JPH0142786B2 - - Google Patents
Info
- Publication number
- JPH0142786B2 JPH0142786B2 JP11058380A JP11058380A JPH0142786B2 JP H0142786 B2 JPH0142786 B2 JP H0142786B2 JP 11058380 A JP11058380 A JP 11058380A JP 11058380 A JP11058380 A JP 11058380A JP H0142786 B2 JPH0142786 B2 JP H0142786B2
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- pipe
- gas
- nozzle body
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007664 blowing Methods 0.000 claims description 30
- 239000012790 adhesive layer Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 56
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 238000005266 casting Methods 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 8
- 239000004570 mortar (masonry) Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/50—Pouring-nozzles
- B22D41/58—Pouring-nozzles with gas injecting means
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
本発明はガス吹込み型鋳造用ノズルに関し、特
にノズル本体へのガス吹込み管の取付け構造を改
造した鋳造用ノズルに係る。
従来、この種の鋳造用ノズル、例えば浸漬ノズ
ルとしては第1図及び第2図に示す構造のものが
知られている。即ち、図中の1は下端に吐出口2
が形成されたノズル孔3を有する耐火物製のノズ
ル本体である。このノズル本体1内の長さ方向に
は環状の中空室4が前記ノズル孔3と近接して設
けられている。そして、前記ノズル本体1の上部
側壁には外部から前記中空室4に達する孔5が設
けられており、この孔5には金属製のガス吹込み
管6が耐火モルタル層7を介して挿着されてい
る。また、ガス吹込み管6が挿着されたノズル本
体1外周面にはモルタルを介して環状鉄皮8が被
覆されている。
上述した構造のガス吹込み型浸漬ノズルにおい
て、ガス吹込み管6よりノズル本体1内の中空室
4内に不活性ガス等を供給することによつて、ガ
スをノズル本体1の気孔を通つてノズル孔3内に
流出する溶鋼に供給され、ノズル孔3内壁への非
金属介在物の付着を防止する。しかしながら、か
かる構造の浸漬ノズルにあつては、金属製のガス
吹込み管6をノズル本体1の孔5に耐火モルタル
層7を介して挿着するため、溶鋼の鋳込み時の熱
影響によるガス吹込み管6と耐火物製ノズル本体
1間の熱膨張差によつてガス吹込み管6とノズル
本体1の孔5間に隙間が生じる恐れがある。この
ような隙間が生じると、ガス導入時にリークが起
こる。しかも、前記熱膨張差による応力によつて
耐火モルタル層7に亀裂が発生し、ガスリークの
一因となる。その結果、ガス圧を高くしても効果
的にノズル孔3内にガスを供給できず、非金属介
在物の付着を十分防止できない。このため、同第
1図及び2図に示すようにガス吹込み管6が挿着
されるノズル本体1外周面にガスリーク防止の目
的で環状鉄皮8を被覆している。しかしながら、
該鉄皮8もモルタルを介してノズル本体1に被覆
されるため、溶鋼の鋳込み時の熱影響による鉄皮
8とノズル本体1間の熱膨張差によつて鉄皮8と
ノズル本体1の間に隙間が生じ、ガスリークを有
効に防止できない。
本発明は上記欠点を解消するためになされたも
ので、製作コストの高騰化要因となる環状鉄皮を
被覆せずにガスリークを効果的に防止し得るガス
吹込み型鋳造用ノズルを提供しようとするもので
ある。
以下、本発明の一実施例を第3図及び第4図を
参照して説明する。
図中11は下端に4つの吐出口12…が形成さ
れたノズル孔13を有する耐火物製のノズル本体
である。このノズル本体11内の長さ方向には環
状のガス均圧帯14が前記ノズル孔13と近接し
て設けられている。そして、前記ノズル本体11
の上端側壁には第4図に示す如く一端を前記均圧
帯14に連通し、他端を外部に開口したネジ付孔
15が設けられている。このネジ付孔15には外
周面及び内周面の両方にネジ切りされた例えばス
テンレス製のパイプ16が耐熱性の無機質接着層
(商品名スミセラム)17を介して螺着されてい
る。なお、このパイプ16の内外周面のネジ形態
は外周面のネジ山のピツチ(JIS B0205―1973
「メートル並目ねじ」、JIS B0202―1966「管用ね
じ」、JIS B0203―1966「管用ねじ」記載のピツ
チ)が長く、内周面のネジ山のピツチが短くなる
ようになつている。また、前記パイプ16には先
端をネジ切り加工されたガス吹込み管18が螺着
により挿着されている。
このような構成によれば、ノズル本体11のノ
ズル孔13にガスを供給する金属製のガス吹込み
管18は耐火物製のノズル本体11のネジ付孔1
5に螺着されたステンレス製のパイプ16を介し
て該本体11に挿着されているため、溶鋼の鋳込
み時の熱影響によるガス吹込み管18と耐火物製
のノズル本体11間の熱膨張差に伴なう応力を、
これら間のパイプ16で緩和できる。その結果、
ガス吹込み管17の先端周囲に隙間が生じるのを
防止できる。更に、ノズル本体11のネジ付孔1
5と内外周面にネジ切りされたパイプ16との間
に無機質接着層17を介して螺着すれば、該接着
層17はスパイラル状となり、ガス通路が形成さ
れ難くなり更に好ましくガス吹込み管18へのガ
ス供給に際してのリークを防止でき、ひいては所
定流量のガスを環状のガス均圧帯14、ノズル本
体11の気孔を通じてノズル孔13内に供給でき
る。
また、ガス吹込み管18はノズル本体11に対
して螺着方式により取付けられているため、製造
時にはノズル本体11のネジ付孔15にネジ切り
パイプ16を螺着固定した構造のものとし、製鉄
所等での使用時において該パイプにガス吹込み管
18を簡便に螺着してガス吹込みを行なうことが
できる。その結果、ガス吹込み管の現場での取付
けを簡便にできると共に、製造過程でガス吹込み
管を取付けて最終製品とした場合に伴なう搬送時
の衝撃等によるノズル本体の損傷を防止できる利
点を有する。
更に、パイプの内外周面のネジ形態に関しては
ノズル本体11のネジ付孔15に螺着されるパイ
プ外周面のネジ山のピツチを長くし、ガス吹込み
管18の先端が螺着される内周面のネジ山のピツ
チを短くすれば、ノズル本体11に対してパイプ
16を強固に固定できると共に、パイプ16とガ
ス吹込み管18間のガスリーク防止を達成でき
る。
次に、本発明のガス吹込み型浸漬ノズルにおけ
るガスリーク防止の試験例を説明する。
試験例
ノズル本体11として下記表に示す特性の
Al2O3C系耐火材より構成し、ステンレス製パイ
プ16として外周面のネジ山のピツチが2mm
(JIS B0205―1973M14による)、内周面のネジ山
のピツチが0.9071mm(JIS B0202―1966PF1/8、
またはJIS B0203―1966PT1/8による)のものを
用いこのパイプ16をノズル本体11の均圧帯1
4と連通するネジ付孔15にアルミナ―シリカ質
接着層17を介して螺着し、このパイプ16にガ
ス吹込み管18を螺着してガス吹込み型浸漬ノズ
ルを組立てた。
比較例
試験例と同材料のノズル本体に、その環状中空
室に通じる1/8インチφの孔をあけ、この孔に耐
火モルタル層を介してガス吹込み管を挿着し、更
にこの外周面に環状鉄皮をモルタルを介して被覆
してガス吹込み型浸漬ノズルを組立てた。
しかして、試験例及び比較例の浸漬ノズルのガ
ス吹込み管に不活性ガスを2気圧の条件で供給
し、ノズル本体のノズル孔に供給される有効ガス
供給率(%)を調べた。その結果を同表に併記し
た。なお、有効ガス供給率は
ノズル孔内に供給されるガス量/総ガス吹込み量×10
0
として求めた。
The present invention relates to a gas blowing casting nozzle, and more particularly to a casting nozzle in which the mounting structure of a gas blowing pipe to a nozzle body is modified. Conventionally, as this type of casting nozzle, for example, an immersion nozzle, those having the structure shown in FIGS. 1 and 2 are known. That is, 1 in the figure has a discharge port 2 at the bottom end.
This is a nozzle body made of refractory material and having a nozzle hole 3 formed therein. An annular hollow chamber 4 is provided in the longitudinal direction of the nozzle body 1 in close proximity to the nozzle hole 3 . A hole 5 that reaches the hollow chamber 4 from the outside is provided in the upper side wall of the nozzle body 1, and a metal gas blowing pipe 6 is inserted into the hole 5 through a refractory mortar layer 7. has been done. Further, the outer peripheral surface of the nozzle body 1 into which the gas blowing pipe 6 is inserted is covered with an annular iron skin 8 through mortar. In the gas blowing submerged nozzle having the above-described structure, gas is passed through the pores of the nozzle body 1 by supplying an inert gas or the like into the hollow chamber 4 in the nozzle body 1 from the gas blowing pipe 6. It is supplied to the molten steel flowing into the nozzle hole 3 and prevents non-metallic inclusions from adhering to the inner wall of the nozzle hole 3. However, in the case of the immersion nozzle having such a structure, since the metal gas blowing pipe 6 is inserted into the hole 5 of the nozzle body 1 through the refractory mortar layer 7, the gas blowing is caused by the thermal influence during casting of molten steel. Due to the difference in thermal expansion between the inlet tube 6 and the refractory nozzle body 1, a gap may occur between the gas blowing tube 6 and the hole 5 of the nozzle body 1. If such a gap occurs, a leak will occur when gas is introduced. Moreover, cracks occur in the refractory mortar layer 7 due to the stress caused by the difference in thermal expansion, which becomes a cause of gas leakage. As a result, even if the gas pressure is increased, gas cannot be effectively supplied into the nozzle hole 3, and adhesion of nonmetallic inclusions cannot be sufficiently prevented. For this reason, as shown in FIGS. 1 and 2, the outer peripheral surface of the nozzle body 1 into which the gas blowing pipe 6 is inserted is covered with an annular iron skin 8 for the purpose of preventing gas leakage. however,
Since the steel shell 8 is also coated on the nozzle body 1 through mortar, the difference in thermal expansion between the steel shell 8 and the nozzle body 1 due to the thermal effect during casting of molten steel causes the gap between the steel shell 8 and the nozzle body 1 to increase. A gap is created between the two, making it impossible to effectively prevent gas leaks. The present invention has been made in order to eliminate the above-mentioned drawbacks, and aims to provide a nozzle for gas blowing casting that can effectively prevent gas leakage without covering the annular steel shell, which causes an increase in manufacturing costs. It is something to do. An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. In the figure, reference numeral 11 denotes a nozzle body made of refractory material and having a nozzle hole 13 in which four discharge ports 12 are formed at the lower end. An annular gas pressure equalizing zone 14 is provided in the longitudinal direction of the nozzle body 11 in close proximity to the nozzle hole 13 . And the nozzle body 11
As shown in FIG. 4, the upper end side wall is provided with a threaded hole 15, which communicates with the pressure equalizing zone 14 at one end and opens to the outside at the other end. A pipe 16 made of, for example, stainless steel and threaded on both the outer and inner circumferential surfaces of the threaded hole 15 is screwed through a heat-resistant inorganic adhesive layer (trade name: Sumiceram) 17 . The thread form on the inner and outer peripheral surfaces of this pipe 16 is the pitch of the thread on the outer peripheral surface (JIS B0205-1973
The pitch (as described in "Metric Coarse Thread", JIS B0202-1966 "Pipe Thread", and JIS B0203-1966 "Pipe Thread") is long, and the pitch of the thread on the inner peripheral surface is short. Further, a gas blowing pipe 18 having a threaded tip is inserted into the pipe 16 by screwing. According to such a configuration, the metal gas blowing pipe 18 that supplies gas to the nozzle hole 13 of the nozzle body 11 is connected to the threaded hole 1 of the refractory nozzle body 11.
5 is inserted into the main body 11 via a stainless steel pipe 16 screwed onto the nozzle main body 11, so that thermal expansion between the gas blowing pipe 18 and the refractory nozzle main body 11 due to thermal effects during molten steel casting is prevented. The stress associated with the difference,
It can be relaxed by the pipe 16 between these. the result,
It is possible to prevent a gap from forming around the tip of the gas blowing pipe 17. Furthermore, the threaded hole 1 of the nozzle body 11
If the inorganic adhesive layer 17 is screwed between the pipe 16 which is threaded on the inner and outer peripheral surfaces of the pipe 16, the adhesive layer 17 becomes spiral-shaped, making it difficult to form a gas passage. 18 can be prevented from leaking, and a predetermined flow rate of gas can be supplied into the nozzle hole 13 through the annular gas equalization zone 14 and the pores of the nozzle body 11. In addition, since the gas blowing pipe 18 is attached to the nozzle body 11 by a screwing method, the threaded pipe 16 is screwed and fixed to the threaded hole 15 of the nozzle body 11 during manufacturing. When used at a place or the like, gas can be blown by simply screwing the gas blowing pipe 18 onto the pipe. As a result, it is possible to easily install the gas blowing pipe on-site, and to prevent damage to the nozzle body due to shocks during transport, etc., which may occur when the gas blowing pipe is attached during the manufacturing process and the final product is made into a final product. has advantages. Furthermore, regarding the thread form of the inner and outer circumferential surfaces of the pipe, the pitch of the threads on the outer circumferential surface of the pipe that is screwed into the threaded hole 15 of the nozzle body 11 is lengthened, and the pitch of the thread on the outer circumferential surface of the pipe that is screwed into the threaded hole 15 of the nozzle body 11 is lengthened. By shortening the pitch of the threads on the circumferential surface, the pipe 16 can be firmly fixed to the nozzle body 11, and gas leakage between the pipe 16 and the gas blowing pipe 18 can be prevented. Next, a test example of gas leak prevention in the gas injection type submerged nozzle of the present invention will be explained. Test example The nozzle body 11 has the characteristics shown in the table below.
Made of Al 2 O 3 C refractory material, the stainless steel pipe 16 has a thread pitch of 2 mm on the outer circumferential surface.
(according to JIS B0205-1973M14), the pitch of the thread on the inner peripheral surface is 0.9071mm (JIS B0202-1966PF1/8,
or according to JIS B0203-1966PT1/8) and connect this pipe 16 to the pressure equalizing zone 1 of the nozzle body 11.
A gas blowing type immersion nozzle was assembled by screwing the pipe 16 into the threaded hole 15 communicating with the pipe 16 through the alumina-siliceous adhesive layer 17, and screwing the gas blowing pipe 18 to the pipe 16. Comparative Example A 1/8 inch φ hole communicating with the annular hollow chamber was drilled in the nozzle body made of the same material as the test example, a gas blowing pipe was inserted into this hole through a layer of refractory mortar, and the outer circumferential surface A gas-injection type immersion nozzle was assembled by covering the annular steel shell with mortar. Therefore, an inert gas was supplied to the gas blowing pipe of the submerged nozzle of the test example and the comparative example under the condition of 2 atmospheres, and the effective gas supply rate (%) supplied to the nozzle hole of the nozzle body was investigated. The results are also listed in the same table. The effective gas supply rate is: gas amount supplied into the nozzle hole/total gas injection amount x 10
It was calculated as 0.
【表】
上記表から明らかな如く、本発明のガス吹込み
型浸漬ノズルは従来の同浸漬ノズルに比べてガス
リークが格段に少なく、ノズル孔内への有効ガス
供給率が向上することがわかる。
なお、本発明に係るガス吹込み型鋳造用ノズル
は上記実施例の如く円筒状のステンレス製パイプ
を嵌合部材として用いる形態に限定されない。例
えば該パイプの形状に関してはテーパ状にしても
よく、かつ材料については高密度炭化珪素等のセ
ラミツク材でもよい。
本発明に係るガス吹込み型鋳造用ノズルは浸漬
ノズルのみに限らず、オープンノズル等にも同様
に適用できる。
以上詳述した如く、本発明によれば製作コスト
の高騰化を招く環状鉄皮の被覆を行なわずに、ノ
ズル本体へのガス吹込み管の嵌合部付近のガスリ
ークを効果的に防止でき、もつてノズル孔内に流
通する溶鋼へガスを有効かつ制御性よく供給し
て、ノズル孔内壁への非金属介在物の付着、閉塞
化を防止し得るガス吹込み型鋳造用ノズルを提供
できるものである。[Table] As is clear from the above table, the gas injection type submerged nozzle of the present invention has significantly less gas leakage than the conventional submerged nozzle, and the effective gas supply rate into the nozzle hole is improved. Note that the gas blowing casting nozzle according to the present invention is not limited to the form in which a cylindrical stainless steel pipe is used as a fitting member as in the above embodiment. For example, the shape of the pipe may be tapered, and the material may be a ceramic material such as high-density silicon carbide. The gas blowing casting nozzle according to the present invention is not limited to a submerged nozzle, but can be similarly applied to an open nozzle and the like. As detailed above, according to the present invention, gas leakage near the fitting part of the gas blowing pipe to the nozzle body can be effectively prevented without covering the annular steel shell, which would increase production costs. A gas blowing casting nozzle that can effectively and controllably supply gas to molten steel flowing through the nozzle hole and prevent non-metallic inclusions from adhering to the inner wall of the nozzle hole and clogging the nozzle hole. It is.
第1図は従来のガス吹込み型浸漬ノズルの断面
図、第2図は第1図A部の拡大断面図、第3図は
本発明の一実施例を示すガス吹込み型浸漬ノズル
の断面図、第4図は第3図B部の拡大断面図であ
る。
11…耐火物製のノズル本体、13…ノズル
孔、14…ガス均圧帯、15…ネジ付孔、16…
内外周面にネジ切りされたパイプ、17…耐熱性
の無機質接着層、18…ガス吹込み管。
Fig. 1 is a cross-sectional view of a conventional gas-injection type submerged nozzle, Fig. 2 is an enlarged cross-sectional view of section A in Fig. 1, and Fig. 3 is a cross-section of a gas-injection type submerged nozzle showing an embodiment of the present invention. FIG. 4 is an enlarged sectional view of section B in FIG. 3. DESCRIPTION OF SYMBOLS 11... Refractory nozzle body, 13... Nozzle hole, 14... Gas equalization zone, 15... Threaded hole, 16...
Pipe threaded on inner and outer peripheral surfaces, 17...heat-resistant inorganic adhesive layer, 18...gas blowing pipe.
Claims (1)
このノズル本体内の長さ方向に前記ノズル孔と近
接して設けられた環状のガス均圧帯と、前記ノズ
ル本体側壁に設けられ、一端が前記均圧帯と連通
し他端が外部に開口するネジ付孔と、このネジ付
孔に耐熱性の無機質接着層を介して螺着される内
外面にネジ山を有したパイプと、このパイプに螺
着されたガス吹込み管とを具備し、かつ前記パイ
プの外周面のネジ山のピツチを内周面のネジ山の
ピツチより長くしたことを特徴とするガス吹込み
型鋳造用ノズル。1 a refractory nozzle body having a nozzle hole;
An annular gas pressure equalizing zone provided in the nozzle body in the longitudinal direction close to the nozzle hole; and an annular gas pressure equalizing zone provided on the side wall of the nozzle body, one end communicating with the pressure equalizing zone and the other end opening to the outside. A pipe having threads on its inner and outer surfaces is screwed into the threaded hole through a heat-resistant inorganic adhesive layer, and a gas blowing pipe is screwed onto the pipe. and a pitch of the threads on the outer circumferential surface of the pipe is longer than a pitch of the threads on the inner circumferential surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11058380A JPS5736045A (en) | 1980-08-12 | 1980-08-12 | Gas blowing type nozzle for casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11058380A JPS5736045A (en) | 1980-08-12 | 1980-08-12 | Gas blowing type nozzle for casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5736045A JPS5736045A (en) | 1982-02-26 |
JPH0142786B2 true JPH0142786B2 (en) | 1989-09-14 |
Family
ID=14539518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11058380A Granted JPS5736045A (en) | 1980-08-12 | 1980-08-12 | Gas blowing type nozzle for casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5736045A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07227B2 (en) * | 1985-08-29 | 1995-01-11 | 黒崎窯業株式会社 | Immersion nozzle and manufacturing method thereof |
JPH0767602B2 (en) * | 1987-06-01 | 1995-07-26 | 日本鋼管株式会社 | Continuous casting immersion nozzle |
DE3735546A1 (en) * | 1987-10-21 | 1989-05-03 | Didier Werke Ag | ARRANGEMENT FOR CONNECTING A METAL PART TO A SHAPED BODY MADE OF REFINERY MATERIAL |
EP1445046A1 (en) * | 2003-02-07 | 2004-08-11 | Vesuvius Crucible Company | Means for connecting a pipe for circulating a fluid to a refractory article and refractory article |
JP5315121B2 (en) * | 2009-04-27 | 2013-10-16 | 明智セラミックス株式会社 | NOZZLE FOR CONTINUOUS CASTING AND METHOD FOR FIXING GAS SUPPLY CONNECTION SCREW IN NOZZLE FOR CONTINUOUS CASTING |
-
1980
- 1980-08-12 JP JP11058380A patent/JPS5736045A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5736045A (en) | 1982-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3397878A (en) | Under-bath tuyere | |
US5429283A (en) | Immersion nozzle formed of separate members | |
US4434540A (en) | Process for repairing or modifying refractory plates of ladle casting cassettes | |
US5137189A (en) | Porous refractory nozzle and method of making same | |
FI73464C (en) | Nozzle for injection lance. | |
JPH0224510Y2 (en) | ||
JPH0142786B2 (en) | ||
EP0106823A1 (en) | Casting nozzle | |
JPH0381061A (en) | Stopper rod for regulating flow rate of fluid | |
US1881228A (en) | Pouring spout | |
JP4139366B2 (en) | Molten metal discharge nozzle with function of blowing gas | |
JPH04270037A (en) | Nozzle for continuous casting | |
KR100368274B1 (en) | Nozzles for Korex Melting Furnaces | |
JPH039888Y2 (en) | ||
JP2017127886A (en) | Soaking nozzle | |
JPH0149581B2 (en) | ||
JPS5937322Y2 (en) | Socket structure for gas introduction used in pouring nozzle | |
JPS595488Y2 (en) | Porous nozzle of molten metal pouring part | |
JPS586943A (en) | Gas-blown refractories for molten metal refining | |
JP7700732B2 (en) | Gas blowing nozzle and continuous casting method | |
TW494139B (en) | Refractory component and assembly with improved sealing for injection of an inert gas | |
JPH0659533B2 (en) | Immersion nozzle for continuous casting | |
JPH0747168Y2 (en) | Die casting machine mouthpiece | |
JPH02431Y2 (en) | ||
JPS5823481Y2 (en) | sliding nozzle device |