[go: up one dir, main page]

JPH0137979B2 - - Google Patents

Info

Publication number
JPH0137979B2
JPH0137979B2 JP4851083A JP4851083A JPH0137979B2 JP H0137979 B2 JPH0137979 B2 JP H0137979B2 JP 4851083 A JP4851083 A JP 4851083A JP 4851083 A JP4851083 A JP 4851083A JP H0137979 B2 JPH0137979 B2 JP H0137979B2
Authority
JP
Japan
Prior art keywords
zinc
ions
water
wastewater
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4851083A
Other languages
Japanese (ja)
Other versions
JPS59173188A (en
Inventor
Yoshihiro Watanabe
Hideyoshi Matsubara
Masayoshi Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Mechanical Industry Co Ltd
Original Assignee
Ishigaki Mechanical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Mechanical Industry Co Ltd filed Critical Ishigaki Mechanical Industry Co Ltd
Priority to JP4851083A priority Critical patent/JPS59173188A/en
Publication of JPS59173188A publication Critical patent/JPS59173188A/en
Publication of JPH0137979B2 publication Critical patent/JPH0137979B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は、固形質、懸濁物質、アルミニウム、
鉄等の不純物を含有する含亜鉛廃水を、逆浸透膜
法等で亜鉛成分を濃縮する際の該液の前処理方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides solid matter, suspended matter, aluminum,
The present invention relates to a method for pre-treating zinc-containing wastewater containing impurities such as iron when concentrating the zinc component using a reverse osmosis membrane method or the like.

亜鉛を主成分とする酸性廃水は、鉱山やメツキ
工場等、亜鉛を取扱う工場等から排出される。こ
れらの廃水には、通常、砂、炭素粒等の懸濁物質
や、鉄、アルミニウム、その他の微量の重金属類
のイオンが含まれる事が多い。
Acidic wastewater containing zinc as its main component is discharged from factories that handle zinc, such as mines and the Metsuki factory. These wastewaters usually contain suspended solids such as sand and carbon particles, and trace amounts of iron, aluminum, and other heavy metal ions.

従来、これらの廃水は、亜鉛の水酸化物の溶解
度の最も小さいPH10付近にて、他の金属水酸化物
と共に、沈殿分離し、汚泥は脱水後、廃棄処分さ
れることが多かつた。この処理方法では、PH4以
下の廃水をPH10まで高めるのに、まず、多量のア
ルカリ剤が必要であり、さらに、亜鉛、鉄、アル
ミニウム、その他の金属イオンが水酸化物となる
時にも、化学量論的に多量のアルカリ剤を消費
し、かつ、共存不純物の存在のために、高価な亜
鉛の回収、循環使用を妨げていた。アルカリ剤と
しては、安価で入手しやすい事から、従来法では
水酸化カルシウム、カーバイト滓、または、水酸
化ナトリウムを用いるのが通例であつたが、この
うち、凝集フロツクの沈降分離性や沈降物の脱水
過性の点からカーバイト滓または水酸化カルシ
ウムが用いられることが多い。しかし、水酸化カ
ルシウムの場合には、PH調整用として加えた水酸
化カルシウムのうち、不溶性の水酸化カルシウム
が汚泥に混入するため、含亜鉛廃棄物の汚泥発生
量が増大する欠点があつた。また、水酸化ナトリ
ウムを用いた場合には、汚泥発生量は少なくてす
むが、水酸化カルシウムの様な、凝集及び脱水の
助剤としての効果が少ないために、発生した汚泥
は、金属水酸化物が大半の沈殿分離性、脱水性の
悪いものとなる。このため、沈殿分離槽は大きな
水面積が必要であり、かつ、脱水速度がおそいた
め、汚泥の過脱水設備が大きくなる欠点があつ
た。
Conventionally, these wastewaters were often separated by precipitation together with other metal hydroxides at pH 10, where the solubility of zinc hydroxide was lowest, and the sludge was dehydrated and then disposed of. In this treatment method, a large amount of alkaline agent is first required to raise the pH of wastewater with a pH of 4 or lower to 10. Furthermore, when zinc, iron, aluminum, and other metal ions become hydroxides, a chemical amount of Theoretically, a large amount of alkaline agent is consumed, and the presence of coexisting impurities hinders the recovery and recycling of expensive zinc. Calcium hydroxide, carbide slag, or sodium hydroxide is commonly used as an alkaline agent in conventional methods because it is cheap and easily available. Carbide slag or calcium hydroxide are often used because of their excellent dehydration properties. However, in the case of calcium hydroxide, the insoluble calcium hydroxide added for pH adjustment mixes into the sludge, resulting in an increase in the amount of sludge generated from zinc-containing waste. In addition, when sodium hydroxide is used, the amount of sludge generated is small, but since it is less effective as a flocculation and dewatering aid like calcium hydroxide, the generated sludge is made up of metal hydroxide. Most of the substances are precipitated and have poor dehydration properties. For this reason, the sedimentation separation tank requires a large water area and the dewatering speed is slow, resulting in the drawback that the equipment for excessive dewatering of sludge becomes large.

以上の様に、従来の方法で処理した場合には多
量のアルカリ剤が必要となり、かつ、発生する汚
泥の処分費または処理設備に費用がかさむなど重
大な欠点があつた。
As mentioned above, when the treatment is carried out by the conventional method, a large amount of alkaline agent is required, and the disposal cost of the generated sludge and the cost of treatment equipment are increased, which are serious drawbacks.

本発明の目的は、これらの従来法の欠点に対し
て、使用アルカリ剤を少なくし、同時に汚泥発生
量を減少させる事によつて、薬剤費、汚泥処分
費、汚泥脱水設備費用を節減する方法を提供する
事にある。
The purpose of the present invention is to solve these drawbacks of conventional methods by reducing the amount of alkaline agents used and at the same time reducing the amount of sludge generated, thereby reducing chemical costs, sludge disposal costs, and sludge dewatering equipment costs. The goal is to provide the following.

近時、環境上、資源再利用などの点から廃水中
の金属イオンを回収、再利用することが多くなつ
たが、一般に、金属イオンを濃縮する方法として
蒸発法、冷凍濃縮法、イオン交換法、電気透析
法、抽出法、逆浸透法があるが、最近、所要エネ
ルギーが低く、液を加圧するだけで、他に薬剤を
使用することが少なく、操作が簡単である等か
ら、逆浸透膜法による濃縮法に関心が持たれてい
る。
Recently, metal ions in wastewater have been increasingly collected and reused for environmental reasons and resource reuse. Generally speaking, methods for concentrating metal ions include evaporation, freezing concentration, and ion exchange. , electrodialysis, extraction, and reverse osmosis, but recently reverse osmosis membranes have been used because they require less energy, only pressurize the liquid, do not require the use of other chemicals, and are easy to operate. There is interest in the method of enrichment by method.

逆浸透法濃縮で最も重要な問題は、膜の目詰り
である。すなわち、膜面への液中の懸濁物質の付
着及び溶解成分より析出するスケールによる汚染
である。これらの膜面汚染防止に対して薬品によ
る目詰り成分の溶解洗浄、水流によるフラツシン
グ洗浄、スポンジや気泡による物理的洗浄が用い
られているが、いずれも完全なものはなく、膜汚
染によつて透過水量が極端に減少した場合には、
膜交換にたよらざるを得ない状況であり、膜面汚
染が起きないように未然に防ぐ事が重要となる。
The most important problem with reverse osmosis concentration is membrane clogging. That is, contamination is due to adhesion of suspended substances in the liquid to the membrane surface and scale precipitated from dissolved components. To prevent contamination of these membrane surfaces, cleaning by dissolving clogging components with chemicals, flushing with water, and physical cleaning with sponges or air bubbles are used, but none of these methods are perfect, and membrane contamination can cause If the amount of permeated water decreases extremely,
This situation necessitates membrane replacement, and it is important to prevent membrane surface contamination from occurring.

水処理において、懸濁物質を除く場合には、無
機系の硫酸第一鉄、ポリ塩化第二鉄、硫酸アルミ
ニウム、ポリ塩化アルミニウム等の凝集剤を添
加、さらに、PH調整をなし、金属水酸化物の重合
体を形成する事で懸濁物質と共に凝集させて、固
液分離するのが通例である。
In water treatment, when removing suspended solids, inorganic flocculants such as ferrous sulfate, ferric polychloride, aluminum sulfate, and polyaluminum chloride are added, PH is adjusted, and metal hydroxide is added. It is customary to form a polymer of a substance, coagulate it with suspended substances, and perform solid-liquid separation.

本発明の他の目的は、亜鉛廃水に含まれる共存
金属イオンの性質を巧みに利用することで、凝集
剤を新たに添加する事なく、PH調節だけで懸濁物
質等の不純物を凝集し、固液分離させ、さらに
は、スケールの発生しない濃縮可能な液を安価に
作る方法を提供する事にある。
Another object of the present invention is to coagulate impurities such as suspended solids by simply adjusting the pH without adding any coagulant, by skillfully utilizing the properties of coexisting metal ions contained in zinc wastewater. It is an object of the present invention to provide a method for separating solid and liquid, and furthermore, for producing a scale-free and condensable liquid at low cost.

図面を参照した本発明を詳しく説明すれば、第
1図において、PH4.0以下の原水は流入管1から
撹拌槽2に導入され、水酸化ナトリウム等のアル
カリ剤によつて、濃縮を目的とする亜鉛の水酸化
物が析出しないで、アルミニウム及び鉄の水酸化
物のみ析出するPH5.5〜6.5の範囲内に予かじめ調
製し、撹拌機3によつて撹拌する事で、新たに凝
集剤を加える事なく凝集させる事ができる。これ
は、原水の亜鉛排液中に共存不純物として含まれ
ている鉄イオン及びアルミニウムイオンが水酸化
物の重合体となつて析出し、原水に含まれる懸濁
物質、また、スケールを形成し易いシリカや一部
の溶解物質を共沈させるためである。場合によつ
ては、撹拌槽2は原水とアルカリ剤を均一に混合
する事を目的とする急速撹拌槽と凝集フロツクの
熟成を目的とする緩速撹拌槽の二槽に分ける場合
もある。
To explain the present invention in detail with reference to the drawings, in Fig. 1, raw water with a pH of 4.0 or less is introduced from an inflow pipe 1 into a stirring tank 2, and is concentrated with an alkaline agent such as sodium hydroxide. The pH is adjusted in advance to within the range of 5.5 to 6.5, at which only the hydroxides of aluminum and iron are precipitated, and the hydroxides of zinc do not precipitate. It can be aggregated without adding any agent. This is because iron ions and aluminum ions, which are coexisting impurities in the raw zinc wastewater, become hydroxide polymers and precipitate, which easily forms suspended solids and scale in the raw water. This is to coprecipitate silica and some dissolved substances. In some cases, the stirring tank 2 may be divided into two tanks: a rapid stirring tank for uniformly mixing the raw water and the alkaline agent, and a slow stirring tank for aging the flocs.

これらの凝集したフロツクを含んだ原水は、導
管4によつて沈殿槽5に流入し、凝集したフロツ
クは沈降し、上澄水と分離される。本説明では、
図に示した様な沈殿槽5を用いて、沈殿分離を行
つたが、他の高速凝集沈殿槽等を用いても分離可
能である。沈殿槽5からの上澄水は導管6によつ
て、中間貯槽7に導入される。
The raw water containing these flocs flows into the settling tank 5 through the conduit 4, where the flocs settle and are separated from the supernatant water. In this explanation,
Although the sedimentation tank 5 shown in the figure was used to perform sedimentation separation, separation can also be performed using other high-speed flocculation and sedimentation tanks. Supernatant water from settling tank 5 is introduced via conduit 6 into intermediate storage tank 7 .

この上澄液は、沈殿槽で分離し得なかつた微小
の固形物が含まれており、さらに、過によつて
清澄化する必要がある。そのため、上澄水は中間
貯槽7と導管8を介して接続された過ポンプ9
によつて導管10より過槽11に導入され、
過槽11内に充填された材12により過され
る。材12は、通常、砂又は砂とアンスラサイ
トを用いるが、原水中にマンガンイオンが含まれ
る場合には、マンガンイオンの酸化吸着除去のた
めにマンガン砂を砂の代りに用いても良い。な
お、過槽11を重力式の過槽を用いて、沈殿
槽5からの上澄水を導管6で直接過槽に導入し
ても過し得る場合には、中間貯槽7、液ポン
プ9、導管8,10は省略することができる事は
言うまでもない。また、本図では省略したが、
過槽11は定期的に過水によつて逆洗するもの
である。
This supernatant liquid contains minute solids that could not be separated in the sedimentation tank, and must be further clarified by filtration. Therefore, the supernatant water is transferred to an over-pump 9 connected to the intermediate storage tank 7 via a conduit 8.
is introduced into the overtank 11 from the conduit 10 by
It is filtered through the material 12 filled in the filter tank 11. The material 12 is usually made of sand or sand and anthracite, but if the raw water contains manganese ions, manganese sand may be used instead of sand in order to oxidize and adsorb the manganese ions. In addition, if the supernatant water from the sedimentation tank 5 can be directly introduced into the supernatant tank through the conduit 6 by using a gravity-type supertank as the supertank 11, the intermediate storage tank 7, the liquid pump 9, and the conduit pipe may be used. It goes without saying that 8 and 10 can be omitted. Also, although omitted in this figure,
The overflow tank 11 is used for periodic backwashing with overflowing water.

この様に、少ないアルカリ剤で亜鉛廃水中の共
存する鉄イオン、アルミニウムイオンを利用し
て、逆浸透膜法にて濃縮中に、膜面に付着しやす
い懸濁物質、シリカや液中に析出する鉄イオン、
アルミニウムイオンを極めて経済的に、かつ、容
易に除去することができる。
In this way, iron ions and aluminum ions that coexist in zinc wastewater are used with a small amount of alkaline agent, and during concentration using the reverse osmosis membrane method, suspended solids that tend to adhere to the membrane surface, silica, and other substances precipitate in the liquid. iron ion,
Aluminum ions can be removed very economically and easily.

過水槽14に貯留された過水は、導管15
を通つてブースターポンプ16により、導管17
を通つて膜保護のために用いる精密過器18に
供給される。この導管17に塩酸等の酸を添加
し、PHをさらに3.5〜5.5に再調製する。これは亜
鉛を濃縮した時に、膜面に亜鉛やその他の金属水
酸化物層の形成や炭酸カルシウム等のスケールの
析出を防止するための配慮である。この時のPH値
は、装置の耐蝕性の点からは、PHが中性であるこ
とが望ましいが、亜鉛の最終濃縮濃度によつて、
亜鉛の水酸化物が析出しないPH値を設定したもの
である。
The excess water stored in the excess water tank 14 is transferred to the conduit 15
Through the booster pump 16, the conduit 17
The water is then supplied to a precision filter 18 used for membrane protection. An acid such as hydrochloric acid is added to this conduit 17 to further readjust the pH to 3.5 to 5.5. This is a consideration to prevent the formation of zinc and other metal hydroxide layers and the precipitation of scales such as calcium carbonate on the membrane surface when zinc is concentrated. From the viewpoint of corrosion resistance of the equipment, it is desirable that the pH value at this time is neutral, but depending on the final concentrated concentration of zinc,
The pH value is set at which zinc hydroxide does not precipitate.

以上で、逆浸透法で濃縮するための前処理は完
了し、以後、精密過器18と導管19にて連結
する加圧ポンプ20により、20〜60Kg/cm2程度加
圧し、導管21を通つて逆浸透23を内蔵するモ
ジユール22に供給され、濃縮水25と膜透過水
24に分けられる。濃縮水25は、この後、亜鉛
の再利用及び回収に供される。また、透過水は水
質が良好であれば、用水として再利用も可能であ
る。
With the above steps, the pretreatment for concentration by reverse osmosis is completed, and after that, the pressure is increased to about 20 to 60 kg/cm 2 using the pressure pump 20 connected to the precision filter 18 through the conduit 19, and the conduit 21 is passed through the conduit 21. The water is then supplied to a module 22 containing a reverse osmosis 23, where it is divided into concentrated water 25 and membrane permeated water 24. Concentrated water 25 is then used for reuse and recovery of zinc. Furthermore, the permeated water can be reused as water if the water quality is good.

なお、沈殿槽5で沈殿分離した汚泥は、導管2
6によつて脱水設備27に導かれ、脱水処理後、
脱水ケーキ28として排出される。また、脱水
液は導管29によつて、導管1で原水と混合され
再処理される。
Note that the sludge that has been sedimented and separated in the settling tank 5 is transferred to the conduit 2.
6 to the dehydration equipment 27, and after dehydration treatment,
It is discharged as a dehydrated cake 28. Further, the dehydrated liquid is mixed with the raw water in the conduit 1 through the conduit 29 and reprocessed.

本発明により発生する汚泥は、亜鉛以外の不純
物で、特に、微粒砂、炭素質の懸濁物質、鉄イオ
ン、アルミニウムイオンが主体となるために、廃
水中の不純物に対する亜鉛の比率が多ければ多い
程、従来のPH10にて、亜鉛イオンを含めた全量を
汚泥として処理する方法に比べ、汚泥発生比率が
少なくなり、アルカリ剤の消費量はもちろんの
事、汚泥処理費用が少なくなり、亜鉛の濃縮、回
収メリツトも大きくなる。
The sludge generated by the present invention contains impurities other than zinc, especially fine sand, carbonaceous suspended solids, iron ions, and aluminum ions, so the higher the ratio of zinc to the impurities in wastewater, the higher the concentration of zinc. Compared to the conventional PH10 method, which treats the entire amount including zinc ions as sludge, the sludge generation rate is lower, the consumption of alkaline agents is reduced, the sludge treatment cost is reduced, and the concentration of zinc is reduced. , the recovery benefits will also be greater.

なお、他の実施例として原水中に含まれる鉄イ
オンに2価の鉄イオンが含まれる場合には、酸化
する必要があり、この場合には、撹拌槽2に、次
亜塩素酸ソーダまたは塩素等の酸化剤を添加する
事によつて、容易に3価の鉄イオンとする事がで
き、鉄イオンを沈殿槽5にて完全に分離すること
ができる。
In addition, as another example, if the iron ions contained in the raw water contain divalent iron ions, it is necessary to oxidize, and in this case, sodium hypochlorite or chlorine is added to the stirring tank 2. By adding an oxidizing agent such as, trivalent iron ions can be easily converted into trivalent iron ions, and iron ions can be completely separated in the precipitation tank 5.

また、原水中にカルシウムイオンが含まれる場
合には、濃縮時にカルシウム系のスケールが発生
する場合があるので、導管17にカルシウムイオ
ンのイオン封鎖剤としてポリリン酸等のキレート
剤を添加すれば、スケール発生を防止する事がで
きる。
Additionally, if the raw water contains calcium ions, calcium-based scale may be generated during concentration, so adding a chelating agent such as polyphosphoric acid to the conduit 17 as an ion sequestering agent for calcium ions will reduce the scale. This can be prevented from occurring.

以上に述べたように、本発明は固形質、懸濁物
質やアルミニウムイオン、鉄イオンが共存する亜
鉛廃水を予じめ、特定のPHに調節する簡単な操作
だけで、逆浸透膜を用いる亜鉛の濃縮法が可能と
なつたもので、主成分の亜鉛を汚泥化しないため
に、PH調製剤の量が少なく、発生汚泥量も少なく
なるので処理費用が安く、また、亜鉛の濃縮水は
比較的不純物が少なくなつて、循環利用も可能
で、付加価値の高い方法を確立し得たのである。
また、廃水中の亜鉛イオン濃縮が高い程、従来法
では処理費が高くなるが、本発明では、亜鉛イオ
ンの濃縮のメリツトが高くなり、非常に有用な方
法である。
As described above, the present invention enables zinc wastewater containing solids, suspended solids, aluminum ions, and iron ions to be treated with zinc using a reverse osmosis membrane by simply adjusting the pH to a specific pH in advance. Since the main component, zinc, does not turn into sludge, the amount of PH adjusting agent is small, and the amount of sludge generated is low, so the processing cost is low. They were able to establish a method that reduces the amount of impurities, allows recycling, and has high added value.
Furthermore, the higher the concentration of zinc ions in wastewater, the higher the treatment cost in conventional methods, but in the present invention, the merits of concentration of zinc ions are increased, making it a very useful method.

次に、本発明の実験例をもとに説明する。 Next, the present invention will be explained based on an experimental example.

実験例 1 某工場より排出される亜鉛廃水を水酸化ナトリ
ウムでPH滴定を行うと、第2図のような結果を得
た。
Experimental Example 1 When zinc wastewater discharged from a certain factory was subjected to PH titration with sodium hydroxide, the results shown in Figure 2 were obtained.

この廃水には、亜鉛イオン1500ppm、アルミニ
ウムイオン10ppm、鉄イオン21ppm、溶解性シリ
カを20ppm、懸濁物質を11ppm含んでおり、PHは
2.5であつた。
This wastewater contains 1500ppm zinc ions, 10ppm aluminum ions, 21ppm iron ions, 20ppm soluble silica, 11ppm suspended solids, and the pH is
It was 2.5.

第2図から、この廃水をPH6.5にするには水酸
化ナトリウムが350ppm必要であり、PH10.0にす
るには1650ppm必要であつた。
From Figure 2, 350 ppm of sodium hydroxide was required to adjust the pH of this wastewater to 6.5, and 1650 ppm to adjust the pH to 10.0.

この結果より、本発明では、従来法に比べアル
カリ剤が約1/5で良い事がわかつた。
From this result, it was found that in the present invention, the amount of alkaline agent required is about 1/5 compared to the conventional method.

実験例 2 実験例1と同様の原水を水酸化ナトリウムでPH
6.5とし、析出したフロツクを沈殿分離し、上澄
水をアンスラサイトと砂を充填した過槽で過
し、その後、塩酸でPH4.0に調節すると、亜鉛
1400ppm、アルミニウム0.1ppm以下、鉄0.1ppm
以下、溶解性シリカ7.0ppm、懸濁物質0.1ppm以
下となり非常に清澄な液を得ることができた。
Experimental example 2 PH the same raw water as in experimental example 1 with sodium hydroxide.
6.5, precipitate and separate the precipitated flocs, pass the supernatant water through a filter tank filled with anthracite and sand, and then adjust the pH to 4.0 with hydrochloric acid.
1400ppm, aluminum 0.1ppm or less, iron 0.1ppm
A very clear liquid was obtained with 7.0 ppm of soluble silica and 0.1 ppm of suspended solids.

この前処理液を、膜面積0.7m2の逆浸透膜をモ
ジユール化した逆浸透装置を用い、圧力50Kg/cm2
で濃縮を行つた結果、膜透過水量は平均55/m2
Hrで、亜鉛濃度11000ppmまで濃縮する事ができ
た。この時の亜鉛の回収率は、原水の亜鉛量に対
して78.5%であつた。
This pre-treatment liquid was applied to a reverse osmosis device with a modularized reverse osmosis membrane with a membrane area of 0.7 m 2 at a pressure of 50 Kg/cm 2 .
As a result of concentration, the average amount of water permeated through the membrane was 55/m 2
We were able to concentrate the zinc concentration to 11,000ppm using Hr. The recovery rate of zinc at this time was 78.5% based on the amount of zinc in the raw water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の前処理方法と逆浸透膜装置に
よる濃縮法を組合せたフローシートである。第2
図は某工場廃水を苛性ソーダでPH滴定を行つた時
のPHと苛性ソーダ必要量との関係を示すグラフで
ある。 符号説明、2……撹拌槽、5……沈殿槽、7…
…中間貯槽、9……過ポンプ、11……過
槽、14……過水槽、16……ブースターポン
プ、18……精密過器、20………高圧ポン
プ、22……逆浸透モジユール、27……脱水設
備。
FIG. 1 is a flow sheet that combines the pretreatment method of the present invention and the concentration method using a reverse osmosis membrane device. Second
The figure is a graph showing the relationship between PH and the required amount of caustic soda when PH titration is performed on wastewater from a certain factory using caustic soda. Code explanation, 2... Stirring tank, 5... Sedimentation tank, 7...
...Intermediate storage tank, 9...Super pump, 11...Super tank, 14...Super water tank, 16...Booster pump, 18...Precision filter, 20...High pressure pump, 22...Reverse osmosis module, 27 ...Dehydration equipment.

Claims (1)

【特許請求の範囲】[Claims] 1 PH4以下のアルミニウムイオンを含む、強酸
性亜鉛廃水から亜鉛成分を濃縮するに際して、ま
ず、該廃水をアルカリ剤でPHを5.5〜6.5に調整
し、発生するフロツク状の固形物を分離除去した
後、さらに、該液のPHを3.5〜5.5に再調整して、
亜鉛成分を濃縮する、亜鉛廃水の濃縮のための前
処理方法。
1 When concentrating the zinc component from strongly acidic zinc wastewater containing aluminum ions with a pH of 4 or less, first adjust the pH of the wastewater to 5.5 to 6.5 with an alkaline agent, and then separate and remove the generated floc-like solids. , further readjust the pH of the liquid to 3.5 to 5.5,
A pretreatment method for concentrating zinc wastewater to concentrate zinc components.
JP4851083A 1983-03-23 1983-03-23 Pretreatment for thickening of waste zinc water Granted JPS59173188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4851083A JPS59173188A (en) 1983-03-23 1983-03-23 Pretreatment for thickening of waste zinc water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4851083A JPS59173188A (en) 1983-03-23 1983-03-23 Pretreatment for thickening of waste zinc water

Publications (2)

Publication Number Publication Date
JPS59173188A JPS59173188A (en) 1984-10-01
JPH0137979B2 true JPH0137979B2 (en) 1989-08-10

Family

ID=12805365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4851083A Granted JPS59173188A (en) 1983-03-23 1983-03-23 Pretreatment for thickening of waste zinc water

Country Status (1)

Country Link
JP (1) JPS59173188A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3842907B2 (en) * 1998-10-09 2006-11-08 新日本製鐵株式会社 Treatment of metal-containing wastewater and method for recovering valuable metals
US10604414B2 (en) 2017-06-15 2020-03-31 Energysource Minerals Llc System and process for recovery of lithium from a geothermal brine

Also Published As

Publication number Publication date
JPS59173188A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
US9067801B2 (en) Method for treating wastewater or produced water
US4332687A (en) Removal of complexed heavy metals from waste effluents
US6582605B2 (en) Method of treating industrial waste waters
US5266210A (en) Process for removing heavy metals from water
KR100347864B1 (en) System of treated for industrial wastewater
EP0159349A1 (en) Processes for treating waste streams
JP2013075261A (en) Treatment method and treatment apparatus that removes harmful substance
CN107176726A (en) Desulphurization for Coal-fired Power Plant waste water integrates defluorination method
US4200526A (en) Process for treating waste water
EP1375439A1 (en) Liquid treatment method and apparatus
JPH0714512B2 (en) Treatment method of wastewater containing heavy metals
US4054517A (en) Chrome removal and recovery
US5338457A (en) Removal of aluminum and sulfate ions from aqueous solutions
JP4261857B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
JPH0137979B2 (en)
JP3496773B2 (en) Advanced treatment method and apparatus for organic wastewater
JP5224380B2 (en) Manufacturing method of low grade Ni recycled sludge
JP3111508B2 (en) Treatment method for wastewater containing heavy metals
JP3339352B2 (en) Sludge treatment method
JP3829364B2 (en) Wastewater aggregation treatment method
Wang et al. Total waste recycle system for water purification plant using alum as primary coagulant
Wang et al. Recycling of filter backwash water and alum sludge from water utility for reuse
US4204973A (en) Treatment composition for use in chrome removal and recovery
Peters et al. Wastewater Treatment-Physical and Chemical Methods
JP3501843B2 (en) Treatment of oil-containing wastewater