[go: up one dir, main page]

JPH0139041B2 - - Google Patents

Info

Publication number
JPH0139041B2
JPH0139041B2 JP2857783A JP2857783A JPH0139041B2 JP H0139041 B2 JPH0139041 B2 JP H0139041B2 JP 2857783 A JP2857783 A JP 2857783A JP 2857783 A JP2857783 A JP 2857783A JP H0139041 B2 JPH0139041 B2 JP H0139041B2
Authority
JP
Japan
Prior art keywords
measured
distance
lens
position sensor
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2857783A
Other languages
Japanese (ja)
Other versions
JPS59154313A (en
Inventor
Atsushi Yoshikawa
Tsutomu Kamyama
Shinichi Nagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2857783A priority Critical patent/JPS59154313A/en
Publication of JPS59154313A publication Critical patent/JPS59154313A/en
Publication of JPH0139041B2 publication Critical patent/JPH0139041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】 本発明は、半導体集積回路のチツプ等、微小面
積の板体の位置および平行度を測定するための装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the position and parallelism of a plate having a minute area, such as a semiconductor integrated circuit chip.

半導体集積回路(IC、LSIなど、以下単にICと
略記する)は、一般にセラミツク等のマウント用
台に半導体チツプをろう付けして実装される。
Semiconductor integrated circuits (IC, LSI, etc., hereinafter simply referred to as IC) are generally mounted by brazing a semiconductor chip onto a mounting base made of ceramic or the like.

近年、イメージセンサ用ICなどのように、光
感知素子を複数配列したICが多く製造され、半
導体チツプをマウント用台にろう付けする時の平
行度を、厳密に制御する必要が生じてきている。
In recent years, many ICs with multiple arrays of photo-sensing elements, such as image sensor ICs, have been manufactured, and it has become necessary to strictly control the parallelism when brazing semiconductor chips to mounting stands. .

また、たとえば、CCD(電荷結合デバイス)素
子を用いた固体撮像装置にあつては、CCDチツ
プは5×5mm程度の微小面積の板体をなしている
うえ、チツプの表面約10μ程に離間するフイルタ
をチツプと平行に貼付けるため、貼付け前の基準
段階において、数10mm離れた位置に、前もつて配
置するためのZ軸方向制御用の計測系が、貼合せ
装置には不可欠である。
For example, in the case of a solid-state imaging device using a CCD (charge-coupled device) element, the CCD chip is a plate with a microscopic area of about 5 x 5 mm, and the chips are separated by about 10 μ on the surface of the chip. In order to laminate the filter parallel to the chip, a measurement system for controlling the Z-axis direction is essential for the laminator to place the filter several tens of millimeters away in the reference stage before laminate.

従来、ICのチツプ等微小面積で、かつ表面に
数ミクロン程度の凹凸が形成された板体につい
て、その板体の平行度や、基準点からの距離を測
定する場合、傾き測定と距離測定とを同時に行な
うことのできる計測手段がなかつた。
Conventionally, when measuring the parallelism of a plate such as an IC chip, which has a small surface area and irregularities of several microns on its surface, and the distance from a reference point, two methods have been used: tilt measurement and distance measurement. There was no measurement method that could perform both at the same time.

したがつて、従来は、距離測定と傾き測定とは
別個の装置で、順次行なう以外に方法がなかつ
た。しかし、傾き測定に従来から使用されている
オートコリメータでは、被測定面が鏡面反射でき
ることが不可欠であるために、表面が凹凸を有す
る場合、精度が低下する。
Therefore, conventionally, there was no other way than to measure distance and inclination using separate devices and perform them sequentially. However, in the autocollimator conventionally used for measuring inclination, it is essential that the surface to be measured be able to reflect specularly, so if the surface has irregularities, the accuracy decreases.

また、距離測定は、被測定面にスポツトビーム
を照射して、その反射光を集束させて位置センサ
ーで読取ることができるが、被測定面の平行度が
保たれていない場合には、正しい測定ができな
い。
In addition, distance measurement can be performed by irradiating a spot beam onto the surface to be measured, focusing the reflected light, and reading it with a position sensor, but if the parallelism of the surface to be measured is not maintained, accurate measurements may be required. I can't.

このように、従来の距離と傾きとを別個に測定
するやり方は、実際には精度が低下するだけでは
なく、実用的にも、測定の手間がかかるという欠
点があつた。
As described above, the conventional method of measuring distance and inclination separately has the drawback that not only the accuracy actually decreases, but also the measurement is time-consuming in practical terms.

本発明は、上記の点に鑑みなされたもので、微
小面積の板体について、基準面からの距離および
法線傾きを同時に測定でき、かつ被測定面に非接
触で、精度の高い距離および傾斜角測定装置を提
供することを目的としている。
The present invention has been made in view of the above points, and is capable of simultaneously measuring the distance from a reference surface and the normal slope of a plate with a small area, and without contacting the surface to be measured, with high accuracy. The purpose is to provide an angle measuring device.

以下、本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

光源Sは、ことえば、発光ダイオード、レーザ
ダイオード、ガスレーザー等の集光性の高いビー
ムを発生しうるものである。
The light source S is, for example, a light emitting diode, a laser diode, a gas laser, or the like that can generate a highly focused beam.

反射面R1,R2は、たとえば、一方がICチツプ
等の被測定面であり、他方が仮想された基準面で
ある。
For example, one of the reflective surfaces R 1 and R 2 is a surface to be measured such as an IC chip, and the other is an imaginary reference surface.

光源Sからのビームは、反射面R2,R1におい
て、例えば数10乃至数100μmφ程度のスポツト
径を有している。
The beam from the light source S has a spot diameter of, for example, several tens to several hundred μmφ on the reflecting surfaces R 2 and R 1 .

レンズLは、仮想の基準面である反射面R1
ら距離aの位置で、反射ビームと光軸を一致させ
て配置された凸レンズであるが、2枚以上の合成
光学系を用いることもできる。
The lens L is a convex lens placed at a distance a from the reflective surface R1 , which is a virtual reference surface, with its optical axis aligned with the reflected beam, but a composite optical system with two or more lenses can also be used. .

このレンズLの焦点面には、すなわちレンズL
の焦点距離fの位置には、縦横に複数の光電変換
素子を規則的に配列してなるエリヤイメージセン
サ、又はそれと同等の、2次元位置センサ1が、
その中心をレンズLの光軸と一致させるようにし
て配置されている。
In the focal plane of this lens L, that is, the lens L
At the focal length f position, there is an area image sensor formed by regularly arranging a plurality of photoelectric conversion elements vertically and horizontally, or a two-dimensional position sensor 1 equivalent thereto.
It is arranged so that its center coincides with the optical axis of the lens L.

レンズLと2次元位置センサ1との間には、分
割用ビームスプリツタ2が、レンズLよりb1の距
離に設けられ、分割された光軸上で基準反射面
R1が結像する面(分割スプリツタ2からb2の距
離で、1/f=1/a+1/b1+b2を満足する位置)に
は、 1次元位置センサ3が配置されている。
A beam splitter 2 for splitting is provided between the lens L and the two-dimensional position sensor 1 at a distance b 1 from the lens L, and a reference reflecting surface is provided on the split optical axis.
A one-dimensional position sensor 3 is arranged on the surface where R 1 forms an image (a position satisfying 1/f=1/a+1/b 1 +b 2 at a distance of b 2 from the splitter 2).

この1次元位置センサ3は、複数の光電変換素
子を直線的に配列したリニアイメージセンサ又は
それと同等のものであつて、両センサ1,3は、
スポツト光が照射された位置を、感応素子の位置
に応じて検知しうるものである。
This one-dimensional position sensor 3 is a linear image sensor in which a plurality of photoelectric conversion elements are arranged linearly or something equivalent thereto, and both sensors 1 and 3 are
The position irradiated with the spot light can be detected according to the position of the sensing element.

このように構成される本発明の装置では、1次
元位置センサ3によつて、反射面R1,R2間の距
離を、また同時に、2次元位置センサ1によつ
て、反射面R1,R2間の平行度を測定できる。
In the apparatus of the present invention configured in this way, the one-dimensional position sensor 3 measures the distance between the reflective surfaces R 1 and R 2 , and the two-dimensional position sensor 1 simultaneously measures the distance between the reflective surfaces R 1 , R 2 , and Parallelism between R 2 can be measured.

すなわち、位置測定では、基準面をなす反射面
R1のスポツト像が、レンズLで集光されて、分
割用ビームスプリツタ2の反射光として、1次元
位置センサ3のP2位置に結像する。
In other words, in position measurement, the reflective surface that forms the reference surface
The spot image of R 1 is focused by the lens L, and is imaged at the P 2 position of the one-dimensional position sensor 3 as reflected light from the splitting beam splitter 2 .

一方、被測定面R2にスポツト像が形成される
と、それは、同様に、レンズL、分割用ビームス
プリツタ2を経て、1次元位置センサ3のP2′位
置に結像される。
On the other hand, when a spot image is formed on the surface to be measured R 2 , it similarly passes through the lens L and the beam splitter 2 and is focused on the one-dimensional position sensor 3 at the P 2 ' position.

したがつて、まず初めに、基準面R1からの光
を測つて、1次元位置センサ3のP2位置を定め
ておき、次に、被測定面R2を基準面R1の近傍に
持つて来て光を与えると、1次元位置センサ3の
P2′位置に結息させることができる。
Therefore, first, measure the light from the reference surface R 1 to determine the P 2 position of the one-dimensional position sensor 3, and then hold the surface to be measured R 2 near the reference surface R 1 . When the light is applied to the one-dimensional position sensor 3,
It can be tied to the P 2 ′ position.

この関係を利用することにより、反射面R1
基準として、被測定面の反射面R2との間の距離
を算出することができる。
By using this relationship, the distance between the surface to be measured and the reflective surface R2 can be calculated using the reflective surface R1 as a reference.

すなわち、R1とR2の距離をd、P2とP2′の距離
をX2、光源の基準反射物R1への入射角をαとし、
説明の便のために、R1,R2部を拡大して示した
第2図に基づいて関係式を導く。
That is, the distance between R 1 and R 2 is d, the distance between P 2 and P 2 ' is X 2 , the angle of incidence of the light source on the reference reflector R 1 is α,
For convenience of explanation, the relational expression will be derived based on FIG. 2, which shows the R 1 and R 2 parts enlarged.

ここで、この光学系の倍率をm(=b1+b2/a)と おくと、 r1t=X2/m=d/sinαcos(180゜−90゜−2α) +d/sinαsin(180゜−90゜−2α)tan2θ =2αcosα+dcos2α/sinαtan2θ =d(2cosα+cos2α/sinαtan2θ) 故に、d=X2/m(2cosα+cos2α/sinαtan2θ) ここで、m、αは与えられた値であり、後述す
る測定方法でθを求めるとともに、X2の距離を
1次元センサ3で測定することにより、dすなわ
ち、基準位置から被測定物のおかれた位置までの
距離を求めることができる。
Here, if the magnification of this optical system is m (=b 1 + b 2 /a), then r 1 t=X 2 /m=d/sinαcos(180°−90°−2α) +d/sinαsin(180° −90°−2α) tan2θ = 2αcosα+dcos2α/sinαtan2θ = d(2cosα+cos2α/sinαtan2θ) Therefore, d=X 2 /m(2cosα+cos2α/sinαtan2θ) Here, m and α are the given values, and the measurement method described later By determining θ and measuring the distance of X 2 with the one-dimensional sensor 3, it is possible to determine d, that is, the distance from the reference position to the position where the object to be measured is placed.

次に、傾きθ測定について説明する。 Next, the slope θ measurement will be explained.

光源Sにより出た光線(概略の平行光線)は反
射面R1,R2を経過し、レンズLの焦点(すなわ
ちレンズLより距離fの位置)に配置された2次
元位置センサ1に焦点を結ぶ。
The light rays (approximately parallel rays) emitted by the light source S pass through the reflective surfaces R 1 and R 2 and are focused on the two-dimensional position sensor 1 placed at the focal point of the lens L (that is, at a distance f from the lens L). tie.

基準反射面R1を経過した光線による結像点を、
2次元位置センサ1面の原点P1とすれば、被測
定面である反射面R2からの結像点は、反射面R1
R2が平行な場合には、P1で一致し、反射面R2
傾いているときには、傾斜角と傾き方向に応じ
て、入力点が2次元位置センサ1上で、たてよこ
にずれたP1′に生じる。このP1′の位置は、反射面
R2が第1図及び第2図に示すようにθだけ傾い
ていると、レンズLに入射する光線の傾きは2θと
なり、P1P1′=X1=f tan2θとなる。故に、θ
=1/2tan-1X1/fにより、X1を測定することにより θを求めることができる。
The image point formed by the ray that passed through the reference reflective surface R 1 is
If the origin of the two-dimensional position sensor 1 surface is P 1 , the image forming point from the reflective surface R 2 which is the surface to be measured is the reflective surface R 1 ,
When R 2 is parallel, P 1 matches, and when reflective surface R 2 is tilted, the input point shifts vertically and horizontally on the two-dimensional position sensor 1 depending on the tilt angle and direction. occurs at P 1 ′. The position of this P 1 ′ is the reflection surface
If R 2 is tilted by θ as shown in FIGS. 1 and 2, the inclination of the ray of light incident on the lens L will be 2θ, and P 1 P 1 ′=X 1 =f tan2θ. Therefore, θ
= 1/2 tan -1 X 1 /f, θ can be determined by measuring X 1 .

したがつて、まず初めに、基準反射面R1に光
を当て、2次元センサー1の位置P1を定め、次
に、被測定物R2に光を当て、位置P1′を検知する。
Therefore, first, light is applied to the reference reflective surface R 1 to determine the position P 1 of the two-dimensional sensor 1, and then light is applied to the object to be measured R 2 to detect the position P 1 ′.

このように、レンズLの後方に分割用ビームス
プリツタ2を配置して、1次元位置センサ3と2
次元位置センサ1とで、同時に基準面に対しての
距離と傾きを測定することができる。
In this way, the splitting beam splitter 2 is placed behind the lens L, and the one-dimensional position sensor 3 and the two
With the dimensional position sensor 1, it is possible to simultaneously measure the distance and inclination with respect to the reference plane.

上記実施例では、レンズLと分割用ビームスプ
リツタ2とからなる光学系によつて反射ビームを
集光し、2方向の分割ビームを得るようにしてい
るが、レンズLを、複数枚の合成レンズ系として
焦点距離を短かくすることにより、装置寸法をコ
ンパクトなものとできる。
In the above embodiment, the reflected beam is condensed by the optical system consisting of the lens L and the beam splitter 2 for splitting, and split beams in two directions are obtained. By shortening the focal length of the lens system, the device size can be made compact.

また、ビーム検知手段としては、1次元位置セ
ンサ3、2次元位置センサ1ともに、連続出力の
アナログセンサ以外にも、イメージセンサなどで
構成することができる。
Furthermore, as the beam detection means, both the one-dimensional position sensor 3 and the two-dimensional position sensor 1 can be constructed of an image sensor or the like in addition to a continuous output analog sensor.

また、センサ1,3は、必ずしもそれぞれ2次
元1次元のものに限定される必要はない。すなわ
ち、センサ3に2次元のものを使用し、センサ1
には、被測定の反射面R2が、図を用いて説明し
たもののように、一方向にのみ傾いているという
ものであれば、1次元のものを使用してもよい。
(一般には、二方向に傾いているので2次元のセ
ンサが必要である)。
Furthermore, the sensors 1 and 3 are not necessarily limited to two-dimensional and one-dimensional sensors, respectively. In other words, a two-dimensional sensor is used for sensor 3, and sensor 1 is
A one-dimensional reflective surface may be used as long as the reflective surface R2 to be measured is tilted in only one direction, as explained using the drawing.
(Typically, a two-dimensional sensor is required since it is tilted in two directions).

さらに、他の実施例として、第3図に示すよう
に、反射面R1,R2を下方に持つてきて、反射ミ
ラーMで一旦反射させてからレンズLを通じ、そ
の他は、前述の説明と同じようにして、距離と傾
斜度を同時に測定することもできる。
Furthermore, as another embodiment, as shown in FIG. 3, the reflecting surfaces R 1 and R 2 are brought downward, and the reflection is made once by the reflecting mirror M, and then passed through the lens L, and the rest is as described above. In the same way, distance and slope can also be measured at the same time.

ただし、この場合、aの距離は、基準反射面
R1から反射ミラーMと、このミラーMからレン
ズLまでの距離を合せたものにしてある。
However, in this case, the distance a is the reference reflective surface
The distance from R1 to the reflecting mirror M and the distance from this mirror M to the lens L are made to be the same.

以上述べたように、本発明によれば、基準にな
る反射面R1と被測定面R2間の平行度と、その間
の距離を、同時にかつ精度よく測定しうる。
As described above, according to the present invention, the parallelism between the reference reflecting surface R 1 and the surface to be measured R 2 and the distance therebetween can be measured simultaneously and with high precision.

したがつて、被測定面として微小面積の反射面
を有するICチツプを、セラミツク等のマウント
用台にろう付けする場合、本発明装置を用いるこ
とにより、充分に高い精度が得られる。しかも、
測定は、被測定面と非接触で行なえ、装置自体も
極めてコンパクトに構成できる。
Therefore, when an IC chip having a reflective surface of a minute area as a surface to be measured is brazed to a mounting table made of ceramic or the like, sufficiently high accuracy can be obtained by using the apparatus of the present invention. Moreover,
Measurement can be performed without contacting the surface to be measured, and the device itself can be configured extremely compactly.

半導体製造工程では、測定対象物が微小面積で
あることが多く、また他の検査装置、アライメン
ト用の顕微鏡、搬送機構、固定機構などによつて
寸法制約が大きいので、本発明装置による制御及
び測定は、極めて大きなメリツトを有するもので
ある。
In the semiconductor manufacturing process, the object to be measured often has a small area, and there are large dimensional restrictions due to other inspection equipment, alignment microscopes, transport mechanisms, fixing mechanisms, etc. Therefore, control and measurement using the device of the present invention is difficult. has extremely large merits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す構成説明
図、第2図は、反射面R1,R2部を拡大した模式
図、第3図は、本発明の他の実施例を示す構成説
明図である。 S1,S2……光源、R1,R2……反射面、M……
ハーフミラー、L……レンズ、1……2次元位置
センサ、2……分割用ビームスプリツタ、3……
1次元位置センサ。
FIG. 1 is a configuration explanatory diagram showing one embodiment of the present invention, FIG. 2 is a schematic enlarged view of reflective surfaces R 1 and R 2 , and FIG. 3 is a diagram showing another embodiment of the present invention. It is a configuration explanatory diagram. S 1 , S 2 ... light source, R 1 , R 2 ... reflective surface, M ...
Half mirror, L...Lens, 1...Two-dimensional position sensor, 2...Beam splitter for division, 3...
One-dimensional position sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 基準面および被測定面にビームを照射する光
源と、被測定面より反射されるビームを集光する
レンズと、2方向の分割ビームを得る光学系と、
分割ビームの一方の光軸上で基準面が結像する位
置にあつて、被測定面の反射ビームと基準面の反
射ビームとの結像位置のずれを検知することによ
り、基準面と被測定面の距離を測定する第1のビ
ーム検知手段と、分割ビームの他方の光軸の焦点
位置にあつて、被測定面が基準面との間でなす傾
斜角を検知する第2のビーム検知手段とを具備す
ることを特徴とする距離および傾斜角測定装置。
1. A light source that irradiates a beam onto the reference surface and the surface to be measured, a lens that focuses the beam reflected from the surface to be measured, and an optical system that obtains split beams in two directions.
The reference surface is located at the position where the image is formed on one of the optical axes of the split beam, and by detecting the deviation in the image formation position between the reflected beam of the measured surface and the reflected beam of the reference surface, the reference surface and the measured object are A first beam detection means for measuring the distance between the surfaces; and a second beam detection means for detecting the inclination angle formed between the surface to be measured and the reference surface at the focal position of the other optical axis of the split beam. A distance and inclination angle measuring device comprising:
JP2857783A 1983-02-24 1983-02-24 Apparatus for measuring distance and slanting angle Granted JPS59154313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2857783A JPS59154313A (en) 1983-02-24 1983-02-24 Apparatus for measuring distance and slanting angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2857783A JPS59154313A (en) 1983-02-24 1983-02-24 Apparatus for measuring distance and slanting angle

Publications (2)

Publication Number Publication Date
JPS59154313A JPS59154313A (en) 1984-09-03
JPH0139041B2 true JPH0139041B2 (en) 1989-08-17

Family

ID=12252453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2857783A Granted JPS59154313A (en) 1983-02-24 1983-02-24 Apparatus for measuring distance and slanting angle

Country Status (1)

Country Link
JP (1) JPS59154313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286072A (en) * 2007-08-06 2007-11-01 Kobe Steel Ltd Method and apparatus for measuring flatness

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697163B2 (en) * 1985-09-26 1994-11-30 横河電機株式会社 Displacement converter
JPH0619244B2 (en) * 1985-09-30 1994-03-16 横河電機株式会社 Displacement converter
JPH07104128B2 (en) * 1987-11-25 1995-11-13 コニカ株式会社 Displacement / tilt measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286072A (en) * 2007-08-06 2007-11-01 Kobe Steel Ltd Method and apparatus for measuring flatness

Also Published As

Publication number Publication date
JPS59154313A (en) 1984-09-03

Similar Documents

Publication Publication Date Title
US6879403B2 (en) Three dimensional scanning camera
JP2752003B2 (en) Inspection interferometer with scanning function
EP0503874A2 (en) Optical measurement device with enhanced sensitivity
TWI402498B (en) An image forming method and image forming apparatus
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
CN111380472B (en) Thickness measuring device
TWI844611B (en) Thickness measuring device
JP2000275027A (en) Slit confocal microscope and surface profile measuring device using it
US20060181715A1 (en) Method and apparatus for measuring wafer thickness
TW202024563A (en) Thickness measuring apparatus
JP6684992B2 (en) Projection inspection device and bump inspection device
KR100878425B1 (en) Surface measuring device
JPH0139042B2 (en)
JPH0139041B2 (en)
JP2005017127A (en) Interferometer and shape measuring device
JP7373644B2 (en) Imaging internal cracks in semiconductor devices using a combination of transmitted and reflected light
US20030019909A1 (en) Die attach system and process using cornercube offset tool
JP2008309532A (en) Three-dimensional measuring apparatus and inspection apparatus
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JP2000258144A (en) Flatness and thickness measurement device for wafer
US20220344192A1 (en) Systems and methods for absolute sample positioning
JPH08261734A (en) Shape measuring apparatus
JPH07208917A (en) Automatic focusing method and device
KR20140126774A (en) Inspection device and image capture element
JP3003671B2 (en) Method and apparatus for detecting height of sample surface