JPH0141658B2 - - Google Patents
Info
- Publication number
- JPH0141658B2 JPH0141658B2 JP55125001A JP12500180A JPH0141658B2 JP H0141658 B2 JPH0141658 B2 JP H0141658B2 JP 55125001 A JP55125001 A JP 55125001A JP 12500180 A JP12500180 A JP 12500180A JP H0141658 B2 JPH0141658 B2 JP H0141658B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- aqueous solution
- less
- powder
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は水に対する溶解性の良好な、かつ低粉
塵性の水溶性アクリルアミド系高重合体組成物の
製造方法に関する。
水溶性アクリルアミド系高重合体(以下重合体
という)は、凝集剤、増粘剤、製紙用粘剤などに
広く用いられている。
これらの重合体の多くは、粉末の形態で製造さ
れ供給されている。
これらの重合体の大部分は0.01〜0.5%程度の
低濃度水溶液としたのち使用されるため、水に溶
解することが必要である。
重合体粉末を水に溶解させるときには、水を撹
拌しながら粉末を少量ずつ添加する方法がとられ
るが、そのためには作業者が直接的に添加操作を
行なうか、あるいは添加のための特別な供給装置
が必要である。
それにも拘らず、いわゆる「ママコ」が発生し
易く、溶解に非常な長時間を要することがしばし
ばみられる。
また、重合体粉末が吸湿して粉体流動性が低下
したり、分級したりして粉体供給装置内部でブリ
ツジを形成し、安定な供給が妨げられる場合も少
なくない。
さらに重合体粉末には微粒子部分も混在するた
め、空気中に粉塵となつて飛散し、作業環境を悪
化させている。
このような微細粉末は何らかの手段によつて顆
粒状に再生するなどの処理が必要である。
重合体粉末の溶解性を改良し、あるいは粉塵防
止を目的として付随的に溶解性を改良する方法に
関しては、従来より数多くの提案がなされてい
る。例えば、高分子凝集剤粉末に水または含水性
親水性溶媒を混練して乾燥する方法(特開昭49−
83681号)は、水の場合粉末に対する比率が少な
いと接着造粒効果が劣り、顆粒状品の製造が困難
であり、逆に多いと所謂「ダンゴ」状の大塊とな
つて器壁や撹拌翼への付着が生じたり、乾燥時間
が著しく長くなつたりして安定製造が非常に難し
い。
また、含水親水性有機溶媒の場合、混練工程で
の問題は少ないが、乾燥工程において、有機溶媒
回収のため密閉系で乾燥すると、溶媒回収が進行
するにつれて、乾燥機内で「かる石」状の固い巨
大塊が発生して、乾燥およびそれ以後の粉砕に重
大な支障をきたす。また、本方法では水または含
水性親水性溶媒の上部撒布方式を採用しているた
め噴霧孔の閉塞が生じやすい欠点もある。特に
200メツシユ以下の微細粒分の多い粉末を顆粒化
する方法としては不適当である。
また、結晶水含有無機塩を混合する方法(特開
昭50−13278号)においては、少量の含結晶水無
機塩を添加した場合であつても、重合体粉末と接
触したと同時に接触部分での「ダンゴ」状の塊状
化が進行して混合操作が著しく阻害される欠点を
有している。
この塊状物を何らかの方法で粉砕したとしても
製造後の数日間は顆粒状を保つものの、以後次第
に固結化が進行して、取扱いおよび溶解性に支障
をきたすため、商品としては安定性を欠き、実用
的価値が劣る。
次に、潮解性を示す無機物質を添加する方法
(特開昭53−34843号)においては、粉立ちをある
程度防止できるが、水中への分散性、溶解性は改
良されず、少量添加では効果が発揮されない、ま
た潮解性物質を添加しているため、吸湿性は大き
く、保管あるいは取扱い時に固結化する欠点を有
する。
本発明者らは、上記した従来技術の欠陥を解消
するため鋭意研究の結果、重合体粉末とその粉末
を実質的に溶解しない濃厚無機塩水溶液および重
合体粉末を実質的に溶解しない濃厚ポリエチレン
グリコール水溶液とを均一に撹拌混練し、粉砕す
ることにより水中へ少量ずつ添加する必要なく、
一度に添加しても容易に水に分散し、かつ短時間
で溶解する。また、粉塵飛散がきわめて少なく、
実質的に粉立ち発生しない重合体組成物の製造方
法を見い出し、発明を完成するに至つたものであ
る。即ち、
(a) 最大粒径が16メツシユ以下で、かつ200メツ
シユ以下の微細粒子部分が70%以下である水溶
性アクリルアミド系高重合体粉末(50〜90wt
%)に、
(b) 前記(a)を実質的に溶解しない水溶性無機塩の
1種または2種以上を含有する該塩濃度が
20wt%以上の高濃度水溶液(9〜49wt%)お
よび
(c) 前記(a)を実質的に溶解しない平均分子量2000
〜20000を有するポリエチレングリコールの40
〜70wt%水溶液(1〜10wt%)
を配合し、添加する水を最終重合体組成物に対し
て7〜40wt%の範囲内において調節し、前記(a)、
(b)および(c)の混合物を撹拌混練して、3cm以下の
小粒塊状としたのち、6メツシユ以下に粉砕する
ことを特徴とする水溶性アクリルアミド系高重合
体組成物の製造方法、
を提供するものである。
本発明の製造方法によつて得られる重合体組成
物は通常の搬送、保管ならびに取扱いにおいて、
実質的な顆粒の崩壊はなく、品質安定性も良好で
「だんご」状に固まることはきわめて少ない。そ
のうえ、本発明により得られる重合体組成物は、
混練器内壁や撹拌翼への付着が殆んどなく、該混
練器からの取出しが極めて容易で作業性が良いこ
とである。また溶解時、水中へ少量ずつ添加する
必要はなく、所定量の全量を短時間、例えば50〜
100Kg/分の速度で添加することが可能である。
必要ならば重合体濃度10wt%以上の濃厚粘稠
水溶液あるいは水性ゲル体を調製することも何ら
支障なく短時間で実施でき、易溶性ないし易分散
型であるため、従来の方法では成し得なかつた微
粉末を多量に含有する重合体粉末の溶解性を著し
く改良できる。
さらに、上記の如く溶解時にいわゆる「ママ
コ」を発生せず、急速に溶解しうるのみならず、
微粉末の取扱い時に、常に問題となる粉塵発生が
認められないことは極めて優れた利点である。従
つて、溶解作業の労力は大輻に軽減され、添加作
業のための特別な供給装置も必要としない。重合
体粉末の粒子径と水に対する溶解性には密接な関
係がある。粒子径が小さければ、溶解時間は速
く、同時に微細粒子はいわゆる「ママコ」と粉塵
の発生にも密接に関係してくる。逆に粗い粒子径
では「ママコ」や粉塵の問題は少なくなるが、溶
解時間が著しく長くなり、能率的でなく、供給装
置を閉塞するというトラブルにもなりやすい。
そのため、重合体粉末製造時において、粉砕
し、篩分け、分級操作などにより粉末粒子径を一
定の範囲内に調節する努力がされている。粗大粒
子は再粉砕可能であり、それほど問題とはならな
いが、細粒子、ことに200メツシユ以下の微細粉
末については、前述した「ママコ」や粉塵発生の
原因となるため、そのままでは利用価値が低く、
生産効率や経済性を考慮すれば好ましくない。
本発明の特徴は、無機塩の高濃度水溶液を用い
ることによつて基本的な効果が発揮される。本発
明において用いられる無機塩の高濃度水溶液に対
しては、通常の水溶性を有するアクリルアミド系
高分子量重合体は実質的に溶解せず、湿潤ないし
多少の膨潤状態を与えるのみにとどまる。
本発明において、撹拌は必要不可欠であり、適
度な粒子状態、即ち微細粒子の集合した顆粒が適
度に強く取扱い時においては崩壊せず、しかも水
中に添加した際、速やかに崩壊して分散し、良好
な溶解性を得るために必要な手段である。なお、
高濃度水溶液と重合体粉末の混合物を撹拌するこ
となく、単に外部より加熱した際には好ましい顆
粒状に到らず、全体がスポンジ状のブロツクとな
ることからも撹拌、混練の必要性は明らかであ
る。
無機塩水溶液の濃度が低く重合体粉末の溶解能
を有する場合には、「だんご」状の硬いゲルが発
生して、本発明の効果は発揮できない。しかし、
該塩濃度が20wt%以上の高濃度水溶液において
は、重合体粉末中に固体状の塩類が混在しても本
発明の実施には殆んど障害とはならない。
無機塩としては、KCl、K2SO4、K2CO3、
NaCl、NaNO3、NaCO3、Na3PO4、NH4Cl、
(NH4)2SO4、CaCl2、Ca(NO3)2、MgCl2、
MgSO4、AlCl3、Al2(SO4)3などがあげられるが、
多価金属塩は場合により重合体を水不溶化させる
ことがあるので、使用範囲は著しく限定される。
優れた顆粒状の重合体組成物を生成させるため
に必要な性質を有する高濃度水溶液を与える点、
また使用量による経済性からみて、硫酸ナトリウ
ムおよび炭酸ナトリウムが本発明において最も好
ましい。
本発明において、硫酸および炭酸のアルカリ金
属中性塩の高濃度水溶液(20wt%以上)を用い
れば、重合体組成物中の水溶性アクリルアミド系
高重合体粉末の含有比率を高めることが可能であ
る。
このことは、得られる重合体組成物の保存安定
性、ことに保存期間中におけるブロツク化防止の
うえからも重要であると同時に、重合体組成物の
製造工程における混練の容易さ、粉砕の実施し易
さにも大きく関係する。また、同様に重合体組成
物全系に対する水分比率が7〜40wt%の範囲内
に調節することも本発明の効果を発揮させるため
に必要不可欠の要件である。
本発明を実施する場合、25〜35℃に制御するこ
とが望ましい。
10℃以下では無機塩水溶液およびポリエチレン
グリコール水溶液と重合体粉末とを混練して、微
細粒子が適度に集合した小塊状を形成させるのに
長時間を要する。逆に50℃以上では混練初期にお
いて急速に粗大塊を生じるため、適当な小塊にほ
ぐすのに余分な混練操作を必要とし、品質に悪影
響を及ぼす恐れもある。
常に一定の条件下で操作を行なうことは、製造
にとつて重要なことでもある。そのため、過大な
加熱、冷却を必要としない25℃〜35℃において混
練等を実施することが最も好ましい。したがつ
て、本発明でいう20%以上の高濃度無機塩水溶液
とは25〜35℃における濃度を指すものである。
また、ポリエチレングリコール水溶液(40〜
70wt%)は、混練時の撹拌機負荷を低く抑えて、
短時間に所望の効果を発揮させるために必要な添
加剤であり、さらに粉砕性を向上させて含水状態
の混練生成物小塊を乾燥させた重合体と同様に通
常使用される一般的な粉砕機で処理するために役
立つ。
このポリエチレングリコールは、分子量が低い
と、粉砕あるいは混練時の作業性に有効ではな
く、また分子量が高すぎても好ましく効果を発揮
しない。したがつて、本発明を実施するに当り、
好ましい平均分子量は2000〜20000の範囲のポリ
エチレングリコールが特に効果的である。
これらは常温では固体状であるため、均質混合
するためには水溶液として加える必要があり、ア
クリルアミド系重合体粉末を実質的に溶解しない
高濃度水溶液(40〜70wt%)が特に好ましい。
ポリエチレングリコール水溶液の添加量は、重合
体組成物に対して1〜10wt%の範囲において本
発明の効果を充分発揮することができる。本発明
製造方法により、粉塵が多く「ママコ」が生成し
易いため通常の方法では利用価値が低く、造粒な
どの再生処理を必要とした微細粒粉末を有効に活
用し、安価で簡便な方法によつて微細粉末の特性
を最大限に引出し、粉塵トラブルのない水中への
分散が容易で、かつ迅速に溶解する重合体組成物
が得られる。
本発明に適用できる水溶性アクリルアミド系高
重合体粉末は、ポリアクリルアミド、ポリアクリ
ルアミド部分加水分解物、アクリルアミド―アク
リル酸塩共重合体ポリアクリル酸ソーダ、アクリ
ルアミド―ジメチルアミノエチルメタクリレート
および/またはその4級化物共重合体等である。
また、本発明により得られた重合体組成物は汚
泥の凝集促進剤、脱水剤、増粘剤および製紙用粘
剤などとして広く用いることができる。
以下実施例を示すが、本発明はこれらにより限
定されるものではない。
実施例 1
300容量の双腕型ニーダー(SUS304)に炭
酸ナトリウム25%水溶液(30℃)30Kgおよび平均
分子量4000のポリエチレングリコールの60%水溶
液5Kgを入れて混合したのち、平均分子量800万
のポリアクリルアミド粉末(20〜60メツシユ5
%、60〜200メツシユ52%、200メツシユ以下43
%)65Kgを添加して100rpmで混練する。
約5分後に少し粘性を帯びてくるが、徐々に小
塊状化しはじめ、約10分後には約5cm径以下の小
塊状に全体がほぐれ、そして20分後には最大径約
2cm以下の粒状塊になつた。これをニーダーから
取出して、ハンマーミルで(直径2mm孔を有する
スクリーンを装着し)約15分間で全量粉砕して微
細粒子が凝集した形状の湿りけのある顆粒状品を
得た。
この組成物は
6〜200メツシユ99.7%
200メツシユ以下0.3%
105℃120分乾燥による揮発分(水分)28.9%
10の水道水を櫂型撹拌翼50rpmでかきまぜな
がら50gを瞬間的に投入したがママコ生成せず、
そのまま撹拌を続けて30分後に均一な粘稠水溶液
を得た。
粉立ちは全く認められなかつた。
実施例 2
全容量4のステンレス製リボンミキサーに25
%硫酸ナトリウム水溶液(30℃)300g、平均分
子量10000のポリエチレングリコールの50%水溶
液15gを入れて、80rpmで撹拌しながらアクリル
アミド―ジメチルアミノエチルメタクリレートの
メチルクロライド4級化物(50モル%)共重合体
粉末(見掛平均分子量約230万、16〜200メツシユ
62.8%、200メツシユ以下37.2%)700gを約5分
間で添加し、さらに10分間撹拌混練を続けて全体
が1cm以下の粒子塊になり、相互に接着しないこ
とを確めてから撹拌を停止してリボンミキサーよ
り取出した。
排出後のリボンミキサー内壁および撹拌翼には
ほとんど付着は認められなかつた。
取出した小粒塊状物をフエザーミルで2mm孔経
スクリーンを用いて粉砕し、(水分23.6%)6〜
200メツシユ99.7%、200メツシユ以下0.3%の粒
度を有する顆粒状物を得た。粉砕操作前後におい
て粉立ちは全くなかつた。2ビーカーに水道水
1000mlを入れ、ジヤーテスターを用い100rpmで
撹拌しながらこの顆粒状組成物2.9gを瞬時に投
入したが、10秒以内に水中で均一に分散し、その
のち15分間撹拌を続けることにより、均一な水溶
液となつた。
実施例 3〜7
実施例2と同様にして第1表の割合で仕込み組
成物を得た。得られた組成物の試験結果を第1表
および比較対照として第2表に示した。
The present invention relates to a method for producing a water-soluble acrylamide-based high polymer composition that has good solubility in water and is low in dust. Water-soluble acrylamide-based high polymers (hereinafter referred to as polymers) are widely used as flocculants, thickeners, sticky agents for paper manufacturing, and the like. Many of these polymers are manufactured and supplied in powder form. Since most of these polymers are used after being made into a low concentration aqueous solution of about 0.01 to 0.5%, it is necessary to dissolve them in water. When dissolving polymer powder in water, a method is used in which the powder is added little by little while stirring the water.For this purpose, an operator must directly perform the addition operation, or a special supply for the addition must be used. equipment is required. Despite this, so-called "mamako" tends to occur, and it is often seen that a very long time is required for dissolution. Furthermore, there are many cases in which the polymer powder absorbs moisture, resulting in a decrease in powder fluidity, or is classified, forming bridges inside the powder supply device, which impede stable supply. Furthermore, since the polymer powder contains fine particles, it scatters in the air as dust, worsening the working environment. Such fine powder requires treatment such as regeneration into granules by some means. Many proposals have been made in the past regarding methods for improving the solubility of polymer powders or for improving the solubility incidentally for the purpose of dust prevention. For example, a method of kneading water or a water-containing hydrophilic solvent with polymer flocculant powder and drying the mixture (Japanese Patent Application Laid-Open No. 49-1998-1)
83681), if the ratio of water to the powder is small, the adhesive granulation effect will be poor and it will be difficult to produce granules, and if the ratio is too large, it will become a so-called "dango"-like mass, which will cause damage to the vessel walls and stirring. Stable production is extremely difficult as adhesion to the blades occurs and drying time becomes extremely long. In addition, in the case of water-containing hydrophilic organic solvents, there are few problems in the kneading process, but in the drying process, when drying in a closed system to recover the organic solvent, as the solvent recovery progresses, "chirstone"-like formations occur in the dryer. Huge hard lumps form, which seriously impede drying and subsequent grinding. In addition, this method employs a top spraying method of water or a water-containing hydrophilic solvent, which has the disadvantage that spray holes are likely to be clogged. especially
This is not suitable as a method for granulating powder with a large content of fine particles of 200 mesh or less. In addition, in the method of mixing an inorganic salt containing water of crystallization (Japanese Patent Application Laid-Open No. 50-13278), even when a small amount of an inorganic salt containing water of crystallization is added, the contact portion is mixed at the same time as it comes into contact with the polymer powder. This has the disadvantage that the mixing operation is significantly hindered by the progress of "dango"-like agglomeration. Even if this lump is pulverized by some method, it will remain granular for several days after production, but it will gradually solidify after that, causing problems in handling and solubility, making it unstable as a product. , has inferior practical value. Next, in the method of adding a deliquescent inorganic substance (Japanese Patent Application Laid-Open No. 53-34843), powdering can be prevented to some extent, but dispersibility and solubility in water are not improved, and adding a small amount is not effective. Moreover, since it contains a deliquescent substance, it is highly hygroscopic and has the disadvantage of caking during storage or handling. As a result of intensive research to eliminate the above-mentioned deficiencies of the prior art, the present inventors have discovered a polymer powder, a concentrated inorganic salt aqueous solution that does not substantially dissolve the powder, and a concentrated polyethylene glycol solution that does not substantially dissolve the polymer powder. By uniformly stirring and kneading the aqueous solution and pulverizing it, there is no need to add it to the water little by little.
Even if added all at once, it is easily dispersed in water and dissolved in a short time. In addition, there is extremely little dust scattering.
The inventors have discovered a method for producing a polymer composition that does not substantially generate dust, and have completed the invention. That is, (a) a water-soluble acrylamide-based high polymer powder (50 to 90 wt.
%), (b) the concentration of the salt containing one or more water-soluble inorganic salts that do not substantially dissolve the above (a) is
Highly concentrated aqueous solution of 20 wt% or more (9 to 49 wt%) and (c) an average molecular weight of 2000 that does not substantially dissolve the above (a)
~40 of polyethylene glycol with ~20000
-70 wt% aqueous solution (1 to 10 wt%) and adjust the amount of water added within the range of 7 to 40 wt% based on the final polymer composition,
Provided is a method for producing a water-soluble acrylamide-based high polymer composition, which comprises stirring and kneading the mixture of (b) and (c) to form small agglomerates of 3 cm or less, and then pulverizing the mixture into 6 meshes or less. It is something to do. During normal transportation, storage and handling, the polymer composition obtained by the production method of the present invention
There is no substantial granule disintegration, quality stability is good, and it is extremely unlikely that the granules will solidify into a "dango" shape. Moreover, the polymer composition obtained according to the present invention
There is almost no adhesion to the inner wall of the kneader or stirring blades, and removal from the kneader is extremely easy, resulting in good workability. Also, when dissolving, there is no need to add small amounts to water, and the entire predetermined amount can be added for a short period of time, e.g.
It is possible to add at a rate of 100Kg/min. If necessary, it is possible to prepare a thick viscous aqueous solution or aqueous gel with a polymer concentration of 10 wt% or more without any problems and in a short time. The solubility of polymer powder containing a large amount of fine powder can be significantly improved. Furthermore, as mentioned above, not only can the so-called "mako" be not generated during dissolution and it can be rapidly dissolved.
An extremely advantageous advantage is that no dust is generated, which is always a problem when handling fine powders. Therefore, the labor required for the dissolution operation is greatly reduced, and no special feeding equipment is required for the addition operation. There is a close relationship between the particle size of polymer powder and its solubility in water. The smaller the particle size, the faster the dissolution time, and at the same time, fine particles are closely related to the generation of so-called "mako" and dust. On the other hand, if the particle size is coarse, the problems of "mamako" and dust will be reduced, but the dissolution time will be significantly longer, which will be inefficient and will likely cause troubles such as clogging of the supply device. Therefore, during the production of polymer powder, efforts are being made to adjust the powder particle size within a certain range by pulverizing, sieving, classifying, and the like. Coarse particles can be re-pulverized and are not much of a problem, but fine particles, particularly fine powders of 200 mesh or less, cause the aforementioned "mamako" and dust generation, so their utility value is low if left as is. ,
This is not desirable in terms of production efficiency and economy. A feature of the present invention is that the basic effects are achieved by using a highly concentrated aqueous solution of an inorganic salt. In the highly concentrated aqueous solution of the inorganic salt used in the present invention, the acrylamide-based high molecular weight polymer having ordinary water solubility does not substantially dissolve, but only provides a wet or slightly swollen state. In the present invention, stirring is indispensable, and the particles are in a suitable state, that is, the granules are aggregation of fine particles, are moderately strong, do not disintegrate when handled, and when added to water, quickly disintegrate and disperse. This is a necessary means to obtain good solubility. In addition,
The necessity of stirring and kneading is clear from the fact that when a mixture of a highly concentrated aqueous solution and polymer powder is simply heated externally without stirring, it does not form the desired granular shape, but instead becomes a spongy block. It is. If the concentration of the inorganic salt aqueous solution is low and has the ability to dissolve the polymer powder, a hard "dango"-like gel is generated and the effects of the present invention cannot be exhibited. but,
In a highly concentrated aqueous solution with a salt concentration of 20 wt% or more, the presence of solid salts in the polymer powder hardly poses an obstacle to the implementation of the present invention. Inorganic salts include KCl, K 2 SO 4 , K 2 CO 3 ,
NaCl , NaNO3 , NaCO3 , Na3PO4 , NH4Cl ,
(NH 4 ) 2 SO 4 , CaCl 2 , Ca(NO 3 ) 2 , MgCl 2 ,
Examples include MgSO 4 , AlCl 3 , Al 2 (SO 4 ) 3 , etc.
Since polyvalent metal salts can sometimes make the polymer water insoluble, their range of use is severely limited. provides a highly concentrated aqueous solution with the properties necessary to produce a superior granular polymer composition;
In addition, from the economical point of view of the amount used, sodium sulfate and sodium carbonate are most preferred in the present invention. In the present invention, if a highly concentrated aqueous solution (20 wt% or more) of alkali metal neutral salts of sulfuric acid and carbonic acid is used, it is possible to increase the content ratio of water-soluble acrylamide-based high polymer powder in the polymer composition. . This is important from the standpoint of storage stability of the obtained polymer composition, especially prevention of block formation during the storage period, as well as ease of kneading and pulverization in the manufacturing process of the polymer composition. It also has a lot to do with ease of use. Similarly, adjusting the water ratio to the entire polymer composition within the range of 7 to 40 wt% is also an essential requirement for exhibiting the effects of the present invention. When carrying out the present invention, it is desirable to control the temperature to 25 to 35°C. At temperatures below 10°C, it takes a long time to knead the inorganic salt aqueous solution and polyethylene glycol aqueous solution with the polymer powder to form a small lump of fine particles appropriately aggregated. On the other hand, if the temperature is 50°C or higher, coarse lumps will rapidly form in the initial stage of kneading, requiring extra kneading operations to break them up into suitable small lumps, which may adversely affect quality. It is also important for manufacturing to always operate under constant conditions. Therefore, it is most preferable to carry out kneading and the like at 25°C to 35°C, which does not require excessive heating or cooling. Therefore, the high concentration inorganic salt aqueous solution of 20% or more as used in the present invention refers to the concentration at 25 to 35°C. In addition, polyethylene glycol aqueous solution (40~
70wt%) reduces the load on the stirrer during kneading,
It is an additive necessary to achieve the desired effect in a short time, and it further improves the grindability and is commonly used as a general grinding agent similar to the dry polymer of the kneaded product small lumps in a water-containing state. Useful for machine processing. If this polyethylene glycol has a low molecular weight, it will not be effective in terms of workability during pulverization or kneading, and if the molecular weight is too high, it will not exhibit the desired effect. Therefore, in carrying out the present invention,
Polyethylene glycol having a preferred average molecular weight in the range of 2,000 to 20,000 is particularly effective. Since these are solid at room temperature, it is necessary to add them as an aqueous solution in order to mix them homogeneously, and a highly concentrated aqueous solution (40 to 70 wt%) that does not substantially dissolve the acrylamide polymer powder is particularly preferred.
The effects of the present invention can be fully exhibited when the amount of the polyethylene glycol aqueous solution added is in the range of 1 to 10 wt% based on the polymer composition. The manufacturing method of the present invention makes effective use of fine powder, which has low utility value in normal methods because it has a lot of dust and easily generates "mamako", and requires recycling treatment such as granulation, and is an inexpensive and simple method. As a result, a polymer composition can be obtained which maximizes the characteristics of fine powder, which is easily dispersible in water without any dust problems, and which dissolves quickly. The water-soluble acrylamide-based high polymer powder applicable to the present invention includes polyacrylamide, polyacrylamide partial hydrolyzate, acrylamide-acrylate copolymer polysodium acrylate, acrylamide-dimethylaminoethyl methacrylate, and/or its quaternary chemical compound copolymers, etc. Furthermore, the polymer composition obtained by the present invention can be widely used as a sludge flocculation accelerator, a dehydrating agent, a thickener, a paper-making sticky agent, and the like. Examples will be shown below, but the present invention is not limited thereto. Example 1 30 kg of a 25% aqueous solution of sodium carbonate (30°C) and 5 kg of a 60% aqueous solution of polyethylene glycol with an average molecular weight of 4000 were placed in a 300 capacity double-arm kneader (SUS304) and mixed, and then polyacrylamide with an average molecular weight of 8 million was mixed. Powder (20-60 mesh 5
%, 60-200 mesh 52%, 200 mesh or less 43
%) 65Kg and mix at 100rpm. After about 5 minutes, it becomes a little viscous, but it gradually begins to form into small lumps, and after about 10 minutes, it has loosened into small lumps with a diameter of about 5 cm or less, and after 20 minutes, it has become a granular lump with a maximum diameter of about 2 cm or less. Summer. This was taken out from the kneader, and the entire amount was pulverized in a hammer mill (equipped with a screen having 2 mm diameter holes) for about 15 minutes to obtain moist granules in the form of agglomerated fine particles. This composition has 99.7% of 6 to 200 meshes, 0.3% of 200 meshes or less, 28.9% volatile content (moisture) after drying at 105℃ for 120 minutes. not generated,
Stirring was continued and a uniform viscous aqueous solution was obtained after 30 minutes. No dust was observed at all. Example 2 A stainless steel ribbon mixer with a total capacity of 4 and 25
% sodium sulfate aqueous solution (30℃) and 15 g of a 50% aqueous solution of polyethylene glycol with an average molecular weight of 10,000 were added, and while stirring at 80 rpm, acrylamide-dimethylaminoethyl methacrylate methyl chloride quaternized copolymer (50 mol%) copolymer was added. Powder (apparent average molecular weight approximately 2.3 million, 16 to 200 mesh)
62.8%, 200 mesh or less (37.2%)) was added in about 5 minutes, and stirring and kneading was continued for another 10 minutes to make sure that the entire particle mass was 1 cm or less and that they did not adhere to each other, and then the stirring was stopped. and removed from the ribbon mixer. Almost no adhesion was observed on the inner wall of the ribbon mixer and stirring blades after discharge. The taken out small lumps were ground in a feather mill using a 2 mm hole screen (moisture 23.6%).
Granules were obtained having a particle size of 99.7% 200 mesh and 0.3% below 200 mesh. There was no dusting at all before and after the crushing operation. Tap water in 2 beakers
2.9 g of this granular composition was added instantly while stirring at 100 rpm using a jar tester, but it was uniformly dispersed in the water within 10 seconds, and by continuing to stir for 15 minutes, a uniform aqueous solution was obtained. It became. Examples 3 to 7 Prepared compositions were prepared in the same manner as in Example 2 at the proportions shown in Table 1. The test results of the obtained compositions are shown in Table 1 and Table 2 as a comparative control.
【表】【table】
【表】【table】
【表】【table】
【表】
比較例 1
PEG水溶液を除いた以外は実施例3と同様に
して実施した。
撹拌開始約3分後より撹拌負荷増大して最大電
流5アンペアまで上昇(実施例3の場合最大電流
は2アンペアであつた)、約15分後硬い樹脂状小
塊になつたのち徐々に細分化され、約30分後、実
施例3の場合とほぼ同様の混練生成物となつた。
粉砕性はやや悪く、実施例3の場合に比べ約3
倍の時間を要した。
比較例 2
25%硫酸ソーダ水溶液のかわりに水を用いた以
外は実施例2と同様にして操作しようとしたが、
硬い樹脂状で内部が粉末の粗大(5cm以上の)塊
状が部分的に発生し、また一部粉末がそのままで
残留する状態となり、撹拌翼や内壁に付着が大き
く、負荷が急激に増大して撹拌不能に陥つた。
リボンミキサーから混合物を排出することは困
難であつた。
比較例 3
全容量4のステンレス製リボンミキサーに実
施例3で用いた重合体粉末645gおよび炭酸ナト
リウム(軽灰)323gを入れて5分間混合したの
ち水32gを加えて混合した。部分的に「ダンゴ」
状のかたまりが生成して撹拌負荷は著しく増大し
たが、約30分間撹拌を続けることにより小粒状
(約5mm径以下)にほぐれたが、撹拌時の摩擦に
よつて55℃まで温度が上昇した。このようにして
得られた混合物3.1gを2ビーカーに水道水1
を入れ、ジヤーテスターを用いて100rpmで撹
拌しながら一度に投入したところ、ママコは発生
しなかつたが、3mm径粒度の固い塊があるため均
一な水溶液となるのに約75分を要した。[Table] Comparative Example 1 The same procedure as Example 3 was carried out except that the PEG aqueous solution was omitted. Approximately 3 minutes after the start of stirring, the stirring load was increased to a maximum current of 5 amperes (in the case of Example 3, the maximum current was 2 amperes), and after approximately 15 minutes, it became a hard resin-like lump and was gradually broken down into small pieces. After about 30 minutes, a kneaded product similar to that of Example 3 was obtained. The crushability is slightly worse, about 3% compared to Example 3.
It took twice as long. Comparative Example 2 An attempt was made to operate in the same manner as in Example 2, except that water was used instead of the 25% aqueous sodium sulfate solution.
Coarse lumps (more than 5 cm) of hard resin-like powder inside occurred in some areas, and some of the powder remained as it was, with large adhesion to the stirring blades and inner walls, and the load increased rapidly. Stirring became impossible. Draining the mixture from the ribbon mixer was difficult. Comparative Example 3 In a stainless steel ribbon mixer with a total capacity of 4, 645 g of the polymer powder used in Example 3 and 323 g of sodium carbonate (light ash) were placed and mixed for 5 minutes, and then 32 g of water was added and mixed. Partially “Dango”
The stirring load increased significantly due to the formation of lumps, but by continuing to stir for about 30 minutes, the particles were broken down into small particles (less than about 5 mm in diameter), but the temperature rose to 55°C due to friction during stirring. . Add 3.1g of the mixture thus obtained to 2 beakers and 11g of tap water.
When the solution was added all at once while stirring at 100 rpm using a jar tester, no lumps were generated, but it took about 75 minutes to form a uniform aqueous solution due to the presence of hard lumps with a diameter of 3 mm.
Claims (1)
メツシユ以下の微細粒子部分が70%以下である
水溶性アクリルアミド系高重合体粉末(50〜
90wt.%)に、 前記を実質的に溶解しない水溶性無機塩の
1種または2種以上を含有する該塩濃度が
20wt.%以上の高濃度水溶液(9〜49wt.%)お
よび、 前記を実質的に溶解しない平均分子量2000
〜20000を有するポリエチレングリコールの40
〜70wt.%水溶液(1〜10wt.%)を配合し、 添加する水を最終重合体組成物に対して7〜
40wt.%の範囲内において調節し、前記、お
よびの混合物を撈拌混練して、3cm以下の小塊
状としたのち、6メツシユ以下に粉砕することを
特徴とする水溶性アクリルアミド系高重合体組成
物の製造方法。[Claims] 1. The maximum particle size is 16 mesh or less, and 200 mesh
Water-soluble acrylamide-based high polymer powder containing 70% or less of fine particles below the mesh size (50~
90wt.%), and the salt concentration contains one or more water-soluble inorganic salts that do not substantially dissolve the above.
A highly concentrated aqueous solution of 20wt.% or more (9 to 49wt.%) and an average molecular weight of 2000 that does not substantially dissolve the above.
~40 of polyethylene glycol with ~20000
~70wt.% aqueous solution (1~10wt.%) is blended, and the amount of water added is 7~70wt.% to the final polymer composition.
A water-soluble acrylamide-based high polymer composition, which is adjusted within the range of 40wt.%, and is characterized by stirring and kneading the mixture of the above, and, forming small lumps of 3 cm or less, and then pulverizing them into 6 meshes or less. How things are manufactured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12500180A JPS5749643A (en) | 1980-09-08 | 1980-09-08 | Preparation of water-soluble acrylamide high polymeric composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12500180A JPS5749643A (en) | 1980-09-08 | 1980-09-08 | Preparation of water-soluble acrylamide high polymeric composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5749643A JPS5749643A (en) | 1982-03-23 |
JPH0141658B2 true JPH0141658B2 (en) | 1989-09-06 |
Family
ID=14899418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12500180A Granted JPS5749643A (en) | 1980-09-08 | 1980-09-08 | Preparation of water-soluble acrylamide high polymeric composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5749643A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4801635A (en) * | 1985-12-10 | 1989-01-31 | Zinkan Enterprises, Inc. | Composition and method for dust control |
JPH0788456B2 (en) * | 1986-07-23 | 1995-09-27 | 三井サイテック株式会社 | Method for producing water-soluble polymer composition |
US6291605B1 (en) | 1990-06-06 | 2001-09-18 | Clarence S. Freeman | Polymerization process with spraying step |
GB9402717D0 (en) * | 1994-02-11 | 1994-04-06 | Allied Colloids Ltd | Solid polymeric products and their use |
US11718696B2 (en) * | 2017-07-31 | 2023-08-08 | Ecolab Usa Inc. | Process for fast dissolution of powder comprising low molecular weight acrylamide-based polymer |
CN112105704B (en) * | 2018-03-30 | 2023-08-22 | 株式会社艾迪科 | Particulate ultraviolet absorber and resin composition |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1066445A (en) * | 1975-02-18 | 1979-11-13 | Karl L. Krumel | Low-dusting, free-flowing acrylamide polymer composition |
-
1980
- 1980-09-08 JP JP12500180A patent/JPS5749643A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5749643A (en) | 1982-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0169674B2 (en) | Polymer powders | |
CN1678726B (en) | Detergent particles | |
EP0598730B1 (en) | Process for forming polymeric compositions | |
JPH0141658B2 (en) | ||
JP3462499B2 (en) | Production of granular alkali metal borate composition | |
JPS6352928B2 (en) | ||
JP3006060B2 (en) | Method for granulating 2,2,6,6-tetramethylpiperidine-based light stabilizer | |
CN108623333A (en) | The manufacturing method of granular oxamides | |
JP4267929B2 (en) | Hydrous soil treatment agent and granulated method of hydrous soil | |
EP1622985B1 (en) | Hydrosoluble polymers exhibiting improved solubility characteristics, the production and use thereof | |
JPS6330554A (en) | Water-soluble polymer composition and production thereof | |
CN116891237B (en) | Silicon dioxide as toothpaste additive and production process thereof | |
KR102091869B1 (en) | Process for preparing granular oxamide | |
JPS6060905A (en) | Manufacture of peroxide having superior disintegrability in water | |
JPH10183105A (en) | Snow melting agent | |
CA1048292A (en) | High-content azide agricultural formulation | |
JP4220046B2 (en) | Solubility improver for powder cement admixture, and composite cement admixture containing the same | |
JPH0940702A (en) | Method for granulating carboxymethylcellulose ether alkali salt and granular carboxymethylcellulose ether alkali salt obtained thereby | |
JPH0430971B2 (en) | ||
JPS58198556A (en) | Easily dispersible composition of water-soluble high-molecular material | |
JP2003212901A (en) | Carboxymethylcellulose having excellent dispersibility in water and salts thereof | |
JP4993842B2 (en) | High concentration granule wettable powder for herbicidal use | |
JP4496393B2 (en) | Method for producing sodium carbonate granules | |
JP2004115791A (en) | Detergent particles | |
JPS5835735B2 (en) | Anti-caking agent for granulated slag |