[go: up one dir, main page]

JPH0143049Y2 - - Google Patents

Info

Publication number
JPH0143049Y2
JPH0143049Y2 JP1983114286U JP11428683U JPH0143049Y2 JP H0143049 Y2 JPH0143049 Y2 JP H0143049Y2 JP 1983114286 U JP1983114286 U JP 1983114286U JP 11428683 U JP11428683 U JP 11428683U JP H0143049 Y2 JPH0143049 Y2 JP H0143049Y2
Authority
JP
Japan
Prior art keywords
circuit
signal
blood flow
frequency
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983114286U
Other languages
Japanese (ja)
Other versions
JPS6023005U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11428683U priority Critical patent/JPS6023005U/en
Publication of JPS6023005U publication Critical patent/JPS6023005U/en
Application granted granted Critical
Publication of JPH0143049Y2 publication Critical patent/JPH0143049Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 本考案は、励磁コイルにより血流を矩形波の交
番磁界で励磁し、血流々速に対応して検出電極に
より検出された誘起電圧を復調して血流信号とす
る電磁血流計に関するものである。
[Detailed description of the invention] This invention uses an excitation coil to excite the blood flow with an alternating magnetic field of a square wave, and demodulates the induced voltage detected by the detection electrode in accordance with the velocity of the blood flow to generate a blood flow signal. The present invention relates to an electromagnetic blood flow meter.

この種の血流計は、フアラデイの法則を基に磁
界中を通流する血流により検出電極に誘起電圧を
検出させるものであるが、通常検出信号には検出
電極のリード線に励磁コイルにより交差磁界が生
じることに起因する変成器成分が重畳する外に、
第1図に示す如く励磁とは無関係に検出電極に直
接誘起される心電図信号(以下ECG信号という)
も混入する。このECG信号は血流信号のキヤリ
アに対して周波数成分が低いために、先ずハイパ
スフイルタを通すことにより除去できるが、大巾
に低減させようとすると血流信号への影響も否め
ない。したがつて、ECG信号の除去の観点から
は励磁周波数をできるだけ高くした方が良いが、
逆に変成器成分は対応して増加し、ゼロ安定を損
う結果になる。
This type of blood flow meter uses Faraday's law to detect the induced voltage at the detection electrode by blood flowing through a magnetic field, but normally the detection signal is generated by an excitation coil connected to the lead wire of the detection electrode. In addition to the superposition of transformer components due to cross magnetic fields,
As shown in Figure 1, an electrocardiogram signal (hereinafter referred to as an ECG signal) induced directly in the detection electrode regardless of excitation.
Also mixed in. Since this ECG signal has a lower frequency component than the carrier of the blood flow signal, it can be removed by first passing it through a high-pass filter, but if an attempt is made to significantly reduce it, it will inevitably affect the blood flow signal. Therefore, from the perspective of removing ECG signals, it is better to make the excitation frequency as high as possible;
Conversely, the transformer component increases correspondingly, resulting in a loss of zero stability.

そこで、この変成器成分は例えば特公昭54−
39750による方法で除去することが考えられる。
即ち、第2図に示す如く各励磁期間に非励磁期間
を挿入し、検出された誘導電圧波形の励磁期間の
変成器成分をVTMそして非励磁期間の変成器成分
をVTとすると、 VT=KVTM+Vo なる関係があり、(K:比例定数、Vo:オフセツ
ト電圧)、したがつて VTM=VT−Vo/K となるから、VTを検出してVTMを求めることがで
き、各誘起電圧の終端部分をサンプリングして
VTMを減算すると、ほぼ純粋な血流信号が発生可
能となる。しかしながら、この方法を用いてもキ
ヤリア周波数を例えば500Hz程度に高くすると、
励磁期間の変成器成分VTMと非励磁期間の変成器
成分VTの間に存在した比例関係が失なわれる現
象が発生するため変成器成分の除去が難しくな
る。
Therefore, this transformer component is, for example,
39750 may be used to remove it.
That is, as shown in Figure 2, if a non-excitation period is inserted into each excitation period, and the transformer component of the detected induced voltage waveform during the excitation period is V TM and the transformer component during the non-excitation period is V T , then V There is a relationship: T = KV TM + Vo (K: constant of proportionality, Vo: offset voltage), and therefore V TM = V T - Vo/K, so it is possible to detect V T and find V TM . By sampling the terminal part of each induced voltage,
Subtracting V TM allows a nearly pure blood flow signal to be generated. However, even if this method is used, if the carrier frequency is increased to about 500Hz,
A phenomenon occurs in which the proportional relationship that existed between the transformer component V TM during the energized period and the transformer component V T during the non-energized period is lost, making it difficult to remove the transformer component.

よつて、本考案は励磁周波数を高くしてもゼロ
安定度の低下を回避できる矩形波交番磁界形の電
磁血流計を提供することを目的とする。
Therefore, an object of the present invention is to provide a rectangular wave alternating magnetic field type electromagnetic blood flow meter that can avoid a decrease in zero stability even when the excitation frequency is increased.

次に、本考案の実施例を第3図及び第4図を基
に説明する。
Next, an embodiment of the present invention will be explained based on FIGS. 3 and 4.

第3図において、1は、プローブ2を矩形波で
励磁する励磁回路であり、その励磁周波数はゲー
トパルスaの入力中一時的に通常の高い周波数例
えば500Hzから低い周波数例えば50Hzへ切換わる。
3は、プローブ2で検出された誘導信号を入力と
し、少くともECG信号除去用のハイパスフイル
タもしくはハイパス特性を備えた帰還増幅器と、
復調回路とを含む通常の血流信号検出回路であ
る。4は血流信号検出回路3の出力である血流信
号bを平均化する平均回路、5はゲートパルスa
の発生時の平均回路4の出力をホールドする保持
回路、6はゲートパルスaの消滅直後の通常の平
均回路4の出力をホールドする保持回路、7は保
持回路6の出力から保持回路5の出力を減算する
減算回路、8は血流信号bから減算回路7の出力
d−cを減算する減算回路である。ゲートパルス
aは、周期的に発生させると、以上説明した回路
1,4〜8を自動ゼロバランス回路として機能さ
せ、随時手動のスイツチ操作で発生可能にしてお
くと、手動ゼロバランス回路となる。また、ゲー
トパルスa即ち50Hzキヤリアの発生時間幅は、平
均回路4へ完全な平均化を行わせるために少くと
もその平均回路4の有する時定数よりも長くす
る。
In FIG. 3, reference numeral 1 denotes an excitation circuit that excites the probe 2 with a rectangular wave, and its excitation frequency is temporarily switched from a normal high frequency, such as 500 Hz, to a low frequency, such as 50 Hz, during input of the gate pulse a.
3 is a feedback amplifier which inputs the induced signal detected by the probe 2 and has at least a high-pass filter or high-pass characteristic for removing the ECG signal;
This is a normal blood flow signal detection circuit including a demodulation circuit. 4 is an averaging circuit that averages the blood flow signal b which is the output of the blood flow signal detection circuit 3, and 5 is a gate pulse a.
6 is a holding circuit that holds the output of the average circuit 4 immediately after the disappearance of gate pulse a; 7 is a holding circuit that holds the output of the average circuit 4 immediately after the gate pulse a disappears; 7 is the output of the holding circuit 5 from the output of the holding circuit 6; 8 is a subtraction circuit that subtracts the output d−c of the subtraction circuit 7 from the blood flow signal b. When the gate pulse a is generated periodically, the circuits 1, 4 to 8 described above function as an automatic zero balance circuit, and when the gate pulse a can be generated at any time by manual switch operation, it becomes a manual zero balance circuit. Furthermore, the generation time width of the gate pulse a, that is, the 50 Hz carrier, is set to be at least longer than the time constant of the averaging circuit 4 in order to allow the averaging circuit 4 to perform complete averaging.

動作は次の通りである。 The operation is as follows.

通常の測定時においてプローブ2で誘導された
励磁周波数500Hzの血流信号は、血流信号検出回
路3へ供給されて、そのハイパスフイルタで
ECG信号の成分が歪みを与えること無く大巾に
低減され、さらに増幅・復調されて血流信号bと
して出力される。即ち、ECG信号は除去されて
いるが、復調により直流成分となつた変成器成分
が重畳している。
During normal measurement, a blood flow signal with an excitation frequency of 500 Hz induced by the probe 2 is supplied to the blood flow signal detection circuit 3 and passed through its high-pass filter.
The components of the ECG signal are significantly reduced without causing distortion, further amplified and demodulated, and output as a blood flow signal b. That is, although the ECG signal has been removed, the transformer component, which has become a DC component due to demodulation, is superimposed.

ゲートパルスaの発生時には、励磁周波数が50
Hzに切換わり血流信号bにおける変成器成分の影
響はほとんど零になり、平均回路4で平均化され
て保持回路5では純粋な血流信号のみが平均化さ
れた保持信号cとしてホールドされる。一方、ゲ
ートパルスa消滅直後の励磁周波数500Hzの血流
信号bは、平均回路4において重畳している変成
器成分も含めて平均化され、保持回路6では保持
信号dとしてホールドされ、したがつて減算回路
7は保持信号dから保持信号cの減算信号即ち変
成器成分信号を連続的に出力する。これにより、
減算回路8は血流信号bから変成器成分の影響を
除去し、最終的に通常の励磁周波数500Hzに対応
してECG信号が大巾に低減され、励磁周波数50
Hzに対応して変成器成分の大巾に除去されたほぼ
純粋な血流信号eを出力する。
When gate pulse a is generated, the excitation frequency is 50
Hz, the influence of the transformer component on the blood flow signal b becomes almost zero, and is averaged by the averaging circuit 4, and only the pure blood flow signal is held in the holding circuit 5 as the averaged holding signal c. . On the other hand, the blood flow signal b with an excitation frequency of 500 Hz immediately after the disappearance of the gate pulse a is averaged including the superimposed transformer component in the averaging circuit 4, and is held as the holding signal d in the holding circuit 6. The subtraction circuit 7 continuously outputs a subtraction signal of the holding signal c from the holding signal d, that is, a transformer component signal. This results in
The subtraction circuit 8 removes the influence of the transformer component from the blood flow signal b, and finally the ECG signal is greatly reduced corresponding to the normal excitation frequency of 500Hz, and the excitation frequency is 50Hz.
A substantially pure blood flow signal e from which the transformer component is largely removed is output in accordance with the frequency of Hz.

尚、保持信号cを発生させる励磁周波数を前述
の50Hz或はそれ以下に選ぶとECG信号やその他
の雑音の影響が平均化回路4の出力信号に現われ
易くなるという問題があるために、例えば125Hz
にして前述の特公昭54−39750による方法を基に
血流信号検出回路3においてより完全に変成器成
分の除去された血流信号を検出するならば、
ECG信号やその他の雑音に影響されることのな
いより純粋な血流信号eが得られる。また、保持
回路5,6は保持回路cの経時的な変動を少くす
るためにA/Dコンバータ、ラツチ回路及びD/
Aコンバータから構成してデイジタル値として保
持することができる。保持回路6へのサンプリン
グホールドのタイミングは、ゲートパルスaの発
生時の前に別のサンプリングパルスを供給し、そ
の直前で行うこともできる。
Note that if the excitation frequency for generating the holding signal c is selected to be 50Hz or lower, the influence of ECG signals and other noises will likely appear on the output signal of the averaging circuit 4.
If the blood flow signal from which the transformer component is more completely removed is detected in the blood flow signal detection circuit 3 based on the method according to the above-mentioned Japanese Patent Publication No. 54-39750,
A purer blood flow signal e that is not affected by ECG signals or other noises can be obtained. In addition, the holding circuits 5 and 6 are equipped with an A/D converter, a latch circuit, and a D/D converter in order to reduce fluctuations in the holding circuit c over time.
It can be constructed from an A converter and held as a digital value. The timing of sampling and holding to the holding circuit 6 can also be set immediately before the gate pulse a by supplying another sampling pulse before the gate pulse a is generated.

変成器成分信号のホールドは、第5図に示す如
く減算回路7に後続する保持回路11に行わせ、
保持回路5,6のいずれか一方を廃止しても良
い。即ち、サンプリングパルスfにより保持回路
10へ励磁周波数切換時のいずれか一方の平均信
号をホールドさせ、保持回路11にその時の減算
回路7の出力をホールドさせる。第6図は、A/
Dコンバータ12及びD/Aコンバータ13間に
第3乃び第5図の回路における減算回路・保持機
能を備えたマイクロコンピユータ14を挿入した
もので、ゲートパルスaが発生すると、両キヤリ
ア周波数に対する平均値データを取込み、減算処
理したデータをメモリに保持し、出力データとし
てA/Dコンバータ13へ連続的に供給する。
Holding of the transformer component signal is performed by a holding circuit 11 following the subtraction circuit 7 as shown in FIG.
Either one of the holding circuits 5 and 6 may be abolished. That is, the sampling pulse f causes the holding circuit 10 to hold one of the average signals at the time of excitation frequency switching, and causes the holding circuit 11 to hold the output of the subtraction circuit 7 at that time. Figure 6 shows A/
A microcomputer 14 equipped with the subtraction circuit and holding function of the circuits shown in Figs. 3 and 5 is inserted between the D converter 12 and the D/A converter 13. When gate pulse a is generated, the average Value data is taken in, the subtracted data is held in memory, and is continuously supplied to the A/D converter 13 as output data.

以上、本考案によれば矩形波励磁の電磁血流計
においてその励磁周波数を高くすることにより
ECG信号の混入をハイパスフイルタにより大巾
に低減可能になり、対応して増加する変成器成分
は一時的に低くされた励磁周波数の血流信号を期
にしそのレベルを算出して除去することにより、
ゼロ安定度が秀れ、しかもECG信号の混入の少
い血流信号が得られる。
As described above, according to the present invention, by increasing the excitation frequency in a rectangular wave excitation electromagnetic blood flow meter,
ECG signal contamination can be greatly reduced by using a high-pass filter, and the correspondingly increased transformer component can be removed by calculating the level of the blood flow signal with a temporarily lowered excitation frequency. ,
It has excellent zero stability and can obtain blood flow signals with less ECG signal contamination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常の心電図信号波形、第2図は特公
昭54−39750による変成器成分除去方法の説明図、
第3図は本考案による電磁血流計の回路構成例、
第4図はその各部波形並びに第5図及び第6図は
第3図による回路の変形例である。
Figure 1 is a normal electrocardiogram signal waveform, Figure 2 is an explanatory diagram of the transformer component removal method according to Japanese Patent Publication No. 54-39750,
Figure 3 shows an example of the circuit configuration of the electromagnetic blood flow meter according to the present invention.
FIG. 4 shows waveforms of various parts thereof, and FIGS. 5 and 6 show modified examples of the circuit shown in FIG. 3.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 矩形波でプローブを励磁し、かつその励磁周波
数が切換指令信号に応答して通常の周波数からよ
り低い周波数へ一時的に切換わる励磁回路と、前
記プローブの検出信号を入力とし、かつECG信
号除去用ハイパスフイルタ及び復調器を含む血流
信号検出回路と、この回路の出力である血流信号
を平均化する平均回路と、前記励磁周波数が前記
のより低い周波数に切換わつている間、前記通常
の周波数に対する前記平均回路の出力から前記の
より低い周波数に対する前記平均回路の出力の減
算及びホールドを行う減算保持回路と、前記血流
信号から前記減算保持回路の出力を減算して最終
的な血流信号を出力する減算回路とを有すること
を特徴とする電磁血流計。
An excitation circuit that excites a probe with a rectangular wave and whose excitation frequency temporarily switches from a normal frequency to a lower frequency in response to a switching command signal, which receives the detection signal of the probe as input, and removes the ECG signal. a blood flow signal detection circuit including a high-pass filter and a demodulator; and an averaging circuit for averaging the blood flow signal output from this circuit; a subtraction and holding circuit that subtracts and holds the output of the averaging circuit for the lower frequency from the output of the averaging circuit for the frequency of An electromagnetic blood flow meter characterized by having a subtraction circuit that outputs a flow signal.
JP11428683U 1983-07-25 1983-07-25 electromagnetic blood flow meter Granted JPS6023005U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11428683U JPS6023005U (en) 1983-07-25 1983-07-25 electromagnetic blood flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11428683U JPS6023005U (en) 1983-07-25 1983-07-25 electromagnetic blood flow meter

Publications (2)

Publication Number Publication Date
JPS6023005U JPS6023005U (en) 1985-02-16
JPH0143049Y2 true JPH0143049Y2 (en) 1989-12-14

Family

ID=30264239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11428683U Granted JPS6023005U (en) 1983-07-25 1983-07-25 electromagnetic blood flow meter

Country Status (1)

Country Link
JP (1) JPS6023005U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972985A (en) * 1972-10-11 1974-07-15
JPS5714322A (en) * 1980-07-02 1982-01-25 Nippon Kouden Kogyo Kk Electromagnetic blood flow meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972985A (en) * 1972-10-11 1974-07-15
JPS5714322A (en) * 1980-07-02 1982-01-25 Nippon Kouden Kogyo Kk Electromagnetic blood flow meter

Also Published As

Publication number Publication date
JPS6023005U (en) 1985-02-16

Similar Documents

Publication Publication Date Title
JPS5927566B2 (en) electromagnetic blood flow meter
JP3199460B2 (en) Error detection circuit of magnetic flow measurement device
JP3955692B2 (en) Inductive proximity switch
JP3899225B2 (en) Magnetic induction flow measurement method
JPH0143049Y2 (en)
JP2707762B2 (en) Electromagnetic flow meter
JP3099336B2 (en) Electromagnetic digital current detector
JP3453751B2 (en) Electromagnetic flow meter
JPH09171935A (en) Zero magnetic flux CT device
JP2823423B2 (en) Measuring device of DC current by asymmetric component in AC current
JPH0783975A (en) Insulation monitor for electric circuit of non-grounded wiring system
JPS62194418A (en) Electromagnetic flowmeter
JPH0537217Y2 (en)
JPH0326669Y2 (en)
JPH0524187Y2 (en)
JPS60174915A (en) Low frequency exciting electromagnetic flow meter
JPS6411149B2 (en)
JPH03118419A (en) Electromagnetic flowmeter
JPS63313019A (en) Electromagnetic flowmeter
JPH07333020A (en) Electromagnetic flowmeter
JPS63195523A (en) electromagnetic flow meter
JP3060346B2 (en) Superconducting coil monitoring device
JPH0351039B2 (en)
JP2810596B2 (en) Noise judgment method when measuring DC current
JP2000081346A (en) Non-full electromagnetic flowmeter