、空気を通
過させる際の圧力損失が大きいのが難点である。
The above absorption type air conditioner usually uses dry air to improve water evaporation efficiency, and uses silica gel, zeolite, lithium chloride, etc. as a moisture absorbent. However, since these absorbents are usually in powder form, when air is passed through a region filled with these absorbents, a large pressure loss occurs, resulting in a large energy loss.
In order to improve this drawback, a method has been proposed in which the above-mentioned absorbent powder is attached to a sheet-like object and air is flowed parallel to this sheet, but since an adhesive is used for this attachment, the absorbent powder is This is not a preferable method as it not only reduces the absorption capacity but also causes a lot of shedding. A method has also been proposed in which the above-mentioned absorbent is attached to the surface of a foam such as polyurethane foam and air is allowed to flow through the foam, but this method also uses an adhesive, which not only reduces the absorption capacity. The disadvantage is that the pressure loss when passing air is large.

本発明は、上記のような従来法の欠点を改良
し、通気抵抗が少なく、かつ効果的に乾燥空気を
作ることができ、これによつて効率的な冷房を行
うことができる冷房システムを提供するものであ
る。
The present invention improves the drawbacks of the conventional method as described above, and provides a cooling system that has low ventilation resistance and can effectively create dry air, thereby performing efficient cooling. It is something to do.

すなわち、本発明は、乾燥空気を水に接触させ
て得られる冷水により冷房を行う冷房システムに
おいて、空気を親水性繊維(活性炭素繊維、炭素
繊維を除く)に接触させて乾燥空気を得る手段、
該乾燥空気を水に接触させて冷水を得る手段、該
冷水により冷房を行う手段、および水分を吸収し
た親水性繊維を太陽光又はその他の熱源に曝し集
蓄した熱によつて水分を離脱させ前記親水性繊維
を再生する手段とよりなる冷房システムである。
That is, the present invention provides a means for obtaining dry air by bringing air into contact with hydrophilic fibers (excluding activated carbon fibers and carbon fibers) in a cooling system that performs cooling with cold water obtained by bringing dry air into contact with water;
A means for obtaining cold water by bringing the dry air into contact with water, a means for performing air conditioning with the cold water, and a means for exposing the hydrophilic fibers that have absorbed moisture to sunlight or other heat sources to remove moisture using the collected heat. A cooling system comprising means for regenerating the hydrophilic fibers.

上記親水性繊維は、紙状、不織布状、布状等の
シート状に成形することができるので、このシー
トに平行に空気を流すことによつて、圧力損失を
小さくして、しかも効率的に水分を吸収させるこ
とができる。
The above-mentioned hydrophilic fibers can be formed into sheets such as paper, non-woven fabric, cloth, etc., so by flowing air parallel to this sheet, pressure loss can be reduced and efficiently. Can absorb moisture.

本発明に使用する親水性繊維としては、綿、レ
ーヨンのようなセルロース繊維、羊毛、絹のよう
な蛋白質繊維等であつてもよいが、セルロースよ
りも更に吸湿性の繊維、例えばポリアクリル酸ソ
ーダ、ポリグルタミン酸ソーダ、ポリビニルアミ
ン、ポリビニルピロリドン、ポリアクリル酸、ポ
リビニルアルコール、ポリアクリルアミドのよう
な吸湿性ポリマーあるいは主としてこれらの構成
単位を含むコポリマーもしくは架橋ポリマーから
なる繊維が一層好ましい。
The hydrophilic fibers used in the present invention may be cellulose fibers such as cotton and rayon, wool, protein fibers such as silk, etc., but fibers that are more hygroscopic than cellulose, such as polysodium acrylate More preferred are fibers made of hygroscopic polymers such as , sodium polyglutamate, polyvinylamine, polyvinylpyrrolidone, polyacrylic acid, polyvinyl alcohol, polyacrylamide, or copolymers or crosslinked polymers mainly containing these constituent units.

またセルロース、ポリエステル、ポリアミド、
ポリアクリロニトリルのような任意の繊維に上記
吸湿性ポリマーを塗布及び/又は含浸させたもの
を使用してもよい。
Also cellulose, polyester, polyamide,
Any fiber such as polyacrylonitrile coated and/or impregnated with the above-mentioned hygroscopic polymer may be used.

これらの繊維は、必要に応じて他の繊維と混合
して紙状、不織布状、布状等のシート状に成形し
て、必要に応じてハニカム状構造等に組み立てて
使用される。
These fibers are mixed with other fibers as necessary, formed into a sheet shape such as paper, nonwoven fabric, cloth, etc., and assembled into a honeycomb-like structure or the like as necessary for use.

本発明に使用される親水性繊維には、必要に応
じてシリカゲル、ゼオライト、活性アルミナのよ
うな水分吸着剤や塩化リチウム、臭化リチウム、
塩化カルシウム、塩化マグネシウムのような水分
吸着剤を含有させてもよい。この付着の方法とし
ては、塩化リチウム、塩化カルシウムのような水
分吸収剤の場合には、これらを水溶液として親水
性繊維中に充分に含浸させたのち乾燥するのがよ
い。またシリカゲルのような水分吸着剤、塩化リ
チウムのような水分吸収剤のいずれかの場合も繊
維製造の際に混合して繊維中に埋め込んでもよい
し、親水性繊維表面に親水性接着剤を使用して貼
着してもよい。
The hydrophilic fibers used in the present invention may contain water adsorbents such as silica gel, zeolite, activated alumina, lithium chloride, lithium bromide,
A moisture adsorbent such as calcium chloride or magnesium chloride may be included. In the case of a water absorbent such as lithium chloride or calcium chloride, the adhesion is preferably carried out by thoroughly impregnating the hydrophilic fibers with an aqueous solution and then drying. Also, in the case of either a moisture absorbent such as silica gel or a moisture absorbent such as lithium chloride, it may be mixed and embedded into the fiber during fiber manufacturing, or a hydrophilic adhesive may be used on the surface of the hydrophilic fiber. You can also attach it.

本発明の場合には、水分吸収体として親水性繊
維を使用しているので、上記水分吸着剤や水分吸
収剤が仮に繊維中や接着剤中に埋まつても水分吸
着(収)能が低下することは比較的少なく、充分
にその効果を発揮することができる。特に塩化リ
チウムのような水分吸収剤は、繊維中に埋まつて
も、その繊維水分吸収性であり、効果が落ちるこ
とがないので好ましい。
In the case of the present invention, since hydrophilic fibers are used as moisture absorbers, even if the moisture adsorbent or moisture absorbent is buried in the fibers or adhesive, the moisture adsorption (absorption) ability will decrease. There is relatively little to do, and the effect can be fully demonstrated. In particular, a moisture absorbent such as lithium chloride is preferable because even if it is buried in the fiber, the fiber absorbs moisture and the effect does not decrease.

なお、上記水分吸着(収)剤を貼着する接着剤
としては、前述したポリアクリル酸ソーダ、ポリ
ビニルアミンのような親水性樹脂が好ましい。
The adhesive for attaching the moisture adsorbing agent is preferably a hydrophilic resin such as the aforementioned sodium polyacrylate or polyvinylamine.

これらの親水性繊維シートはハニカム状に組み
立て、その間隙に空気を通すことにより水の吸着
を行い、一方このハニカム状組立体を加熱して吸
着された水を除去する手段をとつてもよい。この
場合には、このハニカム状組立体を複数個準備
し、交互に水の吸収と除去を行つてもよい。第1
図はその親水性繊維シートを用いたハニカム状組
立体の一例を示す斜視図であつて、親水性繊維シ
ート1を波形に成形して空気不透過性シートに貼
着した段ボール状シート2が交互に直交して積層
されており、一方の側面から被処理空気Aがその
間隙を通過し、その面に直角な面からは冷却ガス
Bが入つて間隙を通過するようになつている。被
処理空気Aはこの組立体を通過する際に水分が吸
着(収)され、乾燥空気となつて放出され、合わ
せてこれと直行する冷却ガスBによつて冷却され
ることによつて益々乾燥度が高められる。この組
立体では、被処理空気が親水性繊維シートと平行
して流れるので圧力損失がきわめて少なく、円滑
に運転可能であるという利点がある。
These hydrophilic fiber sheets may be assembled into a honeycomb shape, and water may be adsorbed by passing air through the gaps, while heating the honeycomb assembly to remove the adsorbed water. In this case, a plurality of honeycomb-like assemblies may be prepared and water absorption and removal may be performed alternately. 1st
The figure is a perspective view showing an example of a honeycomb-like assembly using the hydrophilic fiber sheet, in which corrugated sheets 2 made by forming a hydrophilic fiber sheet 1 into a corrugated shape and pasting it on an air-impermeable sheet are alternately arranged. The air to be treated A passes through the gap from one side, and the cooling gas B enters from the side perpendicular to the gap and passes through the gap. As the air to be treated A passes through this assembly, moisture is adsorbed (accumulated) and released as dry air, which is also cooled by the cooling gas B passing directly through it, making it even drier. degree is increased. This assembly has the advantage that since the air to be treated flows in parallel with the hydrophilic fiber sheet, pressure loss is extremely small and smooth operation is possible.

また別の実施態様として親水性繊維シートを環
状ベルトに成形し、これを徐々に循環移動させな
がらその一部で水分の吸着(収)を行い、他方の
一部で水分の離脱とともに親水性繊維の再生を行
う方法がある。第2図は、その実施態様の一例を
示す断面図であつて、環状ベルトに成形された親
水性繊維シート3は徐々に矢印方向に移動し、水
分吸着室4内において被処理空気Aと接触し、空
気A中の水分は親水性繊維シート3に吸着されて
乾燥され、合わせて冷却水を通す冷却管5によつ
て冷却される。一方、水分脱着室6では外部から
太陽熱又は他の熱源によつて加熱されて水分が蒸
発することによつて親水性繊維シート3は乾燥、
再生される。また水分脱着室6内の加温された湿
潤空気は、そのまま系外に放出されるか、あるい
は暖房用、給湯設備等の熱源としても使用でき
る。
In another embodiment, a hydrophilic fiber sheet is formed into an annular belt, and as it is gradually circulated, one part of the belt adsorbs (accumulates) water, while the other part absorbs water and the hydrophilic fibers There is a way to play. FIG. 2 is a sectional view showing an example of the embodiment, in which the hydrophilic fiber sheet 3 formed into an annular belt gradually moves in the direction of the arrow and comes into contact with the air to be treated A in the moisture adsorption chamber 4. However, the moisture in the air A is adsorbed and dried by the hydrophilic fiber sheet 3, and is also cooled by the cooling pipe 5 through which cooling water passes. On the other hand, in the moisture desorption chamber 6, the hydrophilic fiber sheet 3 is dried by being heated from the outside by solar heat or other heat sources to evaporate moisture.
will be played. Further, the heated humid air in the moisture desorption chamber 6 can be directly released to the outside of the system, or can be used as a heat source for heating, hot water supply equipment, etc.

なお、太陽熱加熱によつて水分を蒸発させる場
合には、親水性繊維を予め黒色又はそれに近い色
に染色しておくことが好ましい。
In addition, when water is evaporated by solar heating, it is preferable to dye the hydrophilic fiber in advance in black or a color close to it.

更に別の実施態様として、親水性繊維シートの
片面に被処理空気を接触させて乾燥空気を得ると
ともに、その反対面に太陽熱又は他の熱を当て
て、該親水性繊維シートの厚み方向に水分を移動
させつつ、同時に吸着(収)、再生操作を行う方
法がある。第3図は、その実施態様の一例を示す
断面図であつて、水分吸脱着室7の中央には親水
性繊維シート8が装備され、このシート8によつ
て水分吸脱着室7が上室7aと下室7bに区画さ
れている。下室7bでは被処理空気Aが通過し、
その間に親水性繊維シート8と接触して水分が吸
着(収)され、乾燥空気となつて冷房装置へ送ら
れる。また上室7aでは太陽熱その他の熱源によ
つて親水性繊維シート8が加熱され、下室7bで
吸着(収)された水分が親水性繊維シート8中を
移動して上室7aの面から蒸発する。従つて簡単
な装置で水分の吸着(収)と脱着を同時に行うこ
とができる。また上室7a中の湿潤空気Cは温水
器等の熱源としても使用可能であるし、また冬期
には第3図の装置をそのまま集熱器として使用
し、暖房等に用いることもできる。
In yet another embodiment, air to be treated is brought into contact with one side of the hydrophilic fiber sheet to obtain dry air, and the other side is exposed to solar heat or other heat to remove moisture in the thickness direction of the hydrophilic fiber sheet. There is a method in which adsorption (collection) and regeneration operations can be performed at the same time while moving. FIG. 3 is a sectional view showing an example of the embodiment, in which a hydrophilic fiber sheet 8 is installed in the center of the moisture adsorption/desorption chamber 7, and this sheet 8 allows the moisture adsorption/desorption chamber 7 to be moved into the upper chamber. It is divided into a lower chamber 7a and a lower chamber 7b. The air to be treated A passes through the lower chamber 7b,
During this time, it comes into contact with the hydrophilic fiber sheet 8 and adsorbs (accumulates) moisture, which becomes dry air and is sent to the cooling device. Further, in the upper chamber 7a, the hydrophilic fiber sheet 8 is heated by solar heat or other heat source, and the moisture adsorbed (accommodated) in the lower chamber 7b moves through the hydrophilic fiber sheet 8 and evaporates from the surface of the upper chamber 7a. do. Therefore, moisture adsorption (accumulation) and desorption can be performed simultaneously with a simple device. Furthermore, the humid air C in the upper chamber 7a can be used as a heat source for a water heater or the like, and in the winter, the device shown in FIG. 3 can be used as it is as a heat collector for heating, etc.

第4図は、上記空気乾燥装置を実際の冷房シス
テムに組みこんだフローシートの一例であり、第
2図の装置を使用した場合を示す。第4図におい
て親水性繊維シート3に水分を吸着(収)されて
乾燥した空気は冷水塔9に送られ、底部の放出管
10から放出され、一方、冷水塔9の頂部に設け
られた水放出管11からは散水され、放出された
空気は水と接触して水分を吸収し、水は空気の温
度における湿球温度近くまで冷却されて蓄冷槽1
2に送られ、冷房用の水と熱交換して再び冷水塔
9に送られて冷却される。他方、冷水塔9で水分
を吸収した湿潤空気は再度水分吸着室4に送られ
て水分を吸着(収)されて循環する。
FIG. 4 is an example of a flow sheet in which the above air drying device is incorporated into an actual cooling system, and shows a case where the device shown in FIG. 2 is used. In FIG. 4, air that has had moisture adsorbed (accumulated) on the hydrophilic fiber sheet 3 and dried is sent to the cooling tower 9 and released from the discharge pipe 10 at the bottom. Water is sprayed from the discharge pipe 11, and the discharged air comes into contact with water and absorbs moisture, and the water is cooled to a temperature close to the wet bulb temperature of the air, and is then stored in the cold storage tank 1.
2, where it exchanges heat with cooling water and is sent again to the cooling water tower 9 to be cooled. On the other hand, the humid air that has absorbed moisture in the cooling tower 9 is again sent to the moisture adsorption chamber 4, where the moisture is adsorbed (accumulated) and circulated.

蓄冷槽12で熱交換によつて冷却された水は放
冷室13を冷房し、再び蓄冷槽12に還元されて
冷却されて循環する。
The water cooled by heat exchange in the cold storage tank 12 cools the cooling chamber 13, and is returned to the cold storage tank 12 again to be cooled and circulated.

水分脱着室6で温められるとともに水分を吸収
した空気は、そのまま系外に放出してもよいが、
蓄熱槽14に送つて暖房用又は温水器用の水と熱
交換して再び水分脱着室6に循環してもよい。蓄
熱槽14で温められた暖房用又は温水器用の水は
放熱室13(放冷室と同じ)で放熱する。従つて
このシステムは冷房、暖房両用に利用できる。
The air that has been heated and absorbed moisture in the moisture desorption chamber 6 may be released outside the system as it is, but
The water may be sent to the heat storage tank 14 to exchange heat with water for heating or a water heater, and then circulated to the water desorption chamber 6 again. The water for heating or water heater heated in the heat storage tank 14 radiates heat in the heat radiation chamber 13 (same as the cold radiation chamber). Therefore, this system can be used for both cooling and heating.

また前述した親水性繊維は関係湿度が大きい状
態で平衡吸着量が著しく大きくなる特性があるの
で、これを関係湿度が比較的小さい状態でかなり
高い平衡吸着量を示す吸着(収)材、例えば細孔
径が小さいか細孔表面積が小さい活性炭素繊維、
あるいはシリカゲルのような水分吸着剤、塩化リ
チウムのような水分吸収剤を含有する親水性繊維
と併用してもよい。この場合には、空気の水分吸
着(収)を複数段に分けて、湿気の多い空気をま
ず親水性繊維シートに接触させて水分を吸収さ
せ、次いで上述した活性炭素繊維シート、水分吸
着剤、水分吸収剤を含有する親水性繊維シートに
接触させて更に水分を吸着(収)させることによ
り水分吸着(収)効率が著しく向上し、冷房温度
を著しく低下させることができる。
In addition, the hydrophilic fibers mentioned above have the characteristic that the equilibrium adsorption amount becomes significantly large when the relative humidity is high. activated carbon fibers with small pore size or small pore surface area;
Alternatively, it may be used in combination with a hydrophilic fiber containing a water absorbent such as silica gel or a water absorbent such as lithium chloride. In this case, the moisture adsorption (accumulation) of the air is divided into multiple stages, and the humid air is first brought into contact with the hydrophilic fiber sheet to absorb moisture, and then the activated carbon fiber sheet, moisture adsorbent, etc. By bringing it into contact with a hydrophilic fiber sheet containing a moisture absorbent to further adsorb (accumulate) moisture, the efficiency of moisture adsorption (accumulation) can be significantly improved, and the cooling temperature can be significantly lowered.

第5図は、上述の多段式水分吸着法を実施する
場合のフローシートの一例を示したものであつ
て、空気は、まず親水性繊維シートを使用した水
分吸着室15で該シートに接触して水分が吸着さ
れ、次いで上述した活性炭素繊維シート又は水分
吸着(収)剤を含有する親水性繊維シートを使用
した水分吸着室15′で該シートと接触して更に
水分を吸着されて乾燥空気となつて冷水塔9に送
られる。冷水塔9では第4図と同じく乾燥空気と
水が接触して水は蒸発潜熱により冷却されて蓄冷
槽12に送られ、水分を吸収した湿潤空気は再び
水分吸着室15に循環される。
FIG. 5 shows an example of a flow sheet for carrying out the multi-stage moisture adsorption method described above, in which air first comes into contact with a hydrophilic fiber sheet in a moisture adsorption chamber 15 using the sheet. Moisture is adsorbed, and then in the moisture adsorption chamber 15' using the above-mentioned activated carbon fiber sheet or a hydrophilic fiber sheet containing a moisture adsorption (absorption) agent, further moisture is adsorbed by contact with the sheet and dry air is released. The water is then sent to the cooling tower 9. In the cooling tower 9, dry air and water come into contact as in FIG. 4, and the water is cooled by the latent heat of vaporization and sent to the cold storage tank 12, and the humid air that has absorbed moisture is circulated to the moisture adsorption chamber 15 again.

また蓄冷槽12では冷却水は、冷房用の水と熱
交換して再び冷水塔9に循環される。冷却用の水
は蓄冷槽12で冷却されたのち放冷室13を冷房
し、再び蓄冷槽12に循環する。
Furthermore, in the cold storage tank 12, the cooling water exchanges heat with water for cooling and is circulated to the cooling water tower 9 again. The cooling water is cooled in the cold storage tank 12, cools the cooling chamber 13, and then circulates to the cold storage tank 12 again.

本発明の冷房システムには多くの利点がある。
これらをまとめて列挙すると次のようになる。
The cooling system of the present invention has many advantages.
Listing these together is as follows.

(1) 高圧装置、過激な薬品等を使用しないので、
安全性が高く、環境を汚染しない。
(1) No high-pressure equipment or harsh chemicals are used, so
Highly safe and does not pollute the environment.

(2) 親水性繊維シートは膜状であつて取扱いが容
易であり、かつこのシートに対して平行に空気
を流すことによつて通気抵抗が低く、従つて圧
力損失が小さい利点があり、空気を送るブロア
の容量を下げることができ、エネルギー効率が
きわめてよい。
(2) Hydrophilic fiber sheets are membrane-like and easy to handle, and have the advantage of low ventilation resistance and low pressure loss by allowing air to flow parallel to the sheet. It is possible to reduce the capacity of the blower that sends the air, making it extremely energy efficient.

(3) 親水性繊維シートは、簡単に黒色に染色する
ことができるので、水分吸着(収)材と太陽熱
集熱器を兼ねさせることができ、従つて集蓄さ
れた熱を利用して暖房又は温水システムにも利
用できるという利点がある。
(3) Hydrophilic fiber sheets can be easily dyed black, so they can serve as both a moisture adsorption material and a solar heat collector, and the collected heat can be used for heating. It also has the advantage of being usable for hot water systems.

(4) 本発明の水分吸着(収)装置としても利用す
ることができる。
(4) It can also be used as a moisture adsorption (accumulation) device of the present invention.

次に具体的な実施例について本発明を説明す
る。
Next, the present invention will be explained with reference to specific examples.

製造例 1 ポリアクリル酸系吸水性ポリマーをコートした
アクリル繊維を10重量%の塩化リチウム水溶液に
浸漬し、脱水、乾燥させた。この繊維の塩化リチ
ウム担持量は6.4重量%であつた。
Production Example 1 Acrylic fiber coated with a polyacrylic acid-based water-absorbing polymer was immersed in a 10% by weight lithium chloride aqueous solution, dehydrated, and dried. The amount of lithium chloride supported on this fiber was 6.4% by weight.

次に温度25℃、関係湿度25%の乾燥空気を、該
繊維を通過させて流し、水分吸着量を測定した。
水分吸着量は約1時間後に平衡に達し、その平衡
水分量は17重量%であつた。
Next, dry air at a temperature of 25° C. and relative humidity of 25% was passed through the fibers, and the amount of water adsorption was measured.
The amount of water adsorption reached equilibrium after about 1 hour, and the equilibrium water content was 17% by weight.

次に、98℃に加熱(関係湿度3%)した大気
を、上記水分吸着繊維に流し、該繊維の再生を行
つた。約20分後に平衡に達し、20重量%の水分吸
着量に低下した。
Next, air heated to 98° C. (relative humidity: 3%) was flowed through the moisture-absorbing fibers to regenerate the fibers. Equilibrium was reached after about 20 minutes, and the amount of water adsorption decreased to 20% by weight.

また、上記製造例1で得られた塩化リチウム担
持アクリル繊維を直径5cmのガラス円筒に詰め、
下部から温度25℃、関係湿度65%の空気を流し、
関係湿度15%の乾燥空気を得た。次にこの乾燥空
気を水に接触させたところ、12℃の湿り空気が得
られた。
In addition, the lithium chloride-supported acrylic fiber obtained in Production Example 1 was packed into a glass cylinder with a diameter of 5 cm,
Air with a temperature of 25℃ and relative humidity of 65% flows from the bottom,
Dry air with relative humidity of 15% was obtained. Next, when this dry air was brought into contact with water, humid air at a temperature of 12°C was obtained.

製造例 2 酢酸ビニルとアクリル酸メチルの共重合体(共
重合比1:1)を厚み1mmのフイルム状に成形
し、アルカリ鹸化することによつて吸水性ポリマ
ーを得た。このフイルムを金網上に載せ、これを
10枚重ねて容器に納めた。この容器に温度25℃、
関係湿度70%の大気をその流れ方向が該フイルム
に平行になるように流したところ、関係湿度10%
の乾燥空気を水と接触させたところ13℃の湿り空
気が得られた。
Production Example 2 A copolymer of vinyl acetate and methyl acrylate (copolymerization ratio 1:1) was formed into a film with a thickness of 1 mm, and a water-absorbing polymer was obtained by saponifying the film with an alkali. Place this film on a wire mesh and
I stacked 10 sheets and put them in a container. This container has a temperature of 25℃,
When air with a relative humidity of 70% is flowed so that its flow direction is parallel to the film, the relative humidity is 10%.
When dry air was brought into contact with water, humid air at a temperature of 13°C was obtained.

実施例 第4図に示す冷房システムにおいて、次のよう
な条件で運転した。
Example The cooling system shown in FIG. 4 was operated under the following conditions.

(1) 製造例1で得られた塩化リチウム担持アクリ
ル繊維(黒色に染色)で作られた不織布シート 幅2.00m、長さ4.5mの環状ベルト 吸収部面積2m×2m 乾燥部面積2m×2m 吸収部、乾燥部の距離0.25m 目付300gr/m2 集熱面積(太陽熱)4m2 ベルト移動速度 1回転/10分間 (2) 冷水塔 入口空気温度約30℃、関係湿度約20% 出口空気温度約20℃、関係湿度約100% 循環空気量3m2/分 得られる冷水温度約20℃ 上記の条件で得られた冷水を放冷器に送つた時
の冷房能力は約800Kcal/hr(8hr/日運転)であ
つた。
(1) Non-woven fabric sheet made from the lithium chloride-supported acrylic fiber (dyed black) obtained in Production Example 1 A circular belt with a width of 2.00 m and a length of 4.5 m Absorption area: 2 m x 2 m Dry area area: 2 m x 2 m Absorption Distance between section and drying section: 0.25 m Weight: 300 gr/m 2 Heat collection area (solar heat) 4 m 2 Belt movement speed: 1 revolution/10 minutes (2) Cooling tower inlet air temperature: approx. 30°C, relative humidity: approx. 20% Outlet air temperature: approx. 20℃, relative humidity approximately 100% Circulating air volume 3m 2 /min Obtained cold water temperature approximately 20℃ When the cold water obtained under the above conditions is sent to the cooler, the cooling capacity is approximately 800Kcal/hr (8hr/day) driving).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の冷房システムにおける水分
吸着(収)装置の一例を示す斜視図、第2図及び
第3図は、各々同じく水分吸着(収)装置の他の
一例を示す断面図である。また第4図は本発明の
冷暖房システムの一例を示すフローシート、第5
図は本発明の冷房システムの他の一例を示すフロ
ーシートである。 1,3,8:親水性繊維シート、2:段ボール
状シート、4,15,15′:水分吸着(収)室、
5:冷却管、6:水分脱着室、7:水分吸脱着
室、9:冷水塔、10:空気放出管、11:水放
出管、12:蓄冷槽、13:放冷室(放熱室)、
14:蓄熱槽。
FIG. 1 is a perspective view showing an example of the moisture adsorption (accumulation) device in the cooling system of the present invention, and FIGS. 2 and 3 are sectional views showing other examples of the moisture adsorption (accumulation) device, respectively. be. FIG. 4 is a flow sheet showing an example of the heating and cooling system of the present invention;
The figure is a flow sheet showing another example of the cooling system of the present invention. 1, 3, 8: hydrophilic fiber sheet, 2: corrugated sheet, 4, 15, 15': moisture adsorption (accommodation) chamber,
5: Cooling pipe, 6: Moisture desorption chamber, 7: Moisture adsorption/desorption chamber, 9: Cold water tower, 10: Air discharge pipe, 11: Water discharge pipe, 12: Cold storage tank, 13: Cool radiation chamber (heat radiation chamber),
14: Heat storage tank.

Claims (1)

【特許請求の範囲】 1 乾燥空気を水に接触させて得られる冷水によ
り冷房を行う冷房システムにおいて、空気を親水
性繊維に接触させて乾燥空気を得る手段、該乾燥
空気を水に接触させて冷水を得る手段、該冷水に
より冷房を行う手段、および水分を吸収した親水
性繊維(活性炭素繊維、炭素繊維を除く)を太陽
光又はその他の熱源に曝し集蓄した熱によつて水
分を離脱させ、前記親水性繊維を再生する手段と
よりなる冷房システム。 2 親水性繊維がセルロースかそれ以上の吸湿性
の繊維である特許請求の範囲第1項記載の親水性
繊維を用いた冷房システム。 3 親水性性能が、任意の繊維に吸湿性ポリマー
を塗布及び/又は含浸させた繊維である特許請求
の範囲第1項記載の親水性繊維を用いた冷房シス
テム。 4 親水性繊維がシリカゲルのような水分吸着剤
及び/又は塩化リチウムのような水分吸収剤を含
有させたものである特許請求の範囲第1項ないし
第3項記載の親水性繊維を用いた冷房システム。 5 親水性繊維を環状ベルトに成形し、その一部
で水分を吸着又は吸収させて乾燥空気を得、他の
一部で水分の離脱を行いつつ該環状ベルトを循環
移動させることを特徴とする特許請求の範囲第1
項ないし第4項記載の親水性繊維を用いた冷房シ
ステム。 6 平面シート状に成形した親水性繊維の片面に
空気を接触させて乾燥空気を得るとともに、その
反対面に太陽熱又は他の熱を当てて該シート状親
水性繊維の厚み方向に水分を移動させつつ同時に
水分の吸着又は吸収操作と離脱操作とを行うこと
を特徴とする特許請求の範囲第1項ないし第4項
記載の親水性繊維を用いた冷房システム。 7 親水性繊維シートと相対湿度の低い雰囲気で
水分の吸着性能又は吸収性能のすぐれた他の繊維
シートとに空気を順次接触させることにより乾燥
空気を得ることを特徴とする特許請求の範囲第1
項ないし第6項記載の親水性繊維を用いた冷房シ
ステム。 8 親水性繊維の水分を離脱させた集蓄熱で空気
を加熱し、この加熱空気を利用することを特徴と
する特許請求の範囲第1項ないし第6項記載の親
水性繊維を用いた冷房システム。
[Claims] 1. In a cooling system that performs cooling using cold water obtained by bringing dry air into contact with water, a means for obtaining dry air by bringing the air into contact with hydrophilic fibers, and a means for obtaining dry air by bringing the dry air into contact with water. A means for obtaining cold water, a means for cooling with the cold water, and a means for exposing hydrophilic fibers (excluding activated carbon fibers and carbon fibers) that have absorbed moisture to sunlight or other heat sources to release moisture using the collected heat. and means for regenerating the hydrophilic fibers. 2. A cooling system using hydrophilic fibers according to claim 1, wherein the hydrophilic fibers are cellulose or higher hygroscopic fibers. 3. A cooling system using hydrophilic fibers according to claim 1, wherein the fibers have hydrophilic properties and are obtained by coating and/or impregnating arbitrary fibers with a hygroscopic polymer. 4. Air conditioning using hydrophilic fibers according to claims 1 to 3, wherein the hydrophilic fibers contain a moisture absorbent such as silica gel and/or a moisture absorbent such as lithium chloride. system. 5 Hydrophilic fibers are formed into an annular belt, a part of which adsorbs or absorbs moisture to obtain dry air, and another part of which removes moisture while circulating the annular belt. Claim 1
A cooling system using the hydrophilic fibers according to items 1 to 4. 6. Obtaining dry air by bringing air into contact with one side of a hydrophilic fiber formed into a flat sheet, and applying solar heat or other heat to the other side to move moisture in the thickness direction of the sheet-shaped hydrophilic fiber. 5. A cooling system using hydrophilic fibers according to any one of claims 1 to 4, characterized in that the hydrophilic fiber adsorbs or absorbs moisture and performs a moisture removal operation at the same time. 7 Claim 1, characterized in that dry air is obtained by sequentially bringing air into contact with a hydrophilic fiber sheet and another fiber sheet with excellent moisture adsorption or absorption performance in an atmosphere with low relative humidity.
A cooling system using the hydrophilic fibers according to items 6 to 6. 8. A cooling system using hydrophilic fibers according to claims 1 to 6, characterized in that air is heated by collecting and storing heat obtained by removing water from the hydrophilic fibers, and the heated air is utilized. .
JP14863280A 1980-10-22 1980-10-22 Space cooling system utilizing hydrophilic fiber Granted JPS5773334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14863280A JPS5773334A (en) 1980-10-22 1980-10-22 Space cooling system utilizing hydrophilic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14863280A JPS5773334A (en) 1980-10-22 1980-10-22 Space cooling system utilizing hydrophilic fiber

Publications (2)

Publication Number Publication Date
JPS5773334A JPS5773334A (en) 1982-05-08
JPH0143218B2 true JPH0143218B2 (en) 1989-09-19

Family

ID=15457125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14863280A Granted JPS5773334A (en) 1980-10-22 1980-10-22 Space cooling system utilizing hydrophilic fiber

Country Status (1)

Country Link
JP (1) JPS5773334A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3076743A1 (en) * 2018-01-16 2019-07-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude ADSORBENT WITH WAVE-CROSS STRUCTURE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726331A (en) * 1980-07-24 1982-02-12 Toyobo Co Ltd Air cooling system and air conditioning system using activated carbon fiber
JPS5765526A (en) * 1980-10-07 1982-04-21 Toyobo Co Ltd Cooling system

Also Published As

Publication number Publication date
JPS5773334A (en) 1982-05-08

Similar Documents

Publication Publication Date Title
JPH0118335B2 (en)
US6018953A (en) Air conditioning system having indirect evaporative cooler
US5727394A (en) Air conditioning system having improved indirect evaporative cooler
US3844737A (en) Desiccant system for an open cycle air-conditioning system
US20180328601A1 (en) Heat recovery adsorber as ventilation system in buildings
USRE43865E1 (en) Dehumidifying element and manufacturing method for the same
US4341539A (en) Thermally regenerative desiccant element
US6003327A (en) Method and apparatus for cooling warm moisture-laden air
US4113004A (en) Air conditioning process
US4786301A (en) Desiccant air conditioning system
JP2950444B2 (en) Deodorizing and dehumidifying cooling method and deodorizing and dehumidifying cooling device
JP2010069428A (en) Dehumidifying apparatus
EP3043888B1 (en) Water extracting device
KR100963116B1 (en) Dehumidifiers and dehumidifying elements and methods of making them
US4915715A (en) Humidity conditioner
US4014380A (en) Air conditioning process
JP4529318B2 (en) Dehumidifying device and cold air generator using the dehumidifying device
JPH0370143B2 (en)
JPH0115780B2 (en)
US20240328641A1 (en) Cooling and dehumidification system
JPH0143218B2 (en)
JPS60212207A (en) Dehumidified dry air producing system utilizing solar energy
JPH0154613B2 (en)
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
JP2002340372A (en) Dehumidifying device