JPH0138867B2 - - Google Patents
Info
- Publication number
- JPH0138867B2 JPH0138867B2 JP56028503A JP2850381A JPH0138867B2 JP H0138867 B2 JPH0138867 B2 JP H0138867B2 JP 56028503 A JP56028503 A JP 56028503A JP 2850381 A JP2850381 A JP 2850381A JP H0138867 B2 JPH0138867 B2 JP H0138867B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- alloy
- effect
- way effect
- shape memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000000694 effects Effects 0.000 claims description 20
- 229910045601 alloy Inorganic materials 0.000 claims description 18
- 239000000956 alloy Substances 0.000 claims description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 14
- 230000009466 transformation Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 4
- 230000000087 stabilizing effect Effects 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 3
- 230000002457 bidirectional effect Effects 0.000 claims description 2
- 230000006641 stabilisation Effects 0.000 claims description 2
- 238000011105 stabilization Methods 0.000 claims description 2
- 238000005496 tempering Methods 0.000 claims description 2
- 230000003446 memory effect Effects 0.000 description 8
- 229910000734 martensite Inorganic materials 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000730 Beta brass Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/01—Alloys based on copper with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/006—Resulting in heat recoverable alloys with a memory effect
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Heat Treatment Of Articles (AREA)
- Adornments (AREA)
Description
【発明の詳細な説明】
本発明は、アルミニウム10〜15重量%、ニツケ
ル6重量%以下および残りの銅から成るCu/
Al/Niを基材とし、鋳造又は熱間鍛造された状
態の形状記憶合金の二方向効果を最高300℃の温
度まで安定化するための方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a Cu/
This invention relates to a method for stabilizing the two-way effect of shape memory alloys based on Al/Ni in the cast or hot forged state up to temperatures of 300°C.
マルテンサイトに変態可能のβ−相(β−黄銅
型)を有する銅に豊む形状記憶合金は、従来から
公知である:例えばR、ヘイネス(Heynes)、サ
ム・オブザベイシヨンズ・オン・イソサーマル・
トランスフオーメイシヨンズ・オブ・ユーテクト
イド・アルミニユーム・ブロンジス・ベロウ・ゼ
アー・Msテンパラチユアーズ(Some
Observation on Isothermal Transformatyons
of Eutectoid Aluminium Bronzes Below
Their Ms Temperatures)、ジヤーナル・オ
ブ・ザ・インステイチユート・オブ・メタルス
(Journal of the Institute of Metals)1954〜
55,Vol.83,357〜358頁;W.A.ラチンジヤー
(Rachinger)、ア・“スーパー−エラスチツク”・
シングル・クリスタル・カリブレイシヨン・バー
(A“super−elastic”single crystal calibration
bar)、ブリテイツシ・ジヤーナル・オブ・アプ
ライド・フイジツクス(British Journal of
Applied Physics)、Vol.9,Juni1958,250〜252
頁;R.P.ジユウエツト(Jewett)、D.J.マツク
(Mack)、フアーザー・インヴエスタイゲイシヨ
ン・オブ・コツパー−アルミニユーム・アロイ
ズ・イン・ザ・テンペラチユアー・レインジ・ベ
ロウ・ザ・β α+γ2ユーテクトイド(Further
Investigation of Copper−Alumium Alloys in
the Temperature Range below the β α+
γ2Eutectoid)、ジヤーナル・オブ・ザ・インステ
イテユート・オブ・メタルズ(Journal of the
Institute of Metals)、1963〜1964,Vol.92,59
〜61頁;K.オオツカ及びK.シミズ、メモリー・
エフエクト・アンド・サーモエラスチツク・マル
テンサイト・トランスフオーメイシヨン・イン・
Cu/Al/Niアロイ(Memory Effect and
Thermoelastic Martensite Transformation in
Cu/Al/Ni Alloy)、スクリプタ・メタラジア
(Scripta Metallugia)、Vol.4,1970、ペルガモ
ン・プレス(Pergamon Press)Inc.469〜472
頁;カズヒロ・オオツカ、オリジン・オブ・メモ
リー・エフエクト・イン・Cu/Al/Niアロイ
(Origin of Memory Effectin Cu/Al/Ni
Alloy)、ジヤパニーズ・ジヤーナル・オブ・ア
プライド・フイジツクス(Japanese Journal of
Applied Physics)、Vol.10,No.5,May1971,
571〜579頁。 Copper-rich shape memory alloys with a β-phase (β-brass type) that can be transformed into martensite are known in the art: for example, R. Heynes, Sam Observations on Isothermal Materials.・
Transformations of Utectoid Aluminum Bronze Below There Ms Temperature Yours (Some
Observation on Isothermal Transformations
of Eutectoid Aluminum Bronzes Below
Their Ms Temperatures, Journal of the Institute of Metals 1954~
55, Vol. 83, pp. 357-358; WA Rachinger, A. “Super Elastic”.
Single crystal calibration bar (A “super-elastic” single crystal calibration bar
bar), British Journal of Applied Physics
Applied Physics), Vol.9, Juni1958, 250-252
Page; RP Jewett, DJ Mack, Further Investment of Copper Aluminum Alloys in the Temperature Your Range Below the β α+γ 2 Eutectoids
Investigation of Copper−Alumium Alloys in
the Temperature Range below the β α+
γ 2 Eutectoid), Journal of the Institute of Metals
Institute of Metals), 1963-1964, Vol.92, 59
〜61 pages; K. Otsuka and K. Shimizu, Memory・
Effect and Thermoelastic Martensitic Transformation in
Cu/Al/Ni alloy (Memory Effect and
Thermoelastic Martensite Transformation in
Cu/Al/Ni Alloy), Scripta Metallugia, Vol. 4, 1970, Pergamon Press Inc. 469-472
Page; Kazuhiro Otsuka, Origin of Memory Effect in Cu/Al/Ni Alloy
Japanese Journal of Applied Physics
Applied Physics), Vol.10, No.5, May1971,
pp. 571-579.
これらのβ−黄銅型の記憶合金は、室温を越え
て100℃以上の温度範囲(これは温度監視装置及
び過電流スイツチにとつて特に有利である)では
同様に公知のNi/Ti合金と比べて明らかに記憶
効果を示すけれども、準安定性である。つまり、
該合金は所望の温度範囲では拡散によつて生ずる
相変化を受けている。応答温度で又はこの温度を
わずかに越えると高温β相は変化して記憶効果は
消失する。 These β-brass type memory alloys are superior to similarly known Ni/Ti alloys in the temperature range above room temperature and above 100°C (which is particularly advantageous for temperature monitoring devices and overcurrent switches). Although it clearly shows a memory effect, it is metastable. In other words,
The alloy undergoes a phase change caused by diffusion in the desired temperature range. At or slightly above the response temperature, the high temperature β phase changes and the memory effect disappears.
本発明は、100℃以上の温度で耐老化性を有す
る前記のCu/Al/Ni型記憶合金の二方向効果を
最高300℃まで安定化する方法を提供するという
課題を基礎とする。 The invention is based on the problem of providing a method for stabilizing the two-way effect of the aforementioned Cu/Al/Ni type memory alloys up to 300°C, which is resistant to aging at temperatures above 100°C.
ここで「耐老化性」または「安定」とは、物質
の特性が時間の経過で荷重(交互荷重)の作用下
でも、温度(低温および高温間の温度循環)の作
用下でも変化しないことを意味する。 "Aging resistance" or "stable" here refers to the fact that the properties of a material do not change over time, neither under the action of load (alternating loads) nor under the action of temperature (temperature cycling between low and high temperatures). means.
前記課題は、該合金を先づ5〜60分間600〜950
℃の温度範囲で灼熱し、水中で急冷し、0.1〜10
時間200〜350℃の温度で焼きもどし、最後に二方
向効果を誘起するために変態点Msの上30℃〜下
50℃の温度範囲で1〜6%だけ変形することによ
つて解決される。 The task was to first heat the alloy to 600-950 for 5-60 minutes.
Scorching in the temperature range of ℃, quenching in water, 0.1~10
Tempering at a temperature of 200~350℃ for an hour and finally 30℃~below the transformation point Ms to induce a two-way effect
It is solved by deforming by 1-6% in the temperature range of 50°C.
また同課題は、該合金を先づ5〜60分間600〜
950℃の温度範囲で灼熱し、金属浴、塩浴、油浴
又は砂浴に入れて250〜350℃の温度に急冷し、こ
の温度で0.5〜10分間保ち、次に室温に空気冷却
し、最後に二方向効果を誘起するために変態点
Msの上30℃〜下50℃の温度範囲で1〜6%だけ
変形することによつても解決される。 In addition, for the same task, the alloy was first heated at 600 to
Burnt in the temperature range of 950 ° C, put in a metal bath, salt bath, oil bath or sand bath and quenched to a temperature of 250-350 ° C, kept at this temperature for 0.5-10 minutes, then air cooled to room temperature, Finally the transformation point to induce the two-way effect
This can also be solved by deforming Ms by 1 to 6% in the temperature range of 30°C above to 50°C below.
前記の変形は、伸長の場合には棒状材料が長さ
の1〜6%だけ長手方向に関して相互に伸長さ
れ、圧縮の場合には同様に1〜6%だけ圧縮され
る。変形が1%未満の場合には記憶効果を示さな
い。6%を超える変形の場合には“伸長過度”ま
たは“圧縮過度”で記憶効果は再び消失する。 In the case of stretching, the rod-shaped material is stretched relative to each other in the longitudinal direction by 1 to 6% of its length, and in the case of compression, it is similarly compressed by 1 to 6%. Deformation less than 1% shows no memory effect. In the case of deformations exceeding 6%, the memory effect disappears again due to "over-stretching" or "over-compression".
安定化方法の本質は、大体においてβ−固溶体
域に存在して600〜950℃の温度範囲の最後の灼熱
(5〜60分)後で、二方向効果の誘起前に、鋳造
又は熱間鍛造された状態の該合金を熱処理する点
にある。この熱処理は200〜350℃の温度範囲での
灼熱であつて、これは原理的に二方法で実施する
ことができる。第1の方法では該合金を最後の灼
熱後にβ−固溶体域で室温に急冷し、次に200〜
350℃の温度範囲で0.1〜10時間焼もどす。第2の
方法では該合金を、最後の灼熱後にβ−固溶体域
から直接油浴、塩浴、金属浴又は砂浴中に入れて
急冷し、この温度に0.5〜10分間保ち、最後に室
温に空気冷却する。二つの場合ともこの熱処理の
次に二方向記憶効果の誘起のためにマルテンサイ
ト変態点Msの上30℃〜下50℃の範囲で1〜6%
の変形が行なわれる。 The essence of the stabilization method is that after the final scorching (5 to 60 minutes) in the β-solid solution region and in the temperature range of 600 to 950 °C, before the induction of the two-way effect, the casting or hot forging The point is to heat-treat the alloy in a heated state. This heat treatment is scorching in the temperature range from 200 to 350°C and can in principle be carried out in two ways. In the first method, the alloy is rapidly cooled to room temperature in the β-solid solution region after the final ignition, and then
Temper at a temperature range of 350℃ for 0.1 to 10 hours. In the second method, the alloy is quenched directly from the β-solid solution zone into an oil bath, salt bath, metal bath or sand bath after the final ignition, kept at this temperature for 0.5-10 minutes, and finally cooled to room temperature. Air cooling. In both cases, this heat treatment is followed by 1-6% in the range of 30°C above the martensitic transformation point Ms to 50°C below the martensitic transformation point Ms to induce the two-way memory effect.
transformation is performed.
本発明による合金において、ニツケルは一部分
又は全部マンガン、鉄、コバルト又はこれらの元
素の少なくとも2種の混合物で交換してあつても
よい。 In the alloys according to the invention, nickel may be partially or completely replaced by manganese, iron, cobalt or a mixture of at least two of these elements.
本発明方法により、最高300℃まで耐老化性を
有しかつ300℃まで二方向効果を有する、β−高
温相から成る合金が得られる。 The process according to the invention gives alloys consisting of a β-high temperature phase that are resistant to aging up to 300°C and have a bidirectional effect up to 300°C.
次に本発明を実施例により説明する。 Next, the present invention will be explained by examples.
例1 (従来技術の説明)
出発材料として次の組成の合金を使用した:
アルミニウム:13重量%
ニツケル:3重量%
銅:残 り
溶融治金により合金を製造し、ブルームに鋳造
し、次に700℃で、直径10mmの棒の生じるように
熱間加工した。次にこの棒をβ−固溶体域で750
℃で10分間灼熱し、水殿で急冷した。この棒から
直径3mmで測定長さ40mm及び22mmの捩り試験片を
製作した。二方向効果を、マルテンサイト変態点
Ms(150℃)の近くで試験片に段階的に捩り作用
を受けさせて、同時的な加熱/冷却サイクルの経
過の際に、捩り伸び率が4〜5%まで高められる
ようにすることによつて誘起した。この後試験片
を300℃の温度で1時間灼熱した。後試験の結果、
記憶効果は完全に消失していることが判つた。Example 1 (Description of the prior art) An alloy with the following composition was used as starting material: Aluminum: 13% by weight Nickel: 3% by weight Copper: remainder An alloy was produced by molten metallurgy, cast into a bloom and then It was hot worked at 700°C to produce a rod with a diameter of 10 mm. Next, move this rod to 750 in the β-solid solution region.
℃ for 10 minutes and quenched with water. Torsional test pieces with a diameter of 3 mm and measuring lengths of 40 mm and 22 mm were made from this rod. Two-way effect, martensitic transformation point
The test piece was subjected to a stepwise torsional action near Ms (150°C) in such a way that the torsional elongation was increased to 4-5% during the course of simultaneous heating/cooling cycles. I provoked it. After this, the specimen was scorched for 1 hour at a temperature of 300°C. As a result of the post-test,
It was found that the memory effect had completely disappeared.
例 2
例1による合金を溶融し、鋳造し、熱間加工
し、灼熱しかつ水中で急冷した。得られた棒を次
に更に3時間300℃で焼もどした。例1による試
験片の製作後同様にして二方向効果を誘起した。
更に試験片を8時間300℃で灼熱した後も二方向
効果は決して減退しなかつた。300℃で500時間灼
熱した後ですら、二方向効果が弱くても、同効果
は依然として検出することかができた。Example 2 The alloy according to Example 1 was melted, cast, hot worked, scorched and quenched in water. The resulting bar was then tempered for a further 3 hours at 300°C. After preparing the specimen according to Example 1, a two-way effect was induced in the same way.
Furthermore, the two-way effect never diminished even after the specimen was scorched at 300° C. for 8 hours. Even after 500 hours of scorching at 300°C, the same effect could still be detected, although the two-way effect was weaker.
例 3
例1による合金を、溶融し、鋳造しかつ直径10
mmの棒に熱間加工した。この棒から熱間圧延によ
つて厚さ1.5mm幅10mmのバンドを製造した。この
バンドから長さ60mmの曲げ試験片を切取りかつこ
れに750℃で10分間普通の灼熱を施した。次に試
験片を直接300℃の塩浴に入れて急冷し。2分間
この温度で保ち、次いで空気冷却した。この冷却
過程の間同試験片を90℃の角度だけ曲げて二方向
効果を誘起した。この効果は300℃に数時間加熱
した後でも減少しない大きさで検出することがで
きた。Example 3 An alloy according to Example 1 is melted and cast and has a diameter of 10
It was hot worked into a mm bar. A band with a thickness of 1.5 mm and a width of 10 mm was produced from this bar by hot rolling. A 60 mm long bending test piece was cut from this band and subjected to ordinary burning at 750° C. for 10 minutes. Next, the test piece was placed directly into a 300°C salt bath and rapidly cooled. It was held at this temperature for 2 minutes and then air cooled. During this cooling process, the specimen was bent by an angle of 90°C to induce a two-way effect. This effect could be detected in an unreduced magnitude even after heating to 300°C for several hours.
本発明は前記例に限定されるものではない。本
発明方法は原理的にこの種のすべてのβ−銅合金
に適用することができる。他の有利な合金は次の
組成を有する:
アルミニウム:13.25%
ニツケル:3%
銅:残 り
変態点Msの高さは明らかにアルミニウム含分
の少しの変化によつて著しく影響されうることが
判る。他の影響は上述の代用基材マンガン、鉄、
コバルトによつて与えられうる。 The invention is not limited to the above examples. The method according to the invention can in principle be applied to all β-copper alloys of this type. Other advantageous alloys have the following composition: Aluminum: 13.25% Nickel: 3% Copper: remainder It can be seen that the height of the transformation point Ms can clearly be influenced significantly by small changes in the aluminum content. . Other influences include the above-mentioned substitute base materials manganese, iron,
It can be given by cobalt.
本発明方法によつて、電子工学及び多くの工業
的及び家庭的用途で常用される温度監視範囲を越
えてまで耐老化性であつて、安定な二方向効果を
示す記憶合金が創作された。従つて本発明による
記憶合金は監視工学において従来存在した欠陥を
埋める。 By the method of the present invention, a memory alloy has been created that exhibits a stable two-way effect and is resistant to aging over temperature monitoring ranges commonly used in electronics and many industrial and domestic applications. The memory alloy according to the invention therefore fills the deficiencies previously existing in surveillance technology.
Claims (1)
%以下および残りの銅から成るCu/Al/Niを基
材とし、鋳造又は熱間鍛造された状態の形状記憶
合金の二方向効果を最高300℃まで安定性化する
に当たり、該合金を先づ5〜60分間600〜950℃の
温度範囲で灼熱し、水中で急冷し、0.1〜10時間
200〜350℃の温度で焼きもどし、最後に二方向効
果を誘起するために変態点Msの上30℃〜下50℃
の温度範囲で1〜6%だけ変形することを特徴と
する前記のCu/Al/Niを基材とする形状記憶合
金の二方向効果の安定化方法。 2 アルミニウム10〜15重量%、ニツケル6重量
%以下および残りの銅から成るCu/Al/Niを基
材とし、鋳造又は熱間鍛造された状態の形状記憶
合金の二方向効果を最高300℃まで安定化するに
当り、該合金を先づ5〜60分間600〜950℃の温度
範囲で灼熱し、金属浴、塩浴、油浴又は砂浴中に
入れて250〜350℃の温度に急冷し、この温度で
0.5〜10分間保ち、次に室温に空気冷却し、最後
に二方向効果を誘起するために変態点Msの上30
℃〜下50℃の温度範囲で1〜6%だけ変形するこ
とを特徴とする前記のCu/Al/Niを基材とする
形状記憶合金の二方向効果の安定化方法。[Claims] 1. A bidirectional shape memory alloy in a cast or hot forged state, made of Cu/Al/Ni as a base material, consisting of 10 to 15% by weight of aluminum, 6% by weight or less of nickel, and the remainder copper. To stabilize the effect up to 300°C, the alloy is first scorched in the temperature range of 600-950°C for 5-60 minutes, then quenched in water for 0.1-10 hours.
Tempering at a temperature of 200-350℃ and finally 30℃ above ~50℃ below the transformation point Ms to induce a two-way effect
A method for stabilizing the two-way effect of the Cu/Al/Ni-based shape memory alloy, characterized in that it deforms by 1-6% in the temperature range of . 2 Two-way effect of a shape memory alloy in a cast or hot forged state using a Cu/Al/Ni base material consisting of 10-15% by weight of aluminum, 6% by weight or less of nickel, and the rest copper up to 300℃ For stabilization, the alloy is first scorched for 5 to 60 minutes at a temperature in the range of 600 to 950°C and then rapidly cooled to a temperature of 250 to 350°C in a metal bath, salt bath, oil bath or sand bath. , at this temperature
Keep for 0.5-10 min, then air cool to room temperature, and finally 30 ms above the transformation point to induce the two-way effect.
A method for stabilizing the two-way effect of the Cu/Al/Ni-based shape memory alloy, characterized in that it deforms by 1-6% in the temperature range of 50°C to below 50°C.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19800200183 EP0035069B1 (en) | 1980-03-03 | 1980-03-03 | Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56136945A JPS56136945A (en) | 1981-10-26 |
JPH0138867B2 true JPH0138867B2 (en) | 1989-08-16 |
Family
ID=8186965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2850381A Granted JPS56136945A (en) | 1980-03-03 | 1981-03-02 | Shaped memory alloy based on cu al or cu al ni and stabilization of said alloy in two-direction effect |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0035069B1 (en) |
JP (1) | JPS56136945A (en) |
DE (1) | DE3065930D1 (en) |
PT (1) | PT72590B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4416706A (en) * | 1982-02-05 | 1983-11-22 | Bbc Brown, Boveri & Company Limited | Process to produce and stabilize a reversible two-way shape memory effect in a Cu-Al-Ni or a Cu-Al alloy |
US4654092A (en) * | 1983-11-15 | 1987-03-31 | Raychem Corporation | Nickel-titanium-base shape-memory alloy composite structure |
US4533411A (en) * | 1983-11-15 | 1985-08-06 | Raychem Corporation | Method of processing nickel-titanium-base shape-memory alloys and structure |
JPS6130643A (en) * | 1984-07-20 | 1986-02-12 | Kobe Steel Ltd | Hard shape memory alloy having high workability |
FR2590048B1 (en) * | 1985-07-19 | 1992-05-15 | Souriau & Cie | SEQUENTIAL MECHANICAL TRIGGER DEVICE |
FR2617187B1 (en) * | 1987-06-24 | 1989-10-20 | Cezus Co Europ Zirconium | METHOD FOR IMPROVING THE DUCTILITY OF A MARTENSITICALLY TRANSFORMED ALLOY PRODUCT AND THE USE THEREOF |
FR2618163B1 (en) * | 1987-07-15 | 1992-04-30 | Trefimetaux | METHOD FOR EDUCATION OF A SHAPE MEMORY ALLOY OBJECT, ENSURING THE PRECISION AND STABILITY OF THE REVERSIBLE MEMORY EFFECT. |
CH677677A5 (en) * | 1989-02-08 | 1991-06-14 | Nivarox Sa | |
EP0382109B1 (en) * | 1989-02-08 | 1993-12-08 | Nivarox-FAR S.A. | Process for treating a work piece made from a metallic shape memory alloy offering two states of reversible shape memory |
FR2643086B1 (en) * | 1989-02-10 | 1991-05-24 | Nivarox Sa | METHOD FOR CONDITIONING A SHAPE MEMORY METAL ALLOY PART HAVING TWO REVERSIBLE SHAPE MEMORY STATES |
CN108384984B (en) * | 2018-04-09 | 2020-01-03 | 天津理工大学 | Preparation method of low-cost high-temperature shape memory alloy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3783037A (en) * | 1969-11-12 | 1974-01-01 | Fulmer Res Inst Ltd | Treatment of alloys |
JPS51125623A (en) * | 1974-07-05 | 1976-11-02 | Univ Osaka | Process for porducing and using beta-plus type electronic compound alloy and fe base solid solution alloy with memory |
JPS5337129A (en) * | 1976-09-17 | 1978-04-06 | Matsushita Electric Works Ltd | Conductible spring material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB433534A (en) * | 1934-02-12 | 1935-08-12 | Thomas Bolton And Sons Ltd | Improved trolley wheels and the like devices for collecting electric current |
GB1346047A (en) * | 1969-11-12 | 1974-02-06 | Fulmer Res Inst Ltd | Treatment of alloys |
-
1980
- 1980-03-03 DE DE8080200183T patent/DE3065930D1/en not_active Expired
- 1980-03-03 EP EP19800200183 patent/EP0035069B1/en not_active Expired
-
1981
- 1981-02-27 PT PT7259081A patent/PT72590B/en not_active IP Right Cessation
- 1981-03-02 JP JP2850381A patent/JPS56136945A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3783037A (en) * | 1969-11-12 | 1974-01-01 | Fulmer Res Inst Ltd | Treatment of alloys |
JPS51125623A (en) * | 1974-07-05 | 1976-11-02 | Univ Osaka | Process for porducing and using beta-plus type electronic compound alloy and fe base solid solution alloy with memory |
JPS5337129A (en) * | 1976-09-17 | 1978-04-06 | Matsushita Electric Works Ltd | Conductible spring material |
Also Published As
Publication number | Publication date |
---|---|
EP0035069B1 (en) | 1983-12-21 |
JPS56136945A (en) | 1981-10-26 |
EP0035069A1 (en) | 1981-09-09 |
PT72590B (en) | 1982-02-12 |
PT72590A (en) | 1981-03-01 |
DE3065930D1 (en) | 1984-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5861070A (en) | Titanium-aluminum-vanadium alloys and products made using such alloys | |
US5958159A (en) | Process for the production of a superelastic material out of a nickel and titanium alloy | |
WO2003052155A1 (en) | Method for processing beta titanium alloys | |
KR860008295A (en) | Copper base alloy and its manufacturing method | |
CA3028345A1 (en) | Method of making 6xxx aluminium sheets | |
JPH0138867B2 (en) | ||
US7125459B2 (en) | High strength aluminum alloy | |
US4323399A (en) | Process for the thermal treatment of aluminium - copper - magnesium - silicon alloys | |
JPH01279736A (en) | Heat treatment for beta titanium alloy stock | |
WO2020182506A1 (en) | Method of manufacturing a 5xxx-series sheet product | |
JP3907177B2 (en) | Fe-based shape memory alloy and manufacturing method thereof | |
US5173131A (en) | Shape memory stainless alloy | |
US3333989A (en) | Aluminum base alloy plate | |
JP3516566B2 (en) | Aluminum alloy for cold forging and its manufacturing method | |
JP2003277827A (en) | Thermomechanical processing method for NbC-added Fe-Mn-Si based shape memory alloy | |
NO141372B (en) | PROCEDURE FOR THE MANUFACTURE OF BAND CASTED ALUMINUM SHEET MATERIAL WITH IMPROVED MECHANICAL AND THERMOMECHANICAL PROPERTIES | |
JPS6361377B2 (en) | ||
US3972743A (en) | High strength, stable zinc-aluminum alloy | |
JPS6356302B2 (en) | ||
Eckelmeyer et al. | Deformation strengthening of uranium and dilute uranium alloys | |
JPH07150316A (en) | Manufacture of (alpha+beta) type ti alloy forged material | |
JPS622027B2 (en) | ||
JPS61204359A (en) | Manufacture of beta type titanium alloy material | |
NO155734B (en) | PROCEDURE FOR THE PREPARATION OF A SCREW THREAD OF AN EXHAUSTABLE ALUMINUM ALLOY. | |
JP2000319743A (en) | Aluminum alloy material with excellent strength at high temperature and production method therefor |