JPH0133228B2 - - Google Patents
Info
- Publication number
- JPH0133228B2 JPH0133228B2 JP56056440A JP5644081A JPH0133228B2 JP H0133228 B2 JPH0133228 B2 JP H0133228B2 JP 56056440 A JP56056440 A JP 56056440A JP 5644081 A JP5644081 A JP 5644081A JP H0133228 B2 JPH0133228 B2 JP H0133228B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- pyrodiene
- membrane
- hollow fiber
- separation membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012528 membrane Substances 0.000 claims description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 45
- 239000012510 hollow fiber Substances 0.000 claims description 36
- 238000000926 separation method Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 20
- 239000011148 porous material Substances 0.000 claims description 13
- 210000001724 microfibril Anatomy 0.000 claims description 8
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 6
- 229910052753 mercury Inorganic materials 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 229920000098 polyolefin Polymers 0.000 claims description 3
- 239000002510 pyrogen Substances 0.000 description 11
- -1 transfusions Substances 0.000 description 8
- 238000001914 filtration Methods 0.000 description 6
- 239000008399 tap water Substances 0.000 description 6
- 235000020679 tap water Nutrition 0.000 description 6
- 239000003708 ampul Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 235000020681 well water Nutrition 0.000 description 5
- 239000002349 well water Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 206010037660 Pyrexia Diseases 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 241000239218 Limulus Species 0.000 description 1
- 241000239205 Merostomata Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000000087 hemolymph Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/26—Polyalkenes
- B01D71/261—Polyethylene
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Preparation (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
この発明は主として医薬用、医療用に使用され
るパイロジエンを含有しない超純水を得るための
精密過法に関する。
本発明で述べるパイロジエンとは発熱性物質の
総称であり、このパイロジエンは生存微生物例え
ば細菌、カビ、酵母などの代謝産物または死んだ
微生物そのもので注射の際に生体に対して発熱反
応を引き起す物質と定義されるものを指す。パイ
ロジエンは微生物の繁殖が許されている所ではど
こにでも存在し、微生物の種類に関係なく類似の
性質を有し、化学的には耐熱性の窒素とリンを含
有する高分子性複合糖脂質と言われ水溶性で大き
さは1〜5mμと考えられている。
そして0.01μg/Kgの微量で生体に発熱反応を
起すと言われ、例えばパイロジエンが混合した血
液、輸液、薬品及びその他の注射の場合も生体に
発熱やシヨツク等の副作用を及ぼす。したがつて
特に医薬用、医療用分野において使用される水は
無菌水であり且ついわゆるパイロジエンフリー水
であることが必要である。
しかしながら、このパイロジエンは通常の滅菌
法、例えば高圧下における水蒸気滅菌法あるいは
細菌過法では破壊あるいは除去が不可能であ
る。したがつてパイロジエンフリー水を得るには
かなり高度な水処理技術が必要とされている。パ
イロジエンフリー水を得る方法としては従来から
用いられている蒸溜法や比較的最近検討が行なわ
れている限外過法、逆浸透法などがあるが、こ
れ等の方法はいずれも大規模な設備を必要とし、
また運転コストも高いと言う欠点を有し、大容量
のパイロジエンフリー水を得るには必ずしも適し
た方法とは言い難いのが現状である。さらに従来
の限外過膜の微細孔構造は球状に近く、このよ
うな構造を有する膜を用いて数十Åといわれるパ
イロジエンを除去するためには膜の孔径を著しく
小さいものとせなばならず、必然的に透水量も低
下し、生産性の悪いものである。大容量のパイロ
ジエンフリー水を必要とする分野は注射薬を始め
とする医薬品製造分野の他、医療分野としても例
えば注射器、手術器具等の洗浄用水、手術前手洗
い用水、手術中の患者の臓器や創傷部の洗浄用水
等がある。特にこれ等の洗浄用水は使用量が極め
て大容量であるために低コストのパイロジエンフ
リー水であることが望ましく低コストのパイロジ
エンフリー水を製造することの重要性が認識され
つつあるのが現状である。この様な現状から本発
明者等は合理的なパイロジエンフリー水の製造法
について種々検討した結果本発明に到達した。す
なわち本発明は、繊維長方向に配列したミクロフ
イブリルと該ミクロフイブリルに対してほぼ直角
に連結した結節部より形成される多数の短冊状微
細孔が中空糸内壁面より外壁面へ相互につながつ
た積層構造を有する分離膜をパイロジエン分離膜
として用いることを特徴とする水中のパイロジエ
ン除去方法である。
本発明の特徴は上記のごとく特殊な構造を有す
る膜を用いることによつて膜の細孔の平均孔径が
過されるパイロジエンの大きさよりも数倍から
数十倍大きいにもかかわらず有効に別されるこ
とにある。このような特殊な微細構造を有する分
離膜はポリオレフイン、ポリエステル、ナイロ
ン、ポリオキシメチレン等の結晶性高分子を溶融
押出し延伸することによつて形成することが出来
るが、特にポリオレフイン系重合体が微細孔形成
性の面から望ましい。また膜の形態としては平
膜、チユーブ膜等いずれでも良いが単位容積あた
りの膜面積が大きくとれる中空糸状の膜が好まし
い。
このような特殊な微細構造を有する多孔質中空
糸は、例えばポリエチレンやポリプロピレン等の
重合体を中空糸製造用の専用ノズルを用いて溶融
紡糸して得られた高配向結晶性未延伸中空糸を冷
延伸した後、加熱延伸する主工程において、各工
程条件を限定管理することによつて製造される。
このようにして得られた分離膜は湿式方式や乾式
方式で製造されたセルロースアセテートやポリア
クリロニトリル等の他の分離膜とは著しく異つた
前述の如き特殊な微細構造を有し、この特殊な微
細構造が水中のパイロジエン除去に大きく寄与す
るものと考えられる。
次に本発明において用いられる分離膜の特殊微
細構造を図面にしたがつて更に詳細に説明する。
第1図は本発明の実施例1で得られたポリエチレ
ン多孔質中空糸の電子顕微鏡写真である(中空糸
外表面倍率10000)。第2図は第1図の写真をよく
わかり易くするために描いた短冊状微細孔の積層
構造の一平面の模式図であり、1はミクロフイブ
リル、2は1のミクロフイブリルに対してほぼ直
角に連結した結節部、3は短冊状微細孔であり、
ミクロフイブリルと結節部により構成された短冊
状の微細孔3は各結節部を介して積層構造をとつ
ている。また微細孔の積層構造は結節部を介して
一平面内に繊維長方向に積層すると同時にこの様
な構造を有する平面が中空繊維の壁膜の厚み方向
に積み重なつていることを意味する。このような
微細孔構造を有する分離膜は水銀ポロシメーター
で測定した微細孔孔径が後述の通り大きいにもか
かわらず直径が1〜5mμと考えられている極微
小なパイロジエンが別除去されることは本発明
者等も当初予想しなかつた驚くべき事実であり、
また現時点においてもパイロジエン除去機構が必
ずしも完全に解明出来ているとは言い難いが、第
2図に示した如きミクロフイブリルと結節部より
構成された短冊状の微細孔が中空繊維の壁膜の厚
さ方向に積み重なつた構造であることがパイロジ
エン除去に大きく寄与しているものと推定され
る。この推定は後述する通り壁膜の厚さ(T)を
大きくすれば微細孔径()を大きくしても、パ
イロジエンが除去出来る傾向にあることによつて
も説明される。
一方パイロジエンが除去される限り、微細孔の
孔径は大きい程、また分離膜の空孔率が大きい程
透水速度は大きくなり好ましい。
本発明者等の検討によれば、多孔質中空糸の平
均孔径および空孔率を水銀ポロシメーターで測定
した結果、前述したような短冊状微細孔を有する
中空糸の場合、パイロジエンが別されるため最
大孔径は中空糸膜の膜厚T(μ)によつて変化す
ることが解つた。即ち膜厚Tを大きくすれば平均
孔径が大きくてもパイロジエンは別され液に
は含まれない。これは膜厚が大きいと膜の平均孔
径が大きくてもパイロジエンが膜中のミクロフイ
ブリルに引つかかり膜を透過出来ないものと考え
られる。
多孔質中空糸の場合、この膜厚と孔径の関係は
D=0.002×T+0.3で表わされ、さらに透水速度
の面から下限値として0.03μ以上が有効であるこ
とが解つた。即ち微細孔の孔径として0.03μ以上、
(0.002×T+0.3)μ以下の中空糸を用いること
により大きな透水速度を保ちながらパイロジエン
が完全に除去された水が得られることが判明し
た。さらに中空糸の膜厚としては10〜100μ、好
ましくは20〜80μの範囲、空孔率として20〜
90Vol%好ましくは40〜80Vol%の範囲が、透水
速度および膜の物理的な強度の面から好ましい。
次に本発明における水中のパイロジエン除去方
法について更に具体的に説明する。第3図は本発
明の実施例を示す概略断面図であり、多孔質中空
糸がハウジング内に収納されてなるカートリツジ
形式のフイルターであることを示す。4は多孔質
中空糸の多孔質壁膜部を示し、5は該多孔質中空
糸を集束固定した樹脂を示し、6は該多孔質中空
糸の中空開口部を示し、7はハウジングを示す。
8は被処理水の入口、9は過水の出口を示し、
矢印は水の流れを示す。すなわち、例えば第3図
の如くU字状に曲げられた該多孔質中空糸の多孔
質壁膜部4を被処理水との接触膜、すなわちパイ
ロジエン分離膜として用い、過されたパイロジ
エンフリー水は該多孔質中空糸の中空開口部6を
経てハウジング7の出口部分9から流出する形式
とすることによつてパイロジエンフリー水を得る
ことが出来るのである。また本発明のパイロジエ
ン分離膜としてポリオレフイン系多孔質中空糸を
用いる場合、該中空糸は非常に柔軟であるため自
由に屈曲又は湾曲せしめた状態でハウジング内に
収納せしめることも可能でありハウジング内容積
に対する実質的な分離膜面積比を著しく増大せし
めることが可能である。
また該分離膜は長時間使用後も透液量の低下率
が小さいと言う特徴を有するが、透液量が低下し
た時点においては分離膜を一旦取りはずしエタノ
ール等で洗滌するか又は中空開口部6から圧搾空
気あるいは液体を逆送入して洗滌することにより
再使用も可能である。
以上説明した通り本発明は井戸水や水道水等の
中に含まれるパイロジエンを効率良く除去出来る
方法であり、また従来の方法に比較して設備費や
運転コストの面でも優れ、特に低コストで且つ大
容量のパイロジエンフリー水を得る方法として、
その実用的価値は極めて高いものと考えられる。
次に本発明を実施例によつて更に詳細に説明す
る。
なお本実施例で用いるパイロジエンの検出法は
Limulus lysate test(カブトガニ血球溶解ゲル化
試験)にしたがつた。検出試薬は帝国臓器製薬
KK製のプレゲル試薬(商品名)を用いた。検出
原理はカブトガニの血リンパ液中の血球が極微量
のパイロジエンと反応し、ゲル化することを利用
したものである。プレゲルは凍結乾燥された上記
の血球成分がアンプル中に密封された試薬であ
り、このアンプル中に検液を添加し37℃で1時間
孵卵器中で培養した後、5分間室温に保ちアンプ
ルを45゜に傾けてゲル化の程度を判定する方法に
したがつた。判定基準は次の通りである。
(++):固いゲルを形成しアンプルを傾けても
ゲルの形が崩れない。
(+):ゲルを形成しているがアンプルを傾ける
と塊りのまま動く。
(±):粗い顆粒状ゲルの形成および粘度の著し
い増大。
(−):液状のままで変化なし。
なお本法によるパイロジエンの検出限界は
10-3μg/mlである。
実施例 1
第1図及び第2図に示す如き微細構造を有しカ
ルロエルバ社製水銀ポロシメーター221型を用い
て測定した微細孔の平均孔径が0.23μ、空孔率が
60Vol%、膜厚60μ、中空糸の内径280μのポリエ
チレンからなる多孔質中空糸を用いた。この中空
糸を第3図の如くU字状に束ね、中空開口部を閉
塞させない状態に保ち先端部をポリウレタン樹脂
を用いて集束固定化してなるカートリツジ式フイ
ルターをパイロジエン分離膜とした。該分離膜を
第3図のごとくハウジング内に装着し、井戸水の
導管に圧力調整器を介して接続し、背圧2.5Kg/
cm2で2400時間連続通水過し、過前後の井戸水
についてパイロジエンの有無を測定した。この結
果を第1表に示した。
なお透水量は初期に於て250/m2、hrであり、
480時間透水後で透水量は170/m2、hrまで低下
したが、分離膜をいつたんハウジングより取りは
ずし、50%エタノール水溶液で洗浄したところ
210/m2、hrまで透水速度は回復した。さらに
通水を続けた結果2400時間後の透水量は160/
m2、hrであつた。
The present invention relates to a precision filtration method for obtaining pyrogen-free ultrapure water used primarily for pharmaceutical and medical purposes. The pyrogen mentioned in the present invention is a general term for pyrogenic substances, and this pyrogen is a metabolite of living microorganisms, such as bacteria, mold, and yeast, or a dead microorganism itself, and is a substance that causes a fever reaction in living organisms when injected. Refers to what is defined as. Pyrodiene exists wherever microorganisms are allowed to grow, has similar properties regardless of the type of microorganism, and is chemically classified as a heat-resistant polymeric complex glycolipid containing nitrogen and phosphorus. It is thought to be water-soluble and have a size of 1 to 5 mμ. It is said that a trace amount of 0.01 μg/Kg causes a fever reaction in living organisms, and for example, in the case of blood, transfusions, medicines, and other injections mixed with pyrodiene, it also causes side effects such as fever and shock in living organisms. Therefore, water used particularly in the pharmaceutical and medical fields needs to be sterile water and so-called pyrogen-free water. However, this pyrogen cannot be destroyed or removed by conventional sterilization methods, such as steam sterilization under high pressure or bacterial filtration. Therefore, fairly advanced water treatment technology is required to obtain pyrogen-free water. Methods for obtaining pyrogen-free water include the conventionally used distillation method, ultrafiltration method, and reverse osmosis method, which have been studied relatively recently, but all of these methods require large-scale requires equipment,
Furthermore, it has the disadvantage of high operating costs, and at present it cannot be said that it is necessarily a suitable method for obtaining a large volume of pyrogen-free water. Furthermore, the micropore structure of conventional ultrafiltration membranes is close to spherical, and in order to remove pyrodiene, which is said to be several tens of angstroms thick, using a membrane with such a structure, the pore size of the membrane must be made extremely small. , the amount of water permeation inevitably decreases, resulting in poor productivity. Fields that require large volumes of pyrogen-free water include the pharmaceutical manufacturing field, including injection drugs, and the medical field, such as water for washing syringes and surgical instruments, water for washing hands before surgery, and water for patient's organs during surgery. and water for cleaning wounds. In particular, since the amount of water used for cleaning is extremely large, it is desirable to use low-cost pyrogen-free water, and the importance of producing low-cost pyrogen-free water is increasingly being recognized. This is the current situation. Under these circumstances, the present inventors conducted various studies on a rational method for producing pyrogen-free water, and as a result, they arrived at the present invention. That is, in the present invention, a large number of strip-shaped micropores formed by microfibrils arranged in the fiber length direction and nodules connected at almost right angles to the microfibrils are mutually connected from the inner wall surface of the hollow fiber to the outer wall surface. This is a method for removing pyrogen in water, which is characterized by using a separation membrane having a connected laminated structure as a pyrodiene separation membrane. The feature of the present invention is that by using a membrane having a special structure as described above, the average pore diameter of the membrane's pores is several times to several tens of times larger than the size of the pyrodiene to be passed through, yet it can effectively separate the particles. It lies in being done. Separation membranes with such special microstructures can be formed by melt-extruding and stretching crystalline polymers such as polyolefin, polyester, nylon, and polyoxymethylene. Desirable from the viewpoint of pore-forming properties. The form of the membrane may be either a flat membrane, a tube membrane, or the like, but a hollow fiber membrane is preferred since it can provide a large membrane area per unit volume. Porous hollow fibers with such a special microstructure are produced by, for example, highly oriented crystalline undrawn hollow fibers obtained by melt-spinning polymers such as polyethylene or polypropylene using a special nozzle for manufacturing hollow fibers. It is manufactured by controlling each process condition in a limited manner in the main process of cold stretching and then heating stretching.
The separation membrane obtained in this way has a special microstructure as described above, which is significantly different from other separation membranes such as cellulose acetate and polyacrylonitrile produced by wet or dry methods. It is thought that the structure greatly contributes to the removal of pyrodiene from water. Next, the special fine structure of the separation membrane used in the present invention will be explained in more detail with reference to the drawings.
FIG. 1 is an electron micrograph of the polyethylene porous hollow fiber obtained in Example 1 of the present invention (hollow fiber outer surface magnification: 10,000). Figure 2 is a schematic diagram of one plane of the stacked structure of strip-shaped micropores drawn to make the photograph in Figure 1 easier to understand. Nodules connected at right angles, 3 are strip-shaped micropores,
The strip-shaped micropores 3 made up of microfibrils and nodules have a laminated structure with each nodule interposed therebetween. Further, the laminated structure of the micropores means that the fibers are laminated in the longitudinal direction of the hollow fibers in one plane via the knots, and at the same time, the planes having such a structure are stacked in the thickness direction of the wall membrane of the hollow fibers. Although the separation membrane with such a microporous structure has a large micropore diameter measured with a mercury porosimeter as described below, it is true that extremely small pyrodiene, which is thought to have a diameter of 1 to 5 μm, is separately removed. This is a surprising fact that even the inventors had not expected at first.
Furthermore, although it cannot be said that the pyrodiene removal mechanism has been completely elucidated at this point, as shown in Figure 2, strip-shaped micropores composed of microfibrils and nodules are formed in the wall membrane of hollow fibers. It is presumed that the stacked structure in the thickness direction greatly contributes to pyrogen removal. This assumption can also be explained by the fact that, as will be described later, if the thickness (T) of the wall film is increased, even if the micropore diameter () is increased, pyrogenes tend to be removed. On the other hand, as long as pyrodiene is removed, the larger the diameter of the micropores and the larger the porosity of the separation membrane, the higher the water permeation rate, which is preferable. According to studies by the present inventors, as a result of measuring the average pore diameter and porosity of porous hollow fibers using a mercury porosimeter, it was found that in the case of hollow fibers having strip-shaped micropores as described above, pyrodiene is separated. It was found that the maximum pore diameter varies depending on the membrane thickness T (μ) of the hollow fiber membrane. That is, if the film thickness T is increased, even if the average pore diameter is large, the pyrogen is separated and not included in the liquid. This is thought to be because when the film thickness is large, the pyrodiene is caught by the microfibrils in the film and cannot pass through the film, even if the average pore diameter of the film is large. In the case of porous hollow fibers, the relationship between membrane thickness and pore diameter is expressed as D=0.002×T+0.3, and it has been found that a lower limit of 0.03μ or more is effective in terms of water permeation rate. In other words, the diameter of the micropores is 0.03μ or more,
It has been found that by using hollow fibers of (0.002 x T + 0.3) μ or less, water from which pyrodiene has been completely removed can be obtained while maintaining a high water permeation rate. Furthermore, the thickness of the hollow fiber is in the range of 10 to 100μ, preferably 20 to 80μ, and the porosity is in the range of 20 to 100μ.
A range of 90 Vol%, preferably 40 to 80 Vol% is preferable from the viewpoint of water permeation rate and physical strength of the membrane. Next, the method for removing pyrodiene in water according to the present invention will be explained in more detail. FIG. 3 is a schematic sectional view showing an embodiment of the present invention, showing that it is a cartridge type filter in which porous hollow fibers are housed in a housing. Reference numeral 4 indicates a porous wall membrane portion of the porous hollow fiber, 5 indicates a resin that focuses and fixes the porous hollow fiber, 6 indicates a hollow opening of the porous hollow fiber, and 7 indicates a housing.
8 indicates the inlet of the water to be treated, 9 indicates the outlet of the excess water,
Arrows indicate water flow. That is, for example, the porous wall membrane part 4 of the porous hollow fibers bent into a U-shape as shown in FIG. Pyrogen-free water can be obtained by flowing out from the outlet portion 9 of the housing 7 through the hollow opening 6 of the porous hollow fiber. Furthermore, when polyolefin porous hollow fibers are used as the pyrodiene separation membrane of the present invention, the hollow fibers are very flexible and can be stored in the housing in a freely bent or curved state, which reduces the internal volume of the housing. It is possible to significantly increase the effective separation membrane area ratio. In addition, the separation membrane has the characteristic that the rate of decrease in the amount of liquid permeable is small even after long-term use, but when the amount of liquid permeable decreases, the separation membrane should be removed and washed with ethanol etc., or the hollow opening 6 It is also possible to reuse it by flushing it with compressed air or liquid. As explained above, the present invention is a method that can efficiently remove pyrogens contained in well water, tap water, etc., and is superior in terms of equipment and operating costs compared to conventional methods, and is particularly low cost and As a way to obtain large amounts of pyrogen-free water,
Its practical value is considered to be extremely high. Next, the present invention will be explained in more detail with reference to Examples. The detection method of pyrodiene used in this example is
The Limulus lysate test was performed. The detection reagent is Teikoku Organ Pharmaceutical Co., Ltd.
Pregel reagent (trade name) manufactured by KK was used. The detection principle is based on the fact that blood cells in the hemolymph of horseshoe crabs react with extremely small amounts of pyrodiene and form a gel. Pregel is a reagent in which the above-mentioned freeze-dried blood cell components are sealed in an ampoule.A test solution is added to this ampoule, incubated in an incubator at 37°C for 1 hour, and then kept at room temperature for 5 minutes before opening the ampoule. A method was followed in which the degree of gelation was determined by tilting the plate at 45°. The judgment criteria are as follows. (++): Forms a hard gel and does not lose its shape even if the ampoule is tilted. (+): A gel is formed, but when the ampoule is tilted, it moves as a lump. (±): Formation of coarse granular gel and significant increase in viscosity. (-): Remains liquid with no change. The detection limit of pyrogen by this method is
10 -3 μg/ml. Example 1 It had a microstructure as shown in FIGS. 1 and 2, and the average pore diameter of the micropores measured using a mercury porosimeter model 221 manufactured by Carlo Erba was 0.23μ, and the porosity was
A porous hollow fiber made of polyethylene of 60 Vol%, a membrane thickness of 60 μm, and an inner diameter of the hollow fiber of 280 μm was used. The hollow fibers were bundled into a U-shape as shown in Fig. 3, and the hollow openings were kept unobstructed, and the tips were bundled and fixed using a polyurethane resin to form a cartridge-type filter, which was used as a pyrodiene separation membrane. The separation membrane is installed in the housing as shown in Figure 3, and connected to the well water pipe via a pressure regulator, with a back pressure of 2.5 kg/
The water was continuously passed through the well water for 2400 hours at cm2 , and the presence or absence of pyrogen was measured in the well water before and after the filtration. The results are shown in Table 1. In addition, the water permeability is 250/m 2 hr at the initial stage.
After 480 hours of water permeation, the water permeation amount decreased to 170/m 2 hr, but when the separation membrane was removed from the housing and washed with a 50% ethanol aqueous solution.
The water permeability rate recovered to 210/m 2 , hr. As a result of further water flow, the water permeability after 2400 hours was 160/
It was m2 , hr.
【表】
第1表に示す通り本発明の方法により井戸水中
のパイロジエンが除去されることが確認された。
実施例 2
水銀ポロシメーターで測定した微細孔の平均孔
径が0.05μ、空孔率が70Vol%、膜厚40μ、中空開
口部の孔径250μのポリプロピレンからなる多孔
質中空糸を分離膜として用い、他の条件は実施例
1と同一条件で通常の水道水を過し、過前後
の水道水についてパイロジエンの有無を測定し
た。この結果を第2表に示した。
なお透水量は初期に於て、170/m2、hrであ
り、480時間透水後で125/m2、hrまで低下し
た。実施例1と同様にして分離膜を洗浄したとこ
ろ透水速度は145/m2、hrまで回復し、さらに
過実験を続行した結果2400時間後の透水速度は
120/m2、hrであつた。[Table] As shown in Table 1, it was confirmed that pyrodiene in well water was removed by the method of the present invention. Example 2 A porous hollow fiber made of polypropylene with an average micropore diameter of 0.05 μm as measured by a mercury porosimeter, a porosity of 70 Vol%, a membrane thickness of 40 μm, and a pore diameter of 250 μm at the hollow opening was used as a separation membrane. Normal tap water was filtered under the same conditions as in Example 1, and the presence or absence of pyrogen was measured in the tap water before and after filtering. The results are shown in Table 2. The water permeation amount was 170/m 2 , hr at the initial stage, and decreased to 125/m 2 , hr after 480 hours of water permeation. When the separation membrane was washed in the same manner as in Example 1, the water permeation rate recovered to 145/m 2 hr, and as a result of continuing the filtration experiment, the water permeation rate after 2400 hours was as follows.
It was 120/m 2 , hr.
【表】
第2表に示す通り本発明の方法により水道水中
のパイロジエンが除去されることが確認された。
比較例 1
水銀ポロシメーターで測定した微細孔の平均孔
径が0.68μ、空孔率が80Vol%、膜厚40μ、中空糸
内径250μのポリエチレンからなる多孔質中空糸
を分離膜として他の条件は実施例2と同一条件で
通常の水道水を過し、過前後の水道水につい
てパイロジエンの有無を測定した。この結果を第
3表に示す。[Table] As shown in Table 2, it was confirmed that pyrodiene in tap water was removed by the method of the present invention. Comparative Example 1 A porous hollow fiber made of polyethylene with an average micropore diameter of 0.68μ as measured by a mercury porosimeter, a porosity of 80Vol%, a membrane thickness of 40μ, and a hollow fiber inner diameter of 250μ is used as a separation membrane.Other conditions are as in Example. Ordinary tap water was filtered under the same conditions as in Example 2, and the presence or absence of pyrogen was measured in the tap water before and after filtering. The results are shown in Table 3.
【表】
第3表の通り微細孔の平均孔径()が前述の
()=0.002×(T)+0.3以下を満足しない該分離
膜においては通水初期におけるパイロジエン除去
効果は認められるが長時間通水においてパイロジ
エン除去効果が悪くなる傾向を示し本発明の如
く、微細孔の平均孔径()は()=0.002×
(T)+0.3以下が好ましいことが判明した。[Table] As shown in Table 3, in the separation membrane whose average pore diameter () does not satisfy the above-mentioned condition () = 0.002 The pyrodiene removal effect tends to deteriorate with water flowing for a long time, and as in the present invention, the average pore diameter () of the micropores is () = 0.002 ×
It has been found that (T)+0.3 or less is preferable.
第1図は本発明に使用される分離膜の表面電子
顕微鏡写真である。第2図は本発明に使用される
分離膜の短冊状微細孔の積層構造を示した模式図
である。第3図は本発明の方法を実施するための
装置の概略断面図である。
1……ミクロフイブリル、2……結節部、3…
…短冊状微細孔、4……中空糸、5……中空糸集
束固定樹脂部、6……中空糸開口部、7……ハウ
ジング、8……被処理水入口、9……処理水出
口。
FIG. 1 is a surface electron micrograph of the separation membrane used in the present invention. FIG. 2 is a schematic diagram showing the laminated structure of strip-shaped micropores of the separation membrane used in the present invention. FIG. 3 is a schematic cross-sectional view of an apparatus for carrying out the method of the invention. 1... Microfibril, 2... Nodule, 3...
...Strip-shaped micropore, 4...Hollow fiber, 5...Hollow fiber focusing and fixing resin part, 6...Hollow fiber opening, 7...Housing, 8...Water to be treated inlet, 9...Treated water outlet.
Claims (1)
ミクロフイブリルに対してほぼ直角に連結した結
節部より形成される多数の短冊状微細孔が中空糸
内壁面より外壁面へ相互につながつた積層構造を
有するポリオレフイン系重合体からなる分離膜を
パイロジエンの分離膜として用いることを特徴と
する水中のパイロジエン除去方法。 2 分離膜が多孔質中空糸膜であることを特徴と
する特許請求の範囲第1項記載のパイロジエン除
去方法。 3 多孔質中空糸の壁膜層の厚さT(μ)が10〜
100μ、水銀ポロシメーターで測定した空孔率が
20〜90vol%、微細孔の平均孔径(μ)が0.03μ
以上で、且つの値がTとの関係において=
0.002×T+0.3以下であることを特徴とする特許
請求の範囲第2項記載のパイロジエン除去方法。[Claims] 1. A large number of strip-shaped micropores formed by microfibrils arranged in the fiber length direction and nodules connected at almost right angles to the microfibrils extend from the inner wall surface of the hollow fiber to the outer wall surface. A method for removing pyrodiene in water, characterized in that a separation membrane made of a polyolefin polymer having an interconnected layered structure is used as a separation membrane for pyrodiene. 2. The method for removing pyrodiene according to claim 1, wherein the separation membrane is a porous hollow fiber membrane. 3 The thickness T (μ) of the wall membrane layer of the porous hollow fiber is 10~
100μ, the porosity measured with a mercury porosimeter is
20~90vol%, average pore diameter (μ) of micropores is 0.03μ
Above, and in relation to T, the value is =
The pyrogene removal method according to claim 2, characterized in that the value is 0.002×T+0.3 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56056440A JPS57171403A (en) | 1981-04-15 | 1981-04-15 | Removal of pyrogen in water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56056440A JPS57171403A (en) | 1981-04-15 | 1981-04-15 | Removal of pyrogen in water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57171403A JPS57171403A (en) | 1982-10-22 |
JPH0133228B2 true JPH0133228B2 (en) | 1989-07-12 |
Family
ID=13027137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56056440A Granted JPS57171403A (en) | 1981-04-15 | 1981-04-15 | Removal of pyrogen in water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57171403A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU540708B2 (en) * | 1982-01-25 | 1984-11-29 | Mitsubishi Rayon Company Limited | Water purifying method and system |
EP0110580A3 (en) * | 1982-11-03 | 1986-06-11 | Gelman Sciences, Inc. | Improved process for removing pyrogens utilizing a hydrophobic microporous membrane |
JPS60197288A (en) * | 1984-03-21 | 1985-10-05 | Dainippon Ink & Chem Inc | Preparation of aseptic water |
JPS61406A (en) * | 1984-06-13 | 1986-01-06 | Mitsubishi Rayon Co Ltd | Purification of aqueous liquid |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52137026A (en) * | 1976-04-30 | 1977-11-16 | Toyobo Co Ltd | Microporous hollow fibers and their production |
JPS55132603A (en) * | 1979-04-04 | 1980-10-15 | Kuraray Co Ltd | Purifying method of water for dialysis |
-
1981
- 1981-04-15 JP JP56056440A patent/JPS57171403A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52137026A (en) * | 1976-04-30 | 1977-11-16 | Toyobo Co Ltd | Microporous hollow fibers and their production |
JPS55132603A (en) * | 1979-04-04 | 1980-10-15 | Kuraray Co Ltd | Purifying method of water for dialysis |
Also Published As
Publication number | Publication date |
---|---|
JPS57171403A (en) | 1982-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0302949A1 (en) | A method for the removal of a virus by using a porous hollow fiber membrane | |
KR102230435B1 (en) | Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane | |
US5240615A (en) | Composite membrane composed of microporous polyvinylidene difluoride membrane laminated to porous support and process for its preparation | |
JP4265701B2 (en) | Polysulfone porous membrane | |
US4857196A (en) | Porous hollow fiber membrane and a method for the removal of a virus by using the same | |
JPH0133228B2 (en) | ||
GB2086798A (en) | Microporous cellulose membrane | |
JPH10118472A (en) | Hollow fiber membrane and method for producing the same | |
JP2703266B2 (en) | Polysulfone hollow fiber membrane and method for producing the same | |
JPS6328406A (en) | Network porous hollow yarn membrane | |
JPH09308685A (en) | Hollow fiber membrane for blood purification and blood purifying device | |
JPS6160165B2 (en) | ||
JPH0970431A (en) | Production of polysulfone hollow fiber type artificial kidney and artificial kidney | |
JPH0211263B2 (en) | ||
JPH0366380A (en) | Hollow fiber type plasma separating membrane | |
JP4003982B2 (en) | Polysulfone-based selectively permeable separation membrane | |
JPS6031765Y2 (en) | Separation equipment | |
CA1318088C (en) | Porous hollow fiber membrane and a method for the removal of a virus by using the same | |
JPS61272057A (en) | Dry serum separator | |
JPH0143562B2 (en) | ||
JPS63104615A (en) | Virus-free module | |
JP2967205B2 (en) | Air trap with particulate filter | |
JP2024173722A (en) | Porous hollow fiber membrane for blood purification and blood purification module | |
Elsen et al. | Advantages of meltspun membrane technology compared to solution spinning | |
WO2024247796A1 (en) | Porous hollow fiber membrane and blood purification module |