JPH0140942B2 - - Google Patents
Info
- Publication number
- JPH0140942B2 JPH0140942B2 JP57048657A JP4865782A JPH0140942B2 JP H0140942 B2 JPH0140942 B2 JP H0140942B2 JP 57048657 A JP57048657 A JP 57048657A JP 4865782 A JP4865782 A JP 4865782A JP H0140942 B2 JPH0140942 B2 JP H0140942B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- valve
- pipe
- carrier gas
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
- G01M3/28—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
- G01M3/2876—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for valves
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Examining Or Testing Airtightness (AREA)
Description
【発明の詳細な説明】
本発明は使用済の原子燃料集合体が破損してい
るかどうかを確認するため用いられるシツピング
装置にあつて、その管路系に介設されている多く
の開閉弁や各管路にガス洩れ箇所があるか否かを
検査する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shipping device used to check whether or not a spent nuclear fuel assembly is damaged. The present invention relates to a method of inspecting whether or not there is a gas leak point in each pipe line.
一般に原子燃料集合体は、使用によつてPCMI
破損、溶接破損、水素化破損と呼ばれる各種の破
損原因により損傷を受けるが、当該破損箇所は水
中テレビジヨンなどでは確認できないことが多
く、特に同集合体の被覆管にピンホールが生じて
いたり、配列内隠部分に破損箇所がある場合に
は、上記シツピング装置を用いなければ破損の有
無を確認することができない。 Generally, nuclear fuel assemblies are
Damage occurs due to various causes of damage, such as breakage, welding damage, and hydrogenation damage, but the damage points are often not visible with underwater television, especially pinholes in the cladding of the same assembly. If there is a damaged part in the hidden part of the array, the presence or absence of damage cannot be confirmed without using the above-mentioned shipping device.
ところでかゝるシツピング装置の基本原理は、
使用済の原子燃料集合体を使用済原子燃料取扱プ
ール内にあつてシツピング装置本体に収納し、
こゝで当該集合体を断熱条件下におくことで昇温
させ、これにより被覆管内部を昇圧させて同管の
ピンホール等から核分裂生成物を漏出させるので
ある。 By the way, the basic principle of the shipping device is
The spent nuclear fuel assemblies are placed in the spent nuclear fuel handling pool and stored in the main body of the shipping device,
The temperature of the assembly is raised by placing it under adiabatic conditions, thereby increasing the pressure inside the cladding tube and causing fission products to leak out from pinholes in the tube.
そして上記の漏出した生成物中、ガス状のもの
は所定循環管路系に回流させたキヤリアガスによ
つて捕集し、水溶性の核分裂生成物は上記プール
の水に溶出させ、夫々ガス分析器、水分析器によ
り核分裂生成物の存否を確認しようとするもので
ある。 Among the leaked products, the gaseous ones are collected by a carrier gas circulated through a predetermined circulation pipe system, and the water-soluble fission products are eluted into the water in the pool, and each gas analyzer , which attempts to confirm the presence or absence of nuclear fission products using a water analyzer.
本発明は上記原理に基づき新規に構成したシツ
ピング装置にあつて、その各種開閉弁と管路とに
つきガス漏れの有無を検査しようとするものであ
るが、この種シツピング装置では多数の開閉弁と
管路とが用いられ、これらにガス洩れ箇所があつ
た場合には正しい分裂生成物の検知が不能とな
り、特にこれらの開閉弁を所定のシーケンスによ
り自動制御して計測を行ない得るようにした場合
には、ガス洩れ箇所の有無を、どうしても計測開
始前に確認しておくことが必要であるが、従来こ
の種シツピング装置についての適切な漏洩検査方
法はなかつた。 The present invention aims to inspect the various on-off valves and pipelines for gas leakage in a shipping device newly constructed based on the above principle.In this type of shipping device, a large number of on-off valves and If pipes are used and there is a gas leak in these pipes, it will be impossible to correctly detect the fission products, especially if the on-off valves are automatically controlled according to a predetermined sequence to perform measurements. However, there has been no suitable leakage testing method for this type of shipping equipment.
本発明は上記の点に着目し、簡易迅速に実施で
き、しかも信頼性の高い漏洩検査方法を提供しよ
うとするもので、以下図面を参照してこれを詳説
する。 The present invention focuses on the above-mentioned points and aims to provide a leakage testing method that can be carried out simply and quickly and is highly reliable.The present invention will be explained in detail below with reference to the drawings.
先ず本発明を実施する対象となるべきシツピン
グ装置につき詳示すれば、既知の如く使用済原子
燃料取扱プール1には、硼酸を含むプール水2内
にあつてシツピング装置本体3が設けられてお
り、当該本体3のシツピングキヤン4に施された
シツピングキヤツプ5を開成して、上記シツピン
グキヤン4内に使用済原子燃料集合体Aを収納し
得るようになつており、この際上記シツピングキ
ヤン4内には、その底部からプール水2が侵入自
在なるよう開口されている。 First, to explain in detail the shipping device to which the present invention is to be implemented, a spent nuclear fuel handling pool 1 is provided with a shipping device main body 3 in pool water 2 containing boric acid. The shipping cap 5 provided on the shipping can 4 of the main body 3 can be opened to store the spent nuclear fuel assembly A in the shipping can 4. The inside of the pin can 4 is opened so that the pool water 2 can freely enter from the bottom thereof.
さらに上記シツピングキヤン4の外側部には、
底部からプール水2が侵入自在なエアジヤケツト
6を周設し、当該ジヤケツト6の上部からエアジ
ヤケツト管路7を介して気体を圧送するのである
が、図示例では後述するキヤリアガス供給管路8
から元弁9を設けた上記エアジヤケツト管路7を
通してキヤリアガスである窒素ガスが圧送される
構成となつている。 Furthermore, on the outer side of the shipping can 4,
An air jacket 6 is provided around the bottom through which the pool water 2 can freely enter, and gas is force-fed from the top of the jacket 6 through an air jacket conduit 7. In the illustrated example, a carrier gas supply conduit 8, which will be described later, is used.
Nitrogen gas, which is a carrier gas, is fed under pressure through the air jacket line 7 provided with a main valve 9.
従つて当該窒素ガスの供給量を加減することに
よりエアジヤケツト6内の水位を低下させ、所要
長のガス断熱層6′を形成することができ、かく
てシツピングキヤン4内に収納した発熱体たる前
記使用済原子燃料集合体Aは、上記ガス断熱層
6′によりその放熱を阻止され、この結果当該集
合体Aの被覆管内における圧力を上昇させること
ができる。 Therefore, by adjusting the supply amount of the nitrogen gas, the water level in the air jacket 6 can be lowered and a gas insulation layer 6' of a required length can be formed. The spent nuclear fuel assembly A is prevented from radiating heat by the gas insulation layer 6', and as a result, the pressure within the cladding tube of the assembly A can be increased.
さて上記のようにして被覆管内の圧力が上昇す
ると、当該被覆管にピンホール等の損傷があれ
ば、かゝる破損箇所から内部の核分裂生成物が漏
出されることになるが、当該生成物には前記の如
くガス状のものと水溶性のものとがあり、後者は
シツピングキヤン4内へ侵入したプール水2に溶
出されるので、水ポンプ10、排水弁11,1
1′,11″をもつた定量取水部12が配設されて
いる水サンプル管路13により適時これを取水
し、これにより採取された水は別途設けられた水
分析器に搬入し、こゝで前記硼酸水中における沃
素131(I131)やセシウム137(Cs137)の濃度変化に
着目し、水溶性核分裂生成物の漏出を判定するこ
とになる。 Now, when the pressure inside the cladding tube increases as described above, if there is damage such as a pinhole in the cladding tube, the fission products inside will leak out from such a damaged point. As mentioned above, there are gaseous types and water-soluble types, and the latter is eluted into the pool water 2 that has entered the shipping can 4.
Water is taken at appropriate times through the water sample pipe 13 in which a quantitative water intake section 12 with pipes 1' and 11" is disposed, and the water thus sampled is carried into a separately provided water analyzer. By focusing on changes in the concentration of iodine 131 (I 131 ) and cesium 137 (Cs 137 ) in the boric acid solution, leakage of water-soluble fission products will be determined.
さらにこのシツピング装置では、上記ガス状核
分裂生成物の漏出を検知するため、前記キヤリア
ガス供給管路8からキヤリアガスをキヤリアガス
循環管路系14に供給し、当該管路系14を循環
するキヤリアガスによつて、前記シツピングキヤ
ン4の侵入水中に漏出したガス状核分裂生成物を
捕集するのである。 Further, in this shipping device, in order to detect leakage of the gaseous fission products, carrier gas is supplied from the carrier gas supply pipe 8 to the carrier gas circulation pipe system 14, and the carrier gas circulating through the pipe system 14 is used to detect leakage of the gaseous fission products. , to collect gaseous fission products leaked into the water entering the shipping can 4.
すなわちキヤリアガス源15、二組のガス圧調
整弁16,16′、キヤリアガス元弁17,1
7′を具備した前記キヤリアガス供給管路8から
のキヤリアガスを、キヤリアガス循環管路系14
に封入して充満させたならば、同管路系14の第
1管路となるガス計測管路18に設けたガス循環
用ポンプ19を駆動し、同管路18のガス流量調
整器20により設定した所定流量の当該キヤリア
ガスを、同管路系14のガス給排管路21を介し
てシツピングキヤン4内に送り、こゝでガス状核
分裂生成物を捕集したキヤリアガスは、シツピン
グキヤン4内の上層から、前記シツピングキヤツ
プ5に連結したガス導入管路22を介して、当初
のガス計測管路18へと回流される。 That is, a carrier gas source 15, two sets of gas pressure regulating valves 16, 16', and carrier gas main valves 17, 1.
The carrier gas from the carrier gas supply line 8 comprising the carrier gas circulation line 14
Once the gas is filled and filled, the gas circulation pump 19 provided in the gas measuring pipe 18, which is the first pipe of the pipe system 14, is driven, and the gas flow rate regulator 20 of the pipe 18 is operated. The carrier gas at a predetermined flow rate is sent into the shipping can 4 via the gas supply/discharge pipe 21 of the pipe system 14, and the carrier gas that has collected gaseous fission products is transferred to the shipping can. The gas is circulated from the upper layer of the gas pipe 4 through the gas introduction pipe 22 connected to the shipping cap 5 to the original gas measuring pipe 18.
そして上記ガス計測管路18には前記ポンプ1
9、ガス流量調整器20のほかに、圧力計23、
ガス分析器24に信号を送るシンチレーシヨンプ
ローブ25付きのガス分析用検出器26、流量計
27が設けられ、こゝで図中28は上記ガス流量
調整器20にあつて、その流量調整弁29を制御
する自動制御部である。 The pump 1 is connected to the gas measuring pipe line 18.
9. In addition to the gas flow rate regulator 20, a pressure gauge 23,
A gas analysis detector 26 with a scintillation probe 25 that sends a signal to the gas analyzer 24 and a flow meter 27 are provided, and 28 in the figure is the gas flow regulator 20, and its flow regulating valve 29. This is an automatic control unit that controls the
また上記ガス給排管路21には前段側と後段側
とにガス循環弁30,30′が、そしてガス導入
管路22には順次キヤリアガス導入弁31、ドレ
ンセパレータ32、ガス出口弁33が介設されて
いる。 Further, the gas supply/discharge pipe 21 has gas circulation valves 30 and 30' on the front side and the rear side, and the gas introduction pipe 22 has a carrier gas introduction valve 31, a drain separator 32, and a gas outlet valve 33 in this order. It is set up.
さらに同装置では上記ドレンセパレータ32と
キヤリアガス導入弁31との間におけるガス導入
管路22と、前記ガス循環弁30,30′間のガ
ス給排管路21とが、排出弁34を具備した排出
管路35により連結されていると共に、ドレンセ
パレータ32とガス出口弁33の間から、放出弁
36を有する放出管路37が分岐され、上記ドレ
ンセパレータ32には気水分離により得た分離水
を排出するため分離水排水弁38を設けた排水管
路39が連結されており、さらに同セパレータ3
2の分離水が貯留されて異常高水位に達したと
き、これを検知する水位検出器40が付設され、
当該水位検知時に発する電気信号により、ガス出
口弁32を自動的に閉止するよう構成され、かく
て分離水が循環するキヤリアガスと同伴してガス
計測管路18に流入し、こゝでガス分析用検出器
26に付されたシンチレーシヨンプローブ25
に、核分裂生成物が付着してしまうといつた支障
発生を防止している。 Furthermore, in the same device, a gas introduction pipe 22 between the drain separator 32 and the carrier gas introduction valve 31 and a gas supply/discharge pipe 21 between the gas circulation valves 30 and 30' are connected to a discharge valve 34. A discharge pipe 37 having a discharge valve 36 is branched from between the drain separator 32 and the gas outlet valve 33, and the drain separator 32 is connected to the drain separator 32 by a pipe 35. A drainage pipe 39 equipped with a separated water drainage valve 38 is connected to the separator 3 for discharging water.
A water level detector 40 is attached to detect when the separated water of No. 2 is stored and reaches an abnormally high water level.
The gas outlet valve 32 is automatically closed by an electric signal generated when the water level is detected, and the separated water flows into the gas measurement pipe 18 together with the circulating carrier gas, where it is used for gas analysis. Scintillation probe 25 attached to detector 26
This prevents troubles such as those caused by the adhesion of fission products.
また図示の装置例では前記のシツピングキヤツ
プ5がエアシリンダ41により開閉されるように
なつており、図中42はその切換作動弁で、同シ
リンダ41が前記キヤリアガス供給管路8から送
られるキヤリアガスにより伸縮作動されるよう配
管されている。 Furthermore, in the illustrated example of the device, the shipping cap 5 is opened and closed by an air cylinder 41, and numeral 42 in the figure is a switching valve, and the cylinder 41 is configured to open and close the shipping cap 5 using an air cylinder 41. The piping is designed to be expanded and contracted by the
さらに同図例では上記シツピング装置本体3に
より使用済原子燃料集合体Aの計測を行なつてい
る間に、別の同集合体をセツトしておけるようシ
ツピング装置本体3aが設置され、適時同本体3
aの稼動に切換え得るよう配管されている。 Furthermore, in the example shown in the figure, while the spent nuclear fuel assembly A is being measured by the shipping device main body 3, the shipping device main body 3a is installed so that another same assembly can be set, and the same main body is 3
The piping is arranged so that it can be switched to operation a.
そして当該装置の稼動に際しては、既に説示の
ガス循環弁30,30′、キヤリアガス導出弁3
1、ガス出口弁33、排出弁34、放出弁36、
分離水排水弁38その他の開閉弁を、所定のシー
ケンスにより自動開閉制御するよう構成するのが
よく、さらに異常発生時における開閉弁の自動制
御についても配慮するのがよい。 When operating the device, the gas circulation valves 30, 30' and the carrier gas outlet valve 3, which have already been described, are required.
1, gas outlet valve 33, discharge valve 34, discharge valve 36,
It is preferable to configure the separation water drain valve 38 and other on-off valves to be automatically controlled to open and close according to a predetermined sequence, and it is also preferable to take into account automatic control of the on-off valves when an abnormality occurs.
上記のようにこのシツピング装置は構成されて
いるから、これを使用するにはキヤリアガス供給
管路8のキヤリアガス元弁17から供給されるキ
ヤリアガスを、前記放出管路37の放出弁36
と、排出管路35の排出弁34を閉止しておくこ
とにより、キヤリアガス循環管路系14に封入す
ることができ、次にガス循環用ポンプ19を駆動
し、ガス流量調整器20により設定した所定流量
のキヤリアガスを所定時間だけキヤリアガス循環
管路系14に循環させる。 Since this shipping device is constructed as described above, in order to use it, the carrier gas supplied from the carrier gas main valve 17 of the carrier gas supply pipe 8 is transferred to the discharge valve 36 of the discharge pipe 37.
By closing the discharge valve 34 of the discharge pipe 35, the carrier gas can be sealed in the carrier gas circulation pipe system 14, and then the gas circulation pump 19 is driven, and the gas flow rate set by the gas flow regulator 20 is A predetermined flow rate of carrier gas is circulated through the carrier gas circulation pipe system 14 for a predetermined period of time.
かくてシツピングキヤン4の底部から導入され
たキヤリアガスは前記の漏出せしガス状核分裂生
成物を同伴して上昇し、ドレンセパレータ32に
て水分を除去された後、ガス計測管路18のガス
分析用検出器26に導入される。 The carrier gas thus introduced from the bottom of the shipping can 4 rises together with the leaked gaseous fission products, and after water is removed by the drain separator 32, the gas in the gas measurement pipe 18 It is introduced into the analytical detector 26.
このようにしてキヤリアガスは循環の都度上記
生成物を捕集して、その濃度が次第に上昇してい
くことになるから、ガス分析用検出器26に付さ
れたガス分析器24によつて、ガス状核分裂生成
物の有無を検ずることになるが、これには半減期
および収率を考慮してγ線エネルギーが81KeV
のキセノン133(Xe133)に注目し、前記所定時間
内におけるキセノン133の放射能計数とそのピー
クの有無が測知されることゝなる。 In this way, the carrier gas collects the above-mentioned products each time it is circulated, and its concentration gradually increases, so that the gas analyzer 24 attached to the gas analysis detector 26 The presence or absence of nuclear fission products will be tested, but considering the half-life and yield, the gamma ray energy is 81KeV.
Focusing on xenon 133 (Xe 133 ), the radioactivity count of xenon 133 and the presence or absence of its peak within the predetermined time are measured.
そして上記の如き計測中にあつて、ドレンセパ
レータ32が異常高水位に達すると、前記の如く
水位検出器40の出力電気信号によりガス出口弁
33が閉止されるから、分離水たるプール水がガ
ス計測管路18に流入することを阻止でき、この
ような状態となれば分離水排水弁38を開いて分
離水を排出させることで計測は再開される。 During the measurement as described above, when the drain separator 32 reaches an abnormally high water level, the gas outlet valve 33 is closed by the output electric signal of the water level detector 40 as described above, so that the pool water, which is the separated water, becomes gaseous. It is possible to prevent the water from flowing into the measurement pipe line 18, and if this condition occurs, the separated water drain valve 38 is opened to discharge the separated water, and the measurement is restarted.
かくして一定時間の計測が終れば、ガス出口弁
33を閉止し、放出弁36を開成するとシツピン
グキヤン4内とガス導入管路22内のキヤリアガ
スが、ドレンセパレータ32を経て放出管路37
から排出される。 When the measurement for a certain period of time is completed, the gas outlet valve 33 is closed and the release valve 36 is opened, and the carrier gas in the shipping can 4 and the gas introduction pipe 22 passes through the drain separator 32 and is released into the release pipe 37.
is discharged from.
一方排出弁34を開成すると共に、ガス給排管
路21の前段側ガス循環弁30を閉止すれば、同
管路21内の残留キヤリアガスが排出関路35か
らガス導入管路22に流入し、ドレンセパレータ
32、放出弁36を介して放出管路37から排出
されることになり、このようなキヤリアガスの放
出中にあつて同ガスに同伴したプール水は上記ド
レンセパレータ32により分離され、キヤリアガ
スのみが放出管路37から排出されるのであり、
この際ドレンセパレータ32の分離水は分離排水
弁38を開成して排出させておく。 On the other hand, if the discharge valve 34 is opened and the gas circulation valve 30 on the upstream side of the gas supply/discharge pipe 21 is closed, the residual carrier gas in the pipe 21 will flow into the gas introduction pipe 22 from the discharge barrier 35. The carrier gas is discharged from the discharge pipe 37 via the drain separator 32 and the discharge valve 36, and the pool water accompanying the carrier gas is separated by the drain separator 32, leaving only the carrier gas. is discharged from the discharge pipe 37,
At this time, the separated water in the drain separator 32 is discharged by opening the separation and drain valve 38.
またガス計測管路18内の残留キヤリアガスに
ついては、後段側ガス循環弁30′を閉止して、
キヤリアガス供給管路8のキヤリアガス元弁17
から新規にキヤリアガスをガス計測管路18に流
入させるのであり、これにより残留キヤリアガス
は新規キヤリアガスにより同管路18から前段側
ガス循環弁30−排出管路35−ガス導入管路2
2のドレンセパレータ33−放出管路37の経路
により排気され、以上残留キヤリアガスの如何な
る放出時にあつても、核分裂生成物を含むキヤリ
アガスが、ガス計測管路18に導入されることな
く、同管路18を迂回して排除される。 Regarding the residual carrier gas in the gas measurement pipe 18, the downstream side gas circulation valve 30' is closed.
Carrier gas main valve 17 of carrier gas supply pipe 8
New carrier gas is caused to flow into the gas measurement pipe 18 from the previous stage gas circulation valve 30 - discharge pipe 35 - gas introduction pipe 2 from the same pipe 18 with the new carrier gas.
The carrier gas containing nuclear fission products is not introduced into the gas measuring pipe 18, and the carrier gas containing the fission products is not introduced into the gas measuring pipe 18, and even when the residual carrier gas is discharged, 18 and is eliminated.
本発明は上記シツピング装置による計測を開始
するに先立つて上記の各種開閉弁に漏洩がないか
どうか、特に当該開閉弁を前記の如く所定シーケ
ンスにより自動制御するような場合、果して自動
開閉弁が故障なく完全に閉動されるか否か、そし
てこれら開閉弁が設けられている管路に漏洩箇所
があるかどうかを確認しておくことが重要な問題
となる。 The present invention examines whether there is any leakage in the various on-off valves before starting measurement by the shipping device, especially when the on-off valves are automatically controlled according to a predetermined sequence as described above. It is important to check whether the on-off valves close completely and whether there are any leakage points in the pipelines in which these on-off valves are installed.
本発明はこのような要請を充足させるためのも
ので、先ず各種開閉弁がシーケンス制御されてい
る場合には、当該制御系を解放して別途設けられ
た制御信号発信器により、キヤリアガス元弁1
7、ガス給排管路21の前段側ガス循環弁30、
ガス導入管路22のキヤリアガス導入弁31とガ
ス出口弁33、排出管路35の排出弁34、放出
管路37の放出弁36そして排水管路39の分離
水排出弁38をすべて閉止する。 The present invention is intended to satisfy these demands. First, when various on-off valves are sequentially controlled, the control system is released and a separately provided control signal transmitter is used to control the carrier gas main valve 1.
7, gas circulation valve 30 on the front stage side of the gas supply and discharge pipe 21;
The carrier gas introduction valve 31 and gas outlet valve 33 of the gas introduction pipe 22, the discharge valve 34 of the discharge pipe 35, the discharge valve 36 of the discharge pipe 37, and the separated water discharge valve 38 of the drain pipe 39 are all closed.
次に上記キヤリアガス元弁17を開口し、キヤ
リアガス供給管路8から、例えば2気圧の高圧キ
ヤリアガスをガス計測管路18に流入した後同元
弁17を閉止して同ガスを封入し、当該封入当初
における封入ガス圧を圧力計23により測知す
る。 Next, the carrier gas source valve 17 is opened, and high-pressure carrier gas of, for example, 2 atm. flows from the carrier gas supply line 8 into the gas measurement line 18, and the source valve 17 is then closed to seal in the gas. The pressure of the sealed gas at the beginning is measured by the pressure gauge 23.
このような状態にて一定時間放置した後、上記
圧力計23を読み、これと当初の圧力値とを比較
することで、圧力に降下が見られたときは、ガス
出口弁33、前段側ガス循環弁30の何れかの開
閉弁、もしくはガス計測管路18にキヤリアガス
の漏洩が生じていることを確認することができ
る。 After being left in this condition for a certain period of time, read the pressure gauge 23 and compare it with the initial pressure value. If a drop in pressure is found, the gas outlet valve 33 and the previous gas It can be confirmed that the carrier gas is leaking from one of the on-off valves of the circulation valve 30 or the gas measurement pipe 18.
そして上記の如き漏洩のないことが確認された
ならば、次にガス出口弁33を開成させ、これに
より封入されていた上記ガス計測管路内の高圧キ
ヤリアガスをガス導入管路22のキヤリアガス導
入弁31、放出管路37の放出弁36、排出管路
35の排出弁34および排水管路39の分離水排
水弁38に至るまで流入させるのであり、従つて
前記2気圧の封入高圧キヤリアガス圧は降下する
ことゝなるから、当該降下圧力値を圧力計23に
より測知する。 If it is confirmed that there is no leakage as described above, then the gas outlet valve 33 is opened, whereby the high pressure carrier gas sealed in the gas measurement pipe is transferred to the carrier gas introduction valve of the gas introduction pipe 22. 31, the water is allowed to flow into the discharge valve 36 of the discharge pipe 37, the discharge valve 34 of the discharge pipe 35, and the separated water drain valve 38 of the drain pipe 39, so that the pressure of the enclosed high-pressure carrier gas of 2 atmospheres drops. Therefore, the pressure drop value is measured by the pressure gauge 23.
そして上記降下圧力値が既定の例えば1.2気圧
であつたとすれば、上記のいかなる開閉弁および
管路にも漏洩のないことが知られ、上記の既定圧
力降下値よりも小さくなつている場合は、上記何
れかの開閉弁または管路に漏洩のあることが確認
されることゝなる。 If the pressure drop value is a predetermined value of, for example, 1.2 atmospheres, it is known that there is no leakage in any of the on-off valves and pipelines, and if the pressure drop value is smaller than the predetermined pressure drop value, then It is confirmed that there is a leak in any of the on-off valves or pipelines mentioned above.
そしてこのような検査により漏洩箇所のあるこ
とが確認されたならば開閉弁や管路を点検して、
これを補修することができ、この際自動開閉弁と
することにより当該装置の稼動だけでなく検査を
も簡易迅速に実施できる。 If it is confirmed through such inspection that there is a leakage point, check the on-off valves and pipes,
This can be repaired, and by using an automatic opening/closing valve, not only the operation of the device but also the inspection can be carried out easily and quickly.
本発明は上記シツピング装置の管路系にあつ
て、前段側ガス循環弁30とガス出口弁33との
閉止状態下にて、キヤリアガス供給管路8から高
圧キヤリアガスをガス計測管路18へ封入し、当
該ガス計測管路18の封入当初における圧力計2
3の読みと、所定経時後の同圧力計23の読みと
を比較することにより、前段側ガス循環弁30、
ガス出口弁33およびガス計測管路18のガス漏
洩を検知し、次にキヤリアガス導出弁31、排出
弁34、放出弁36、分離水排出弁38の閉止状
態下にて、前記ガス出口弁33を開口し、当該開
口前における圧力計23の読みに対して、開口後
における圧力計の読みが既定圧力降下値よりも小
さいか否かによつて、上記各開閉弁と当該開閉弁
に至る各管路のガス漏洩を検知するようにしたか
ら、高圧キヤリアガスの当初における供給と、所
定開閉弁の数少ない開閉作動によつて、多数の開
閉弁と管路とのガス漏洩を簡易迅速に確認するこ
とができ、この際自動開閉弁を用いるようにすれ
ば多数の作業員を配置することなくシツピング装
置の管路系を全般的に能率よく、かつ高い信頼性
をもつて検査できることゝなる。 The present invention relates to the pipeline system of the above-mentioned shipping device, in which high-pressure carrier gas is sealed from the carrier gas supply pipeline 8 into the gas measurement pipeline 18 while the front gas circulation valve 30 and the gas outlet valve 33 are closed. , the pressure gauge 2 at the time when the gas measurement pipe 18 is initially sealed.
3 and the reading of the same pressure gauge 23 after a predetermined period of time, the front gas circulation valve 30,
Gas leakage in the gas outlet valve 33 and the gas measurement pipe 18 is detected, and then the gas outlet valve 33 is closed while the carrier gas outlet valve 31, discharge valve 34, discharge valve 36, and separated water discharge valve 38 are closed. Each opening/closing valve and each pipe leading to the opening/closing valve are determined depending on whether the reading of the pressure gauge 23 after opening is smaller than the predetermined pressure drop value compared to the reading of the pressure gauge 23 before opening. By detecting gas leaks in pipelines, gas leaks between multiple valves and pipelines can be easily and quickly confirmed by supplying high-pressure carrier gas at the beginning and opening and closing a small number of designated valves. In this case, if an automatic opening/closing valve is used, the pipe system of the shipping equipment can be inspected generally efficiently and with high reliability without having to deploy a large number of workers.
図は本発明に係る検査方法の対象となるシツピ
ング装置を示した配管系説明図である。
1……使用済燃料取扱プール、2……プール
水、3……シツピング装置本体、4……シツピン
グキヤン、5……シツピングキヤツプ、8……キ
ヤリアガス供給管路、14……キヤリアガス循環
管路系、17……キヤリアガス元弁、18……ガ
ス計測管路、19……ガス循環用ポンプ、20…
…ガス流量調整器、21……ガス給排管路、22
……ガス導入管路、23……圧力計、26……ガ
ス分析用検出器、27……流量計、30……前段
側ガス循環弁、30′……後段側ガス循環弁、3
1……キヤリアガス導入弁、32……ドレンセパ
レータ、33……ガス出口弁、34……排出弁、
35……排出管路、36……放出弁、37……放
出管路、38……分離水排水弁、39……排水管
路、A……使用済原子燃料集合体。
The figure is an explanatory diagram of a piping system showing a shipping device that is a target of the inspection method according to the present invention. 1...Spent fuel handling pool, 2...Pool water, 3...Shipping device main body, 4...Shipping can, 5...Shipping cap, 8...Carrier gas supply pipe, 14...Carrier gas circulation pipe Line system, 17...Carrier gas main valve, 18...Gas measurement pipe line, 19...Gas circulation pump, 20...
...Gas flow rate regulator, 21...Gas supply and discharge pipe, 22
...Gas introduction pipe, 23...Pressure gauge, 26...Gas analysis detector, 27...Flowmeter, 30...Previous gas circulation valve, 30'...Later gas circulation valve, 3
1...Carrier gas introduction valve, 32...Drain separator, 33...Gas outlet valve, 34...Discharge valve,
35...Discharge pipe line, 36...Discharge valve, 37...Discharge pipe line, 38...Separated water drain valve, 39...Drain pipe line, A...Spent nuclear fuel assembly.
Claims (1)
ら送止自在にキヤリアガスが導入され、かつ圧力
計、ガス分析用検出器、ガス流量調整器、流量計
を介設したガス計測管路と、前段側ガス循環弁、
後段側ガス循環弁を介設したガス給排管路と、使
用済原子燃料取扱プールの水中に設置されたシツ
ピング装置本体の使用済原子燃料集合体が装脱さ
れる侵水自在なシツピングキヤンと、同シツピン
グキヤンに開閉自在に設けられたシツピングキヤ
ツプと連結され、かつキヤリアガス導入弁、ドレ
ンセパレータ、ガス出口弁を介設したガス導入管
路とが順次連続して形成され、ガス循環用ポンプ
により前記キヤリアガスを循環させるようにした
キヤリアガス循環管路系を有し、前記ガス導入管
路におけるドレンセパレータとキヤリアガス導入
弁との間から分岐して排出弁を介設した排出管路
は、前記ガス給排管路の前段側ガス循環弁と後段
側ガス循環弁との間に連結し、当該ガス導入管路
のドレンセパレータと前記ガス出口弁との間から
は放出弁を介設した放出管路が分岐し、ドレンセ
パレータには分離水排水弁を介設した排水管路が
設けられているシツピング装置の管路系にあつ
て、上記の前段側ガス循環弁とガス出口弁との閉
止状態下にて、キヤリアガス供給管路から高圧キ
ヤリアガスをガス計測管路へ封入し、当該ガス計
測管路の封入当初における前記圧力計の読みと、
所定経時後の同圧力計の読みとを比較することに
より、前段側ガス循環弁、ガス出口弁およびガス
計測管路のガス漏洩を検知し、次にキヤリアガス
導入弁、排出弁、放出弁、分離水排水弁の閉止状
態下にて、前記ガス出口弁を開口し、当該開口前
における圧力計の読みに対して、開口後における
圧力計の読みが既定圧力降下値よりも小さいか否
かによつて、上記の各開閉弁と当該開閉弁に至る
各管路のガス漏洩を検知するようにしたことを特
徴とする原子燃料集合体用シツピング装置の開閉
弁と管路の漏洩検査方法。1 Carrier gas is freely introduced from the carrier gas main valve of the carrier gas supply pipe, and the gas measurement pipe is equipped with a pressure gauge, a gas analysis detector, a gas flow rate regulator, and a flow meter, and the gas circulation on the front stage side. valve,
A shipping can that can easily be submerged into water, where the spent nuclear fuel assembly of the main body of the shipping device is installed in the water of the spent nuclear fuel handling pool, and the gas supply/discharge pipe line with a gas circulation valve on the latter stage is interposed. A gas inlet pipe is connected to a shipping cap that can be opened and closed in the same shipping can, and has a carrier gas inlet valve, a drain separator, and a gas outlet valve. The discharge pipe has a carrier gas circulation pipe system in which the carrier gas is circulated by a pump, and the discharge pipe branches from between the drain separator and the carrier gas introduction valve in the gas introduction pipe and has a discharge valve interposed therein. A discharge valve is connected between the front-stage gas circulation valve and the rear-stage gas circulation valve of the gas supply/discharge pipe, and a discharge valve is interposed between the drain separator of the gas introduction pipe and the gas outlet valve. In the pipe system of a shipping equipment where the pipe line is branched and the drain separator is provided with a drain pipe line with a separated water drain valve interposed, it is necessary to close the preceding gas circulation valve and the gas outlet valve as described above. Under the conditions, high-pressure carrier gas is sealed from the carrier gas supply pipe into the gas measurement pipe, and the reading of the pressure gauge at the time of filling the gas measurement pipe,
By comparing the reading of the same pressure gauge after a predetermined period of time, gas leakage in the front gas circulation valve, gas outlet valve, and gas measurement pipe is detected, and then the carrier gas inlet valve, discharge valve, release valve, and separation valve are detected. With the water drain valve closed, the gas outlet valve is opened, and the pressure gauge reading after opening is determined to be smaller than the predetermined pressure drop value compared to the pressure gauge reading before the opening. A method for inspecting leakage of on-off valves and pipelines of a shipping device for nuclear fuel assemblies, characterized in that gas leakage is detected in each of the above-mentioned on-off valves and each of the pipelines leading to the on-off valves.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57048657A JPS58166236A (en) | 1982-03-26 | 1982-03-26 | Leakage inspection method for on-off valves and pipelines of shipping equipment for nuclear fuel assemblies |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57048657A JPS58166236A (en) | 1982-03-26 | 1982-03-26 | Leakage inspection method for on-off valves and pipelines of shipping equipment for nuclear fuel assemblies |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58166236A JPS58166236A (en) | 1983-10-01 |
JPH0140942B2 true JPH0140942B2 (en) | 1989-09-01 |
Family
ID=12809415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57048657A Granted JPS58166236A (en) | 1982-03-26 | 1982-03-26 | Leakage inspection method for on-off valves and pipelines of shipping equipment for nuclear fuel assemblies |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58166236A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2609140C1 (en) * | 2016-01-26 | 2017-01-30 | Акционерное Общество "Ордена Ленина Научно-Исследовательский И Конструкторский Институт Энерготехники Имени Н.А. Доллежаля" | Method for humidity control of leaks of pipelines and equipment cooling circuit of nuclear or thermal power plant |
-
1982
- 1982-03-26 JP JP57048657A patent/JPS58166236A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58166236A (en) | 1983-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4918975A (en) | Method and apparatus for testing fluid-filled systems for leaks | |
CN105758593B (en) | Method for positioning and detecting water leakage is quantified using nuclear boiler heat-transfer pipe helium mass spectrum leak detection equipment | |
RU2690524C1 (en) | Fluid leakage control system from spent nuclear fuel maintenance pool | |
JP4313970B2 (en) | Method and apparatus for inspecting nuclear fuel elements | |
US4133373A (en) | Leak detecting apparatus | |
JPS62204141A (en) | Measuring device for gas dissolved into water | |
US4696788A (en) | Process and device for detecting defective cladding sheaths in a nuclear fuel assembly | |
CN85109072A (en) | The method and apparatus that cladding defect detects in the nuclear fuel assembly | |
KR102372548B1 (en) | Analytical device for detecting fission products by measurement of radioactivity | |
JPH0140942B2 (en) | ||
US11783955B2 (en) | Defective fuel bundle location system | |
CN114526877A (en) | Check valve low-pressure-difference sealing performance detection system and detection method | |
KR100558513B1 (en) | Leakage Inspection System of Flow-through Steam Generator by Gas Circulation | |
JP6754721B2 (en) | Steam system water level detector | |
JPH0142400B2 (en) | ||
JPS5827477B2 (en) | How to determine if nuclear reactor fuel rods are pressurized during manufacturing | |
JPH08292287A (en) | How to monitor spent fuel storage | |
JPS593236A (en) | Liquid metal leakage detection system | |
RU2297680C1 (en) | Method and device for checking fuel element cans for tightness | |
JPS6228846B2 (en) | ||
Olson et al. | The Fort St. Vrain high temperature gas-cooled reactor: XII. The dew point moisture monitor testing program | |
JPS64591Y2 (en) | ||
Maynard et al. | Developments in steam generator leak detection at Ontario Hydro | |
JPS5950919B2 (en) | Heat exchanger | |
SU864034A1 (en) | Method of determining inlet of leakages in articles through channels which are filled with working liquid |