[go: up one dir, main page]

JPH0136460B2 - - Google Patents

Info

Publication number
JPH0136460B2
JPH0136460B2 JP56102256A JP10225681A JPH0136460B2 JP H0136460 B2 JPH0136460 B2 JP H0136460B2 JP 56102256 A JP56102256 A JP 56102256A JP 10225681 A JP10225681 A JP 10225681A JP H0136460 B2 JPH0136460 B2 JP H0136460B2
Authority
JP
Japan
Prior art keywords
nitrobenzene
reaction
aniline
concentration
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56102256A
Other languages
Japanese (ja)
Other versions
JPS584750A (en
Inventor
Akihiro Tamaoki
Teruyuki Nagata
Katsuji Watanabe
Hiroki Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56102256A priority Critical patent/JPS584750A/en
Publication of JPS584750A publication Critical patent/JPS584750A/en
Publication of JPH0136460B2 publication Critical patent/JPH0136460B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はニトロベンゼンの水素添加によるアニ
リンの製造方法に関する。 芳香族ニトロ化合物を液相で水素添加して対応
する芳香族アミンを製造する方法が米国特許
2292879号に提案されている。この方法は細分さ
れた担体上に支持されたニツケル、コバルト、ま
たは銅触媒を使用して、これをニトロ化合物とそ
の水素添加生成物であるアミンとの混合液中に懸
濁させ、これに水素を通して反応をおこなうもの
である。その明細書には、反応で生成する水をア
ミンとともに反応系から連続的に留去させるよう
な条件で反応をおこなうことによつて触媒の活性
が高く保持されること、さらに芳香族アミンを反
応溶媒として使用し、そのアミンの濃度を比較的
高くして反応させることにより触媒の活性度を増
大させることが記載されている。 また、特許公報昭50−15779号明細書には、前
記米国特許と同様液相反応で、溶媒として使用す
る生成芳香族アミンの濃度を液相中で95重量%以
上に維持し、反応をできるだけ常圧付近で、しか
も沸点またはその近くの温度でおこなうことによ
り、反応生成水が容易に系外に除去できてまた反
応器より留去される生成物中にはニトロ化合物の
含有量の少ない芳香族アミンが得られるので有利
であることが提案されている。 反応液中のアミン濃度を高く保つことは、即ち
ニトロ化合物を反応の消費に見合う量だけをチヤ
ージすることは系外へ留去される生成物中の未反
応ニトロ化合物の含有率を低くするためには望ま
しいことであり、また本反応のように発熱の大き
な反応では温度制御のため多量の溶媒を使用し
て、蒸発潜熱で反応熱を制御することも一般に推
奨されているところである。 このような観点からみれば反応液中のアミン濃
度はできる限り100%に近く保ち、ニトロ化合物
の濃度を低くすることが有利なように思われる。
しかしながらアミン溶媒中でニトロ化合物の濃度
を低くして反応をおこなえば副反応として芳香族
環の核水素添加がおきやすくなり、シクロヘキシ
ルアミン、シクロヘキサノン、シクロヘキシリデ
ンアニリン、シクロヘキシルアニリンなどの不純
物を生成しやすくなる。これらの副生率は反応系
中のニトロ化合物の濃度が低いほど著しい。 これらの核水添加物である副生不純物の生成を
抑制するため、特公昭47−27212にはアルカノー
ルアミンなどの有機塩基物を添加することが提案
されており、例えばニトロベンゼンの水素添加に
よりアニリン製造の場合においてトリエタノール
アミンを添加しているが、この場合でも満足でき
るものではない。 また、通常市販されている高純度アニリン中に
はニトロベンゼンは10ppm程度以下の含有が望ま
しいとされているが、ニトロベンゼンの濃度を
0.5重量%以下の低い濃度に保つて反応を実施し
ても、未反応ニトロベンゼンの20ppm以上がアニ
リンと共に留出し、触媒量を増加させて未反応ニ
トロベンゼンの留出を抑制しようとすれば、核水
添加物は、それだけ比例して増加する。 本発明者らは、貴金属触媒の存在下接触水素添
加によるニトロベンゼンからのアニリンの製造法
において、このような問題を解決すべく鋭意検討
した結果、特定反応条件下に特定の化合物を添加
することにより、未反応ニトロベンゼンを殆んど
含有せず、しかも核水添化物含有量の極めて少な
い高純度のアニリンの製造方法を見出し、本願方
法を完成させたものである。 即ち、本願方法は貴金属触媒を用いて、ニトロ
ベンゼンの接触水素添加によるアニリンの連続的
製造方法において、アルカリ金属水酸化物、アル
カリ金属炭酸塩、アルカリ金属重炭酸塩、酢酸亜
鉛、硝酸亜鉛から選ばれた化合物の存在下、アニ
リン反応液中のニトロベンゼンの濃度を0.5重量
%以下に保ちながら反応をおこなうことを特徴と
する蒸留工程を経ることなく高純度アニリンを連
続的に製造する方法である。 本願方法に使用できる貴金属触媒とは、通常ニ
トロ化合物の接触水素添加反応に使用できる触媒
であり特定されるものではない。例えばパラジウ
ム、白金およびロジウム等を含有する触媒が使用
できる。特にパラジウムおよびまたはパラジウム
−白金系触媒が好ましく、パラジウム系触媒を使
用する場合は、担体として少くとも100の油吸収
率を有する親油性炭素上に沈着させて使用したほ
うが好ましい。反応系中の触媒濃度は、通常0.2
〜2.0重量%が適当である。 また本願方法で、添加して使用される化合物と
しては、苛性ソーダ、苛性カリなどのアルカリ金
属水酸化物、炭酸ソーダ、炭酸カリ、重炭酸ソー
ダなどのアルカリ金属の炭酸塩若しくは重炭酸
塩、または酢酸亜鉛、硝酸亜塩であり、これらを
触媒中の貴金属重量に対し0.1〜100倍好ましくは
0.5〜50倍量を直接触媒に添加してもよくまたは
水溶液として反応系へ添加してもよい。これらの
化合物はベンゼン環核水素化反応抑制剤として機
能するだけでなく、本願方法では、貴金属触媒の
助触媒としての相乗的効果もあり、通常の使用量
の触媒量でも連続的に反応系から留出されるアニ
リン中には未反応ニトロベンゼンが殆んど含まれ
ない。 本願方法の反応は以下のようにして実施する。
貴金属触媒を使用して水添反応を実施する場合、
通常反応系内に水が存在していれば触媒活性がお
ちると同時に副生成物が増大する傾向にあるの
で、反応中に生成する水は、たえず系外に除去し
て、実質的に水不存在下で反応をおこなうのが望
ましい。少量のニトロベンゼンをあらかじめチヤ
ージされているアニリン溶媒中へ導入して反応を
行い、反応器に導入されたニトロベンゼンは瞬時
にアニリンと水に転化された反応生成物は蒸気と
して系外に除去する。反応時の圧力は大気圧でも
実施可能であるが1.5〜10気圧が好ましく、反応
温度150〜250℃で実施する必要がある。反応器へ
導入するニトロベンゼンは反応液中のニトロベン
ゼン濃度が0.5重量%以下であるように、ニトロ
ベンゼンをアニリンへの転化にほぼ見合う量をア
ニリン溶媒中に供給し、好ましくは0.1重量%以
下の濃度に維持して反応をおこなう。ニトロベン
ゼン濃度が0.5重量%をこえて反応する場合は未
反応ニトロベンゼンが増し、高純度アニリンのス
ペツクにするためには、そのための蒸留工程が必
要になるので好ましくない。従つて、反応液中の
ニトロベンゼン濃度を0.5重量%以下として反応
できれば極めて工業的に有利であるが、このニト
ロベンゼン濃度付近よりN−シクロヘキシルアニ
リンによつて代表される核水添副生物の生成速度
が急速に増大する傾向にあり、ニトロベンゼンが
低濃度になるに従いさらにこの傾向が顕著とな
る。 このようにして反応器から、連続的に蒸気とし
て取出し凝縮されたアニリン中には、未反応ニト
ロベンゼンは殆んど含まれず、またシクロヘキサ
ノール、シクロヘキサノン、シクロヘキシリデン
アニリン、シクロヘキシルアニリンなどの核水素
添加物も殆んど含まれない高純度アニリンが連続
的に得られる。凝縮留去されたアニリンは、水を
分離後必要あれば一部反応系に戻して反応器中の
アニリン溶媒を調節する。 以上のように、本発明方法を実施することによ
り、未反応ニトロベンゼン含有量の極めて少な
い、然も核水添化物の極めて抑制された高純度ア
ニリンを得ることができ、従つて精製工程がほと
んど不要でありその効果は極めて大きいといえ
る。 以下実施例を示す。 実施例 1 ニトロベンゼン、触媒および水素ガスを連続的
に供給するための導入口、未反応の水素ガスおよ
び生成物を反応系外に排出するための出口と凝縮
器、撹拌機および温度計を備えた内容積1のス
テンレススチール製オートクレーブにアニリン
500g油吸収率260のカーボン粉末にパラジウム
0.8重量パーセント、白金0.1重量パーセントおよ
び鉄0.8重量パーセントを沈着させて得られる水
素添加触媒0.3gおよび重炭酸ナトリウム0.1gを
仕込み、内温を190〜200℃に、全圧を3Kg/cm2
に夫々保ちつつニトロベンゼン、触媒および水素
ガスを各々毎時100g、0.025gおよび60〜80の
速度で供給し、未反応の水素ガスと共に生成水お
よびアニリンを連続的に系外に排出し、この蒸気
をオートクレーブに連結して装備した凝縮器に導
入し冷却することにより水およびアニリンを凝縮
させた。この間水素ガスの流量は供給するニトロ
ベンゼンより生成する量に対応する量のアニリン
が留出するように、即ちオートクレーブ中のアニ
リンを主成分とする液相の重量が常に500g付近
に維持されるように調節した。一方、反応器内よ
り一定時間毎に供給に見合う触媒分だけ、缶液を
抜き出し(大略、供給するニトロベンゼンの10重
量%程度)、系内触媒濃度を一定に保つた。その
際、抜き出し缶液を濾過後分析する事により、缶
液中のニトロベンゼン濃度及びN−シクロヘキシ
ルアニリン等の核水添物やその他の副生物の生成
量を知る事ができた。得られた凝縮液は二層に分
離され、無色ないし淡黄色の透明なアニリン層が
得られた。このアニリン層中には水分が約4.5パ
ーセント含まれるが、ガスクロマトグラフ法で分
析した結果、不純物としてはシクロヘキサノー
ル、シクロヘキサノン、シクロヘキシリデンアニ
リンおよびニトロベンゼンが各々5ppm以下、
40ppm以下、20ppm以下および10ppm以下含まれ
ているにすぎず、アニリンの純度としては99.99
%以上であつた。反応器内液相中のアニリン溶液
を逐時分析しニトロベンゼン濃度が0.02%以下に
保たれていることを確認した。その間、液相中の
ニトロベンゼン濃度が高くなり過ぎ、供給するニ
トロベンゼン量を少なくしたり、触媒の供給量を
増す等の変更をする必要はなかつた。この液相中
にはN−シクロヘキシルアニリンが認められたが
その含有率は反応開始後30時間目で0.05%にすぎ
なかつた。 実施例2〜7、及び比較例1〜2 触媒及び添加剤の種類を変えた以外は実施例1
と同じ方法で実施した。 結果を表に示す。 比較例 3 ニトロベンゼン、触媒、及び水素ガスの供給速
度を各々毎時130g(平均)、0.033g(平均)及
び60〜90とした以外実施例1と同様に反応した
ところ、留出アニリン層中の不純物はシクロヘキ
サノール30ppm以下、シクロヘキサノン50ppm、
シクロヘキシリデンアニリン10ppm以下、及びニ
トロベンゼン400ppm以下の微黄色ないし黄色の
アンリンを得、純度は99.96%以上であつた。ま
た、反応中の反応器内液相中のアニリン溶液を逐
次分析し、ニトロベンゼン濃度を0.52〜0.58%に
保つた。この間このニトロベンゼン濃度を保つ
為、ニトロベンゼンの供給量を毎時120〜140g
(平均130g)、触媒の供給量を0.025〜0.038g
(平均0.033g)として運転する必要があつた。 また、この液相中にはN−シクロヘキシルアニ
リンが認められたが反応開始後30時間目で0.01%
であつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing aniline by hydrogenation of nitrobenzene. U.S. patent for method for hydrogenating aromatic nitro compounds in liquid phase to produce corresponding aromatic amines
Proposed in No. 2292879. This method uses a nickel, cobalt, or copper catalyst supported on a finely divided carrier, suspended in a mixture of a nitro compound and its hydrogenation product, an amine, which is then charged with hydrogen. The reaction is carried out through The specification states that the activity of the catalyst is maintained at a high level by conducting the reaction under conditions such that the water produced in the reaction is continuously distilled off from the reaction system together with the amine, and that the aromatic amine is It is described that the activity of the catalyst is increased by using it as a solvent and reacting the amine at a relatively high concentration. In addition, Patent Publication No. 15779/1979 states that in a liquid phase reaction, the concentration of the produced aromatic amine used as a solvent is maintained at 95% by weight or more in the liquid phase, as in the above-mentioned US patent, and the reaction is carried out as much as possible. By carrying out the reaction at around normal pressure and at a temperature at or near the boiling point, the water produced by the reaction can be easily removed from the system, and the product distilled off from the reactor has an aromatic aroma with a low content of nitro compounds. It has been proposed that this is advantageous because it provides group amines. Keeping the amine concentration in the reaction solution high, that is, charging only the amount of nitro compounds commensurate with the consumption of the reaction, lowers the content of unreacted nitro compounds in the product that is distilled out of the system. It is also generally recommended to use a large amount of solvent to control the temperature in reactions that generate a large amount of heat, such as the present reaction, and to control the heat of reaction using the latent heat of vaporization. From this point of view, it seems advantageous to maintain the amine concentration in the reaction solution as close to 100% as possible and to reduce the concentration of the nitro compound.
However, if the reaction is carried out in an amine solvent with a low concentration of nitro compounds, nuclear hydrogenation of aromatic rings will easily occur as a side reaction, producing impurities such as cyclohexylamine, cyclohexanone, cyclohexylideneaniline, and cyclohexylaniline. It becomes easier. The rate of these by-products increases as the concentration of nitro compounds in the reaction system decreases. In order to suppress the formation of by-product impurities, which are these nuclear water additives, Japanese Patent Publication No. 47-27212 proposes the addition of organic bases such as alkanolamines. In this case, triethanolamine is added, but even in this case it is not satisfactory. In addition, it is said that it is desirable to contain nitrobenzene at around 10 ppm or less in commercially available high-purity aniline;
Even if the reaction is carried out at a low concentration of 0.5% by weight or less, more than 20 ppm of unreacted nitrobenzene will distill out together with aniline, and if an attempt is made to increase the amount of catalyst to suppress the distillation of unreacted nitrobenzene, nuclear water will increase. Additives increase proportionately. The present inventors have conducted intensive studies to solve these problems in a method for producing aniline from nitrobenzene by catalytic hydrogenation in the presence of a noble metal catalyst, and have found that by adding a specific compound under specific reaction conditions, They discovered a method for producing highly pure aniline containing almost no unreacted nitrobenzene and an extremely low content of nuclear hydrogenated products, and completed the method of the present invention. That is, the method of the present application is a method for continuously producing aniline by catalytic hydrogenation of nitrobenzene using a noble metal catalyst. This is a method for continuously producing high-purity aniline without going through a distillation process, which is characterized by carrying out the reaction in the presence of a compound containing nitrobenzene while maintaining the concentration of nitrobenzene in the aniline reaction solution at 0.5% by weight or less. The noble metal catalyst that can be used in the method of the present application is a catalyst that can usually be used in the catalytic hydrogenation reaction of nitro compounds, and is not specified. For example, catalysts containing palladium, platinum, rhodium, etc. can be used. Particularly preferred are palladium and or palladium-platinum catalysts, and when a palladium catalyst is used, it is preferably used by depositing it on lipophilic carbon having an oil absorption rate of at least 100 as a carrier. The catalyst concentration in the reaction system is usually 0.2
~2.0% by weight is suitable. Further, in the method of the present invention, compounds to be added include alkali metal hydroxides such as caustic soda and caustic potash, alkali metal carbonates or bicarbonates such as sodium carbonate, potassium carbonate, and sodium bicarbonate, or zinc acetate and nitric acid. subsalt, preferably 0.1 to 100 times the weight of the precious metal in the catalyst.
0.5 to 50 times the amount may be added directly to the catalyst or may be added to the reaction system as an aqueous solution. These compounds not only function as benzene ring hydrogenation reaction inhibitors, but also have a synergistic effect as co-catalysts for the noble metal catalyst in the present method, and can be continuously removed from the reaction system even with the usual amount of catalyst used. The distilled aniline contains almost no unreacted nitrobenzene. The reaction of the present method is carried out as follows.
When carrying out hydrogenation reactions using noble metal catalysts,
Normally, if water exists in the reaction system, the catalytic activity tends to decrease and by-products increase at the same time, so the water produced during the reaction must be constantly removed from the system to make it virtually water-free. Preferably, the reaction is carried out in the presence of A small amount of nitrobenzene is introduced into a previously charged aniline solvent to carry out a reaction, and the nitrobenzene introduced into the reactor is instantaneously converted into aniline and water, and the reaction products are removed from the system as vapor. Although the pressure during the reaction can be carried out at atmospheric pressure, it is preferably 1.5 to 10 atm, and it is necessary to carry out the reaction at a reaction temperature of 150 to 250°C. The nitrobenzene introduced into the reactor is supplied into the aniline solvent in an amount approximately equivalent to the conversion of nitrobenzene to aniline so that the concentration of nitrobenzene in the reaction solution is 0.5% by weight or less, preferably at a concentration of 0.1% by weight or less. Maintain and react. If the nitrobenzene concentration exceeds 0.5% by weight, unreacted nitrobenzene will increase, and a distillation step will be necessary to achieve the specs of high-purity aniline, which is not preferable. Therefore, it would be very industrially advantageous if the reaction could be carried out at a nitrobenzene concentration of 0.5% by weight or less in the reaction solution, but the production rate of nuclear hydrogenation by-products represented by N-cyclohexylaniline decreases around this nitrobenzene concentration. It tends to increase rapidly, and this tendency becomes even more pronounced as the concentration of nitrobenzene becomes lower. The aniline that is continuously taken out as vapor from the reactor and condensed in this way contains almost no unreacted nitrobenzene, and contains no nuclear hydrogenation of cyclohexanol, cyclohexanone, cyclohexylideneaniline, cyclohexylaniline, etc. High purity aniline containing almost no substances can be obtained continuously. After water is separated from the condensed and distilled aniline, if necessary, a portion of the aniline is returned to the reaction system to adjust the aniline solvent in the reactor. As described above, by carrying out the method of the present invention, it is possible to obtain highly pure aniline with an extremely low content of unreacted nitrobenzene and extremely suppressed nuclear hydrogenated products, and therefore almost no purification steps are required. The effect can be said to be extremely large. Examples are shown below. Example 1 Equipped with an inlet for continuously supplying nitrobenzene, a catalyst, and hydrogen gas, an outlet for discharging unreacted hydrogen gas and products from the reaction system, a condenser, a stirrer, and a thermometer. Aniline in a stainless steel autoclave with an internal volume of 1
500g Palladium in carbon powder with oil absorption rate of 260
0.3 g of hydrogenation catalyst obtained by depositing 0.8% by weight, 0.1% by weight of platinum, and 0.8% by weight of iron, and 0.1g of sodium bicarbonate, the internal temperature was set to 190-200°C, and the total pressure was set to 3Kg/cm 2 G.
Nitrobenzene, catalyst, and hydrogen gas are supplied at a rate of 100 g, 0.025 g, and 60 to 80 g/hour, respectively, and the produced water and aniline are continuously discharged from the system together with unreacted hydrogen gas. Water and aniline were condensed by introducing the mixture into a condenser connected to an autoclave and cooling it. During this time, the flow rate of hydrogen gas was adjusted so that an amount of aniline corresponding to the amount produced from the supplied nitrobenzene was distilled out, that is, so that the weight of the liquid phase containing aniline as the main component in the autoclave was always maintained at around 500 g. Adjusted. On the other hand, the reactor liquid was withdrawn from the reactor at regular intervals in an amount corresponding to the amount of catalyst supplied (approximately 10% by weight of the nitrobenzene supplied) to keep the catalyst concentration in the system constant. At that time, by filtering and analyzing the extracted bottom liquid, it was possible to know the concentration of nitrobenzene in the bottom liquid and the amount of nuclear hydrogenated products such as N-cyclohexylaniline and other by-products produced. The resulting condensate was separated into two layers, yielding a colorless to pale yellow transparent aniline layer. This aniline layer contains about 4.5% water, but as a result of analysis by gas chromatography, impurities include cyclohexanol, cyclohexanone, cyclohexylideneaniline, and nitrobenzene each of less than 5 ppm.
It only contains 40ppm or less, 20ppm or less, and 10ppm or less, and the purity of aniline is 99.99.
% or more. The aniline solution in the liquid phase in the reactor was analyzed one by one, and it was confirmed that the nitrobenzene concentration was maintained at 0.02% or less. During that time, the nitrobenzene concentration in the liquid phase became too high, and there was no need to make changes such as reducing the amount of nitrobenzene supplied or increasing the amount of catalyst supplied. Although N-cyclohexylaniline was observed in this liquid phase, its content was only 0.05% 30 hours after the start of the reaction. Examples 2 to 7 and Comparative Examples 1 to 2 Example 1 except that the types of catalyst and additives were changed
It was carried out in the same manner. The results are shown in the table. Comparative Example 3 When the reaction was carried out in the same manner as in Example 1 except that the supply rates of nitrobenzene, catalyst, and hydrogen gas were set to 130 g (average), 0.033 g (average), and 60 to 90 g/hour, respectively, impurities in the distilled aniline layer is cyclohexanol 30ppm or less, cyclohexanone 50ppm,
A slightly yellow to yellow anline containing 10 ppm or less of cyclohexylideneaniline and 400 ppm or less of nitrobenzene was obtained, and the purity was 99.96% or more. In addition, the aniline solution in the liquid phase in the reactor during the reaction was sequentially analyzed, and the nitrobenzene concentration was maintained at 0.52 to 0.58%. During this period, in order to maintain this nitrobenzene concentration, the amount of nitrobenzene supplied is 120 to 140 g per hour.
(Average 130g), catalyst supply amount 0.025-0.038g
(average 0.033g). In addition, N-cyclohexylaniline was observed in this liquid phase, but 0.01% was detected 30 hours after the start of the reaction.
It was hot. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 貴金属触媒を用いて、ニトロベンゼンの接触
水素添加によるアニリンの連続的製造方法におい
て、アルカリ金属水酸化物、アルカリ金属炭酸
塩、アルカリ金属重炭酸塩、酢酸亜鉛、硝酸亜鉛
から選ばれた化合物の存在下、アニリン反応液中
のニトロベンゼンの濃度を0.5重量%以下に保ち
ながら反応をおこなうことを特徴とする高純度ア
ニリンの製造方法。
1. Presence of a compound selected from alkali metal hydroxides, alkali metal carbonates, alkali metal bicarbonates, zinc acetate, zinc nitrate in a continuous process for producing aniline by catalytic hydrogenation of nitrobenzene using a noble metal catalyst. Below, a method for producing high-purity aniline, which is characterized in that the reaction is carried out while maintaining the concentration of nitrobenzene in the aniline reaction solution at 0.5% by weight or less.
JP56102256A 1981-07-02 1981-07-02 Preparation of high purity aniline Granted JPS584750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56102256A JPS584750A (en) 1981-07-02 1981-07-02 Preparation of high purity aniline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56102256A JPS584750A (en) 1981-07-02 1981-07-02 Preparation of high purity aniline

Publications (2)

Publication Number Publication Date
JPS584750A JPS584750A (en) 1983-01-11
JPH0136460B2 true JPH0136460B2 (en) 1989-07-31

Family

ID=14322506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56102256A Granted JPS584750A (en) 1981-07-02 1981-07-02 Preparation of high purity aniline

Country Status (1)

Country Link
JP (1) JPS584750A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105012A (en) * 1989-03-24 1992-04-14 Fmc Corporation Catalytic reduction of dinitrobenzenes using a noble metal catalyst and iron or iron salts
US5283365A (en) * 1990-05-15 1994-02-01 Mitsui Toatsu Chemicals, Incorporated Process for preparing high-purity aniline
JP2801381B2 (en) * 1990-09-18 1998-09-21 三井化学株式会社 Production method of high purity aniline
JP5010312B2 (en) * 2007-03-02 2012-08-29 住友化学株式会社 Reaction initiation method for liquid phase reaction
JP4980753B2 (en) * 2007-03-12 2012-07-18 住友化学株式会社 Method for stopping liquid phase reaction
JP5645494B2 (en) * 2010-06-16 2014-12-24 帝人株式会社 Method for producing amine body
US9346826B2 (en) 2010-06-16 2016-05-24 Teijin Limited Process for producing an intermediate for a cyclic carbodiimide compound
CN110092723A (en) * 2018-01-31 2019-08-06 瑞典国际化工技术有限公司 The method of aniline is continuously manufactured by by the catalytic hydrogenation of p-nitrophenyl
CN111470975A (en) * 2019-01-23 2020-07-31 中国石油化工股份有限公司 Synthesis method of aniline compound
CN111470979A (en) * 2019-01-23 2020-07-31 中国石油化工股份有限公司 Synthesis method of aniline compound

Also Published As

Publication number Publication date
JPS584750A (en) 1983-01-11

Similar Documents

Publication Publication Date Title
JP2801381B2 (en) Production method of high purity aniline
JP2801358B2 (en) Method for producing high-purity aniline
KR940008911B1 (en) Method for producing and manufacturing direct aromatic monoamines and aromatic diamines via controlled nitration from benzene or benzene derivatives
US2458214A (en) Hydrogenation of nitro compounds
JPH0136460B2 (en)
CA1127185A (en) Toluene diamine from non-washed dinitrotoluene
EP0002308B1 (en) Catalytic hydrogenation process for the manufacture of aromatic amines
US3305586A (en) Process for preparing cyclohexanone
JPH05378B2 (en)
JPS646183B2 (en)
US5283365A (en) Process for preparing high-purity aniline
US4717774A (en) Process for the preparation of toluene diamines
JPH0136459B2 (en)
EP0035791A1 (en) A process for removing acetylene from reaction products of 1,2-dichloroethane pyrolysis
JPH02279657A (en) Aniline production method
EP2471768A1 (en) A method for the catalytic reduction of nitrobenzene to aniline in the liquid phase
JPS6144847A (en) Manufacture of ring-substituted cyclic primary amine
US2921942A (en) Synthesis of carbazole
JPH0473423B2 (en)
EP0872472B1 (en) Process for producing diacetoxybutene
JPS6136248A (en) Aniline production method
CA1216862A (en) Process for producing aminobenzylamine
JP2008169205A (en) Aromatic amine production method and reaction apparatus
EP0183160A1 (en) Preparation process of indole
JPH0472817B2 (en)