[go: up one dir, main page]

JPH0139336B2 - - Google Patents

Info

Publication number
JPH0139336B2
JPH0139336B2 JP56148518A JP14851881A JPH0139336B2 JP H0139336 B2 JPH0139336 B2 JP H0139336B2 JP 56148518 A JP56148518 A JP 56148518A JP 14851881 A JP14851881 A JP 14851881A JP H0139336 B2 JPH0139336 B2 JP H0139336B2
Authority
JP
Japan
Prior art keywords
lens material
temperature
lens
mold
compression molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56148518A
Other languages
Japanese (ja)
Other versions
JPS5849218A (en
Inventor
Akitake Ito
Shunsuke Matsuda
Tooru Tamura
Yoshinobu Murakami
Katsuaki Mitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14851881A priority Critical patent/JPS5849218A/en
Publication of JPS5849218A publication Critical patent/JPS5849218A/en
Publication of JPH0139336B2 publication Critical patent/JPH0139336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明はプラスチツクレンズの製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing plastic lenses.

プラスチツクレンズは従来のガラスレンズに比
較して軽量であること、多量生産の可能性がある
こと、コストが低いことが期待されること等の理
由により光学製品に広く用いられるようになつて
きている。現在プラスチツクレンズ材料として主
に使用されている樹脂は、ジエチレングリコール
ビスアリルカーボネート(以下CR−39と称する)
もしくはポリメチルメタクリレート(以下
PMMAと称する)である。
Plastic lenses are becoming more widely used in optical products because they are lighter than traditional glass lenses, have the potential for mass production, and are expected to be inexpensive. . The resin currently mainly used as a plastic lens material is diethylene glycol bisallyl carbonate (hereinafter referred to as CR-39).
Or polymethyl methacrylate (hereinafter
(referred to as PMMA).

CR−39は主に眼鏡用のレンズに、PMMAはサ
ングラス用やルーペなどに多く使用されている。
これらのレンズは比較的径が小さく、PMMAの
場合には主として射出成形法により、またCR−
39は注型法によりレンズを製造している。
CR-39 is mainly used for eyeglass lenses, and PMMA is often used for sunglasses and loupes.
These lenses have a relatively small diameter and are manufactured primarily by injection molding in the case of PMMA and by CR-
39 manufactures lenses using the casting method.

ところで、比較的径が大きく、しかも肉厚偏差
も大きいレンズをプラスチツク化する試みも最近
なされてきている。このようなレンズを射出成形
法により製造する場合、形状精度の良いレンズを
得ようとすると、シリンダ→ノズル→スプルー→
ゲート→製品という樹脂の流路に沿つて圧力を付
加して製品が充てん不足(シヨートシヨツト)に
ならないようにする必要があるが、レンズ製品部
のうち特にゲートに近い部分は、そこを通して強
い圧力がキヤビテイに付加され、残留応力が出や
すく結果的に歪になりやすい。また偏肉と呼ばれ
るレンズ製品部の厚さの違いによつて、レンズ厚
肉部にヒケが発生しやすい。このように、高い射
出圧を付加すること、偏肉であることの故に、高
い形状精度や歪の少ないプラスチツクレンズを射
出成形法により得ることは困難である。
Incidentally, attempts have recently been made to make lenses that have a relatively large diameter and a large deviation in thickness from plastic. When manufacturing such a lens by injection molding, in order to obtain a lens with good shape accuracy, the cylinder → nozzle → sprue →
It is necessary to apply pressure along the flow path of the resin from the gate to the product to prevent the product from becoming insufficiently filled (short shot), but the part of the lens product section that is particularly close to the gate must be exposed to strong pressure. It is added to the cavity and tends to generate residual stress, resulting in distortion. Also, due to differences in the thickness of lens product parts called uneven thickness, sink marks are likely to occur in the thick parts of the lens. As described above, it is difficult to obtain a plastic lens with high shape accuracy and little distortion by injection molding because of the application of high injection pressure and uneven thickness.

一方、このようなレンズを注型法により製造す
る試みもなされている。しかし、この注型法にお
いては、単量体の重合収縮による形状歪という問
題が存在している。従つて、注型成形用の型は、
所定のレンズ形状を有しているにもかかわらず、
成形後に得られたレンズは所定のものとかなり違
つてしまい、形状精度の良いプラスチツクレンズ
を注型法により得ることは困難である。
On the other hand, attempts have also been made to manufacture such lenses by a casting method. However, this casting method has the problem of shape distortion due to polymerization shrinkage of the monomer. Therefore, the mold for cast molding is
Despite having a predetermined lens shape,
The lens obtained after molding is quite different from the predetermined one, and it is difficult to obtain a plastic lens with good shape precision by the casting method.

本発明は以上の点に鑑み、比較的径が大きく、
しかも肉厚偏差も大きいプラスチツクレンズを得
る方法を提供するものである。すなわち本発明
は、注型法によるプラスチツクレンズには射出成
形法によるレンズに比較して光学的歪がかなり少
ないこと、および圧縮成形では形状精度の良いも
のが得られるという事実に立脚して、最終レンズ
形状の近似の形状を有する注型成形用の型内に単
量体または半重合物を流しこみ、塊状重合させて
プラスチツクレンズ素材を作り、その後、このプ
ラスチツクレンズ素材を、予めこのプラスチツク
レンズ素材の応力歪が最も小さくなる温度に加熱
しておいた、所定のレンズ形状を有する圧縮成形
用金型内に入れ、レンズ素材の内部温度がレンズ
素材のガラス転移点より10℃高い温度以下であつ
て、かつレンズ素材の表面近傍の温度が、圧縮成
形用金型温度にほぼ等しくなることによつて、レ
ンズ素材の内部温度が表面近傍の温度より低い状
態でレンズ素材の表面近傍(表面層)のみが溶融
し流動可能になつた時点で圧縮成形することによ
り、大口径でかつ偏肉のあるプラスチツクレンズ
の製造を可能としたものである。
In view of the above points, the present invention has a relatively large diameter,
Moreover, the present invention provides a method for obtaining a plastic lens with a large thickness deviation. In other words, the present invention is based on the fact that plastic lenses made by casting process have significantly less optical distortion than lenses made by injection molding process, and that compression molding can provide products with good shape accuracy. A monomer or semi-polymer is poured into a casting mold having a shape approximating the shape of a lens, and polymerized in bulk to produce a plastic lens material. The lens material is placed in a compression molding mold having a predetermined lens shape that has been heated to a temperature that minimizes the stress strain of the lens material. In addition, since the temperature near the surface of the lens material is almost equal to the compression molding mold temperature, the temperature near the surface of the lens material (surface layer) is lowered when the internal temperature of the lens material is lower than the temperature near the surface. By compression molding the plastic lens once it has melted and become flowable, it is possible to manufacture a plastic lens with a large diameter and uneven thickness.

以下、本発明の製造方法について更に詳しく説
明する。
The manufacturing method of the present invention will be explained in more detail below.

塊状重合によつて得られるプラスチツクレンズ
素材を作るのに適する材料としては、メチルメタ
クリレート、スチレンなどの透明な単量体または
これらの半重合体がある。塊状重合によつて得ら
れるプラスチツクレンズ素材の平均分子量は、射
出成形用材料の平均分子量よりもかなり大きくす
る。塊状重合時には無理な圧力がほとんど加わら
ないため、残留応力の発生ということもなく、歪
の出現が射出成形法と比較し極度に少ない。ま
た、塊状重合後に圧縮成形工程があるため、注型
成形用型の精度は、それほど高くする必要がな
い。
Suitable materials for making plastic lens materials obtained by bulk polymerization include transparent monomers such as methyl methacrylate, styrene, or semipolymers thereof. The average molecular weight of the plastic lens material obtained by bulk polymerization is considerably greater than the average molecular weight of the injection molding material. Since almost no undue pressure is applied during bulk polymerization, no residual stress is generated, and the occurrence of distortion is extremely low compared to injection molding. Furthermore, since there is a compression molding step after bulk polymerization, the accuracy of the casting mold does not need to be very high.

次に、塊状重合により作つたレンズ素材を、予
めこのレンズ素材の応力歪が最も小さくなる温度
に加熱しておいた、所定のレンズ形状を有する圧
縮成形用金型内に入れ、圧縮成形を行なう。その
際樹脂は加熱されて、ゴム状態から流動状態にな
つていなければならない。圧縮成形工程では、プ
ラスチツクレンズ素材全体を溶融するのではな
く、レンズ素材の内部温度がレンズ素材のガラス
転移点より10℃高い温度以下であつて、かつレン
ズ素材の表面近傍の温度が、圧縮成形用金型温度
にほぼ等しくなることによつて、レンズ素材の内
部温度が表面近傍の温度より低い状態でレンズ素
材の表面近傍のみを溶融させ流動状態にする。そ
の理由は、レンズ素材全体を溶融する場合、熱容
量が大きく長時間を要し、しかも冷却過程でレン
ズ薄肉部が先に固化するため、レンズ厚肉部の固
化に伴なつてヒケが生じてくるからである。
Next, the lens material made by bulk polymerization is placed into a compression molding mold having a predetermined lens shape, which has been heated in advance to a temperature that minimizes the stress strain of this lens material, and compression molding is performed. . At this time, the resin must be heated to change from a rubber state to a fluid state. In the compression molding process, the entire plastic lens material is not melted, but the internal temperature of the lens material is 10°C higher than the glass transition point of the lens material or less, and the temperature near the surface of the lens material is not melted. By making the temperature approximately equal to the mold temperature, only the area near the surface of the lens material is melted and brought into a fluid state while the internal temperature of the lens material is lower than the temperature near the surface. The reason for this is that melting the entire lens material has a large heat capacity and takes a long time, and the thinner parts of the lens solidify first during the cooling process, resulting in sink marks as the thicker parts of the lens solidify. It is from.

本発明の圧縮成形では、レンズ形状が偏肉製品
であるにもかかわらず、溶融流動化できる部分の
厚さはほぼ全体に渡つて一定の厚さになつてお
り、あたかも等厚製品を成形するかのように成形
がおこなわれる。この際、レンズ素材の溶融流動
化する表面近傍の温度は圧縮成形用金型の温度、
すなわちレンズ素材の応力歪が最も小さくなる温
度に近くなつている。レンズ素材の表面近傍の温
度が、このレンズ素材の応力歪が最も小さくなる
温度より高い場合には、圧縮成形後の冷却時にお
ける樹脂の収縮が発生するから、レンズ素材全体
を溶融させた時には、レンズの厚い部分と薄い部
分とで収縮量が異なるため歪が発生する。それに
対して等厚製品の場合には収縮量が一定であるか
ら冷却時の収縮による歪は発生しない。一方、レ
ンズ素材の表面近傍の温度が、このレンズ素材の
応力歪が最も小さくなる温度より低い場合には、
ゴム状態にある樹脂を加圧によつて無理に動かそ
うとするのであるから、分子秩序が乱されて歪に
なつてしまう。また、レンズ素材の溶融のための
加熱は、成形機外のところであらかじめおこなつ
ておくこともでき、この場合にはレンズ素材の表
面近傍のみが溶融し、流動可能になつた時点で成
形機内に金型を移し、圧縮成形をおこなうなど、
一般の圧縮成形に用いられているプレヒート等を
おこなうことは有用である。また、圧縮圧をかけ
始めると同時に金型の冷却を始める。
In the compression molding of the present invention, even though the lens shape is a product with uneven thickness, the thickness of the part that can be melted and fluidized is almost constant throughout, making it as if a product of equal thickness was molded. The molding is carried out as if. At this time, the temperature near the surface where the lens material melts and fluidizes is the temperature of the compression molding mold,
In other words, the temperature is close to the temperature at which the stress strain of the lens material is minimized. If the temperature near the surface of the lens material is higher than the temperature at which the stress strain of the lens material is minimized, the resin will shrink during cooling after compression molding, so when the entire lens material is melted, Distortion occurs because the amount of contraction differs between thick and thin parts of the lens. On the other hand, in the case of products of equal thickness, the amount of shrinkage is constant, so no distortion occurs due to shrinkage during cooling. On the other hand, if the temperature near the surface of the lens material is lower than the temperature at which the stress strain of this lens material is the smallest,
Since the rubbery resin is forced to move by applying pressure, the molecular order is disturbed and distortion occurs. In addition, the heating for melting the lens material can be carried out in advance outside the molding machine. In this case, only the vicinity of the surface of the lens material is melted, and when it becomes flowable, it is heated inside the molding machine. Transferring the mold and performing compression molding, etc.
It is useful to perform preheating, etc., which is used in general compression molding. Also, at the same time as compression pressure starts to be applied, cooling of the mold begins.

以下、上記した圧縮成形工程について図面を用
いて更に詳しく説明する。第1図〜第3図は、圧
縮成形工程を3段階に区分して、その概略を示し
た図である。すなわち第1図はレンズ素材のセツ
トの段階、第2図は加圧、冷却の段階、第3図は
製品取り出しの段階を説明するための図である。
Hereinafter, the above-described compression molding process will be explained in more detail using the drawings. FIGS. 1 to 3 are diagrams schematically showing the compression molding process divided into three stages. That is, FIG. 1 is a diagram for explaining the stage of setting the lens material, FIG. 2 is the stage of pressurization and cooling, and FIG. 3 is a diagram for explaining the stage of product removal.

まず第1図において、前工程で注型法により製
造したレンズ素材2を、金型を開いた状態で型板
1および3に組みこまれたコア6,7の間にセツ
トする。この場合、金型は、温度を調整するため
の金型温調用媒体通り穴11に温調用媒体(通常
は油)を流すことにより、一定温度に加熱してお
く。
First, in FIG. 1, the lens material 2 manufactured by the casting method in the previous step is set between the cores 6 and 7 incorporated in the templates 1 and 3 with the mold open. In this case, the mold is heated to a constant temperature by flowing a temperature regulating medium (usually oil) through the mold temperature regulating medium passage hole 11 for adjusting the temperature.

次に、図示していない装置により第2図に示す
ように金型を閉じる。ただし、金型は閉じている
だけで金型にはほとんど力が加わらないようにす
る。この状態のまま、レンズ素材2の表面近傍の
みが溶融し流動可能になるまで放置する。その
後、図示していない装置により金型に大きな圧力
をかけ圧縮成形を行なう。その際、圧縮圧力をか
け始めると同時に金型温調用媒体通り穴11に流
していた温調用媒体の循環を止め、金型冷却用媒
体通り穴12に冷却用媒体(油、水など)を流す
ことにより金型の冷却を始める。
Next, the mold is closed as shown in FIG. 2 using a device not shown. However, the mold should only be closed so that almost no force is applied to the mold. This state is left until only the vicinity of the surface of the lens material 2 melts and becomes fluid. Thereafter, compression molding is performed by applying a large pressure to the mold using a device (not shown). At that time, at the same time as starting to apply compression pressure, the circulation of the temperature regulating medium that was flowing through the mold temperature regulating medium passage hole 11 is stopped, and the cooling medium (oil, water, etc.) is allowed to flow through the mold cooling medium passage hole 12. This starts cooling the mold.

成形品を取り出せる温度に達した後、第3図に
示すように、金型を開き、図示していない装置に
よりエジエクタプレート5、エジエクタスリーブ
(またはエジエクタピン)4を作動させて、最終
のプラスチツクレンズ2′を取り出す。
After reaching a temperature at which the molded product can be taken out, the mold is opened as shown in FIG. Take out lens 2'.

以下、本発明の実施例について述べる。 Examples of the present invention will be described below.

直径100mmの両凸レンズで、一方の球面の半径
が200mm、もう一方の球面の半径が100mm、こば厚
が5mm、中心厚が24.75mmのプラスチツクレンズ
を得るため、直径105mm、球面の半径105mmの凹の
ガラス型1個、および直径105mm、球面の半径205
mmの凹のガラス型1個の注型成形用の型を準備し
た。この2つの型の間にこば厚が5mmになるよう
にガスケツトをはさみ、その中にメチルメタクリ
レートを予備重合させた半重合物を流しこみ、60
℃で20時間、更に、110℃で5時間塊状重合させ、
その後冷却離型してプラスチツクレンズ素材を得
た。一方、図面に示すような圧縮成形用金型のコ
アとして、直径100mm、球面の半径100mmの凹のコ
アと、直径100mm、球面の半径2000mmの凹のコア
を準備し金型に組み込んだ後、この金型を150℃
に加熱しておいた。その後、圧縮成形用金型を開
き、前工程でできあがつたプラスチツクレンズ素
材をコア面にセツトし、次に金型が閉じ、レンズ
素材の表面近傍のみが溶融し流動可能になるまで
20秒間待つた。その後、圧縮圧50Kg/cm2を10分間
かけた。また圧縮圧をかけ始めると同時に金型の
冷却を始めた。圧縮圧をきつた後、金型を開き所
望のプラスチツクレンズを得た。
To obtain a plastic lens that is a biconvex lens with a diameter of 100 mm, one spherical surface has a radius of 200 mm, the other spherical surface has a radius of 100 mm, the edge thickness is 5 mm, and the center thickness is 24.75 mm. 1 concave glass mold, diameter 105mm, spherical radius 205
A glass mold with a concave size of mm was prepared for casting. A gasket was sandwiched between these two molds so that the thickness was 5 mm, and a half-polymer of methyl methacrylate prepolymerized was poured into it.
℃ for 20 hours, further bulk polymerized at 110℃ for 5 hours,
Thereafter, the mold was cooled and released to obtain a plastic lens material. On the other hand, as shown in the drawing, a concave core with a diameter of 100 mm and a spherical radius of 100 mm and a concave core with a diameter of 100 mm and a spherical radius of 2000 mm were prepared and assembled into the mold. This mold is heated to 150℃
It was heated to. After that, the compression molding mold is opened and the plastic lens material made in the previous process is set on the core surface, and then the mold is closed until only the lens material near the surface melts and can flow.
I waited 20 seconds. Thereafter, a compression pressure of 50 kg/cm 2 was applied for 10 minutes. At the same time as applying compression pressure, cooling of the mold began. After tightening the compression pressure, the mold was opened to obtain the desired plastic lens.

得られたプラスチツクレンズについて、三次元
測定機によつて形状測定をおこなつた。その結
果、球面の半径100mm、200mmの両面との理論値か
らのバラツキは±3μm以内であつた。また偏光
板によつて光学歪を観察したところ、ほとんど歪
は認められなかつた。
The shape of the obtained plastic lens was measured using a coordinate measuring machine. As a result, the variation from the theoretical value for both sides of the spherical radius of 100 mm and 200 mm was within ±3 μm. Further, when optical distortion was observed using a polarizing plate, almost no distortion was observed.

以上述べてきたように本発明は、最終レンズ形
状に近似の形状を有する注型成形用型内にて塊状
重合によりプラスチツクレンズ素材を作り、これ
を、予めこのレンズ素材の応力歪が最も小さくな
る温度に加熱しておいた。所定のレンズ形状を有
する圧縮成形用金型内に入れ、レンズ素材の内部
温度がレンズ素材のガラス転移点より10℃高い温
度以下であつて、かつレンズ素材の表面近傍の温
度が、圧縮成形用金型温度にほぼ等しくなること
によつて、レンズ素材の内部温度が表面近傍の温
度より低い状態でレンズ素材の表面近傍のみが溶
融し流動可能になつた時点で圧縮成形をおこなう
ことにより、従来の方法では得られなかつた大口
径でかつ偏肉のあるプラスチツクレンズの提供を
可能としたものである。さらに、圧縮成形をする
際、プラスチツクレンズ素材の内部温度が表面近
傍の温度よりも低くなつており、レンズ素材の表
面近傍のみが溶融し流動可能になつた時点で圧縮
成形を行なうため、レンズ素材の不均一冷却にも
とづく光学歪を少なくする効果がある。また、圧
縮成形での冷却中におけるレンズ素材の温度分布
は、冷却が表面からなされるのでレンズ素材全体
を均一な温度に加熱した後冷却する方法に比較し
て、かなり小さくなり、その結果、ほぼ均一に冷
却が行なわれるので、冷却歪が発生しにくくなる
効果がある。
As described above, the present invention produces a plastic lens material by bulk polymerization in a cast molding mold having a shape approximate to the final lens shape, and prepares the plastic lens material in advance so that the stress strain of this lens material is minimized. It was heated to temperature. Place the lens material into a compression molding mold having a predetermined lens shape, and make sure that the internal temperature of the lens material is 10°C higher than the glass transition point of the lens material or less, and the temperature near the surface of the lens material is for compression molding. The internal temperature of the lens material is lower than the temperature near the surface by almost equalizing the mold temperature, and compression molding is performed when only the surface of the lens material melts and becomes flowable. This method makes it possible to provide a plastic lens with a large diameter and uneven thickness, which could not be obtained using the method described above. Furthermore, when performing compression molding, the internal temperature of the plastic lens material is lower than the temperature near the surface, and compression molding is performed when only the surface of the lens material melts and can flow. This has the effect of reducing optical distortion caused by non-uniform cooling. In addition, the temperature distribution of the lens material during cooling in compression molding is considerably smaller than that of a method in which the entire lens material is heated to a uniform temperature and then cooled, since cooling is done from the surface. Since cooling is performed uniformly, cooling distortion is less likely to occur.

さらに圧縮成形時には、レンズ素材全体が均一
な温度になるまで加熱するのではないので、加熱
時間をかなり短くすることができ、さらに、冷却
時間についても、レンズ素材の内部温度はそれほ
ど上昇してはいないので、短くて済すという長所
もある。
Furthermore, during compression molding, the entire lens material is not heated to a uniform temperature, so the heating time can be considerably shortened, and the cooling time is also reduced so that the internal temperature of the lens material does not rise that much. It also has the advantage of being short.

さらにまた、圧縮成形時には、レンズ素材の応
力歪が最も小さくなる温度に予め加熱された金型
内で、レンズ素材の表面近傍のみが流動化能にな
つた時点で圧力を付加するため、この圧力は比較
的低くて良く、その結果圧縮成形用金型の変形量
が小さくなり、できあがつたプラスチツクレンズ
の形状精度が良好であるという効果も得られ、そ
の産業上の価置は大なるものがある。なお、本発
明において圧縮成形の後、表面の硬化のための処
理や反射防止用コーテイング等の周知の処理を施
してもよいことは言うまでもない。
Furthermore, during compression molding, pressure is applied in a mold that has been preheated to a temperature where the stress strain of the lens material is minimized, and when only the surface of the lens material becomes fluidized, this pressure is applied. The amount of deformation of the compression molding mold is small, and the resulting plastic lens has good shape accuracy, so its industrial value is great. There is. It goes without saying that in the present invention, well-known treatments such as surface hardening treatment and antireflection coating may be performed after compression molding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明における圧縮
成形の各工程を説明するための図である。 1,3……型板、2……レンズ素材、2′……
最終のプラスチツクレンズ、4……エジエクタス
リーブ(エジエクタピン)、5……エジエクタプ
レート、6,7……コア、11……金型温調用媒
体通り穴、12……金型冷却用媒体通り穴。
FIG. 1, FIG. 2, and FIG. 3 are diagrams for explaining each step of compression molding in the present invention. 1, 3...template, 2...lens material, 2'...
Final plastic cleanser, 4... Ejector sleeve (ejector pin), 5... Ejector plate, 6, 7... Core, 11... Mold temperature control medium passage hole, 12... Mold cooling medium passage hole .

Claims (1)

【特許請求の範囲】[Claims] 1 最終レンズ形状に近似の形状を有する注型成
形用の型内に単量体または半重合物を流し込み、
塊状重合させてプラスチツクレンズ素材を作り、
その後、このプラスチツクレンズ素材を、予めこ
のプラスチツクレンズ素材の応力歪が最も小さく
なる温度に加熱しておいた所定のレンズ形状を有
する圧縮成形用金型内に入れ、レンズ素材の内部
温度がレンズ素材のガラス転移点より10℃高い温
度以下であつて、かつレンズ素材の表面近傍の温
度が、圧縮成形用金型温度にほぼ等しくなること
によつて、レンズ素材の内部温度が表面近傍の温
度より低い状態でレンズ素材の表面近傍のみが溶
融し流動可能になつた時点で圧縮成形を行なうこ
とを特徴とするプラスチツクレンズの製造方法。
1 Pour the monomer or semi-polymer into a cast mold having a shape similar to the final lens shape,
Bulk polymerization is used to create plastic cleansing materials.
Thereafter, this plastic lens material is placed in a compression molding mold having a predetermined lens shape that has been heated in advance to a temperature that minimizes stress strain on the plastic lens material, and the internal temperature of the lens material is The temperature near the surface of the lens material is approximately equal to the compression molding mold temperature, and the internal temperature of the lens material is lower than the temperature near the surface. A method for producing a plastic lens, characterized in that compression molding is carried out at a point when only the surface vicinity of the lens material melts in a low temperature state and becomes flowable.
JP14851881A 1981-09-18 1981-09-18 Manufacture of plastic lens Granted JPS5849218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14851881A JPS5849218A (en) 1981-09-18 1981-09-18 Manufacture of plastic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14851881A JPS5849218A (en) 1981-09-18 1981-09-18 Manufacture of plastic lens

Publications (2)

Publication Number Publication Date
JPS5849218A JPS5849218A (en) 1983-03-23
JPH0139336B2 true JPH0139336B2 (en) 1989-08-21

Family

ID=15454561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14851881A Granted JPS5849218A (en) 1981-09-18 1981-09-18 Manufacture of plastic lens

Country Status (1)

Country Link
JP (1) JPS5849218A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196855A (en) * 1975-02-20 1976-08-25 PURASUCHITSUKURENZUNO SEIZOHO
DE2729385A1 (en) * 1976-07-12 1978-01-19 American Optical Corp Distortion-free thermoplastic ophthalmic lens prodn. - by pressing dried, preheated preform between tools with optical surfaces

Also Published As

Publication number Publication date
JPS5849218A (en) 1983-03-23

Similar Documents

Publication Publication Date Title
JP3264615B2 (en) Plastic lens injection molding method
US6440335B1 (en) Process for molding thermoplastic lenses and, steeply curved and/or thin lenses produced thereby
US6284162B1 (en) Molding method for manufacturing thin thermoplastic lenses
JP2574360B2 (en) Plastic lens molding method and apparatus
US2409958A (en) Method of molding prisms
JPH08187793A (en) Plastic optical member and production thereof
JPH03502908A (en) Disposable optical mold manufacturing method and device
US6390621B1 (en) Manufacturing of positive power ophthalmic lenses
JPS6119409B2 (en)
JPH0139336B2 (en)
JPH0354608B2 (en)
US11801626B2 (en) Resin part and its manufacturing method
JPH0139337B2 (en)
JP3131620B2 (en) Injection compression molding method
JPS59185636A (en) Injection compression molding method
JPH0159100B2 (en)
JPS5939526A (en) How to make plastic cleanse
JPS61100420A (en) Manufacture of plastic lens
JPS6362373B2 (en)
JPS6119327A (en) Injection compression molding method and device thereof
JP4666688B2 (en) Manufacturing method for ophthalmic lens
JPS6211619A (en) Process of injection molding
JPH03284913A (en) Manufacture of plastic lens and apparatus therefor
JPS60132719A (en) Preparation of plastic lens
Galic et al. Improved plastic molding technology for ophthalmic lens and contact lens