[go: up one dir, main page]

JPH0132214B2 - - Google Patents

Info

Publication number
JPH0132214B2
JPH0132214B2 JP61217332A JP21733286A JPH0132214B2 JP H0132214 B2 JPH0132214 B2 JP H0132214B2 JP 61217332 A JP61217332 A JP 61217332A JP 21733286 A JP21733286 A JP 21733286A JP H0132214 B2 JPH0132214 B2 JP H0132214B2
Authority
JP
Japan
Prior art keywords
reaction
ethylene glycol
glycolaldehyde
rhodium
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61217332A
Other languages
Japanese (ja)
Other versions
JPS62116536A (en
Inventor
Uorutaa Goetsuto Richaado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Millennium Petrochemicals Inc
Original Assignee
National Destillers and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Destillers and Chemical Corp filed Critical National Destillers and Chemical Corp
Publication of JPS62116536A publication Critical patent/JPS62116536A/en
Publication of JPH0132214B2 publication Critical patent/JPH0132214B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/19Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing hydroxy groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はロジウム触媒の存在においてホルムア
ルデヒド、一酸化炭素および水素の反応によりグ
リコールアルデヒドの製造法に関する。 グリコールアルデヒドはセリンの製造を含む有
機合成に価値ある中間体であり特に接触水素添加
によるエチレングリコール製造の中間体として有
用である。 エチレングリコールは冷却剤、不凍剤、ポリエ
ステル製造用単量体、溶剤および工業薬品製造用
中間体としての用途を含む広範な用途をもつた非
常に価値ある工業薬品である。 ホルムアルデヒドと一酸化炭素および水素との
反応は知られた反応で特にエチレングリコール、
メタノールおよび高級ポリヒドロオキシ化合物を
生成する。例えば米国特許第2451333号はコバル
ト触媒上のホルムアルデヒド、一酸化炭素および
水素の反応によるエチレングリコール、グリセロ
ールおよび高級ポリオールを含むポリヒドロオキ
シ化合物類の混合物製造を記載している。そこに
は種々の金属触媒、例えばニツケル、マンガン、
鉄、クロム、銅、白金、モルブデン、パラジウ
ム、亜鉛、カドミウム、ルテニウムおよびそれら
の化合物触媒も発表されている。 米国特許第3920753号はコバルト触媒の存在に
おいてホルムアルデヒドを一酸化炭素と水素と調
整反応条件のもとで反応させるグリコールアルデ
ヒドの製造法を発表しているが、その転化収率は
低い。 ポリオール類も種々の金属触媒の上で一酸化炭
素と水素の反応により製造される。米国特許第
3833634号はエチレングリコール、プロピレング
リコール、グリセロール、メタノール、エタノー
ル、酢酸メチル等を生成するロジウム接触反応を
記述している。ロジウム触媒はまた一酸化炭素お
よび水素との反応によるアルケン類、アルカジエ
ン類およびアルケン酸エステルの酸素化誘導体製
造に用いられる、このことは米国特許第3081357
号、3527809号、3544635号、3577219号、および
3917661号に記載されている。 従来のエチレングリコール製法は生成物の混合
物を特徴とし、主要な共生成物はプロピレングリ
コールとグリセリンで低級アルコール類、メチル
とエチルアルコールを伴なつている。故に望む生
成物がエチレングリコールである場合これらの方
法は費用と時間を要する分離法が障害である。更
にエチレングリコールの収率に関する反応効率は
普通相当の量にのぼる共生成物の随伴生成によつ
て高くはない。 ロジウム触媒上のホルムアルデヒド、一酸化炭
素および水素の反応が、第1段階でグリコールア
ルデヒドとメタノールを生成し第2段階でエチレ
ングリコールを生成する2段反応となることを今
や発見したのである。故にこの反応は上記米国特
許第2451333号および3920753号に発表されている
とおりコバルト触媒を用いて得られる処と似てい
るが、驚くべきことは反応の第2段階で得られる
唯一のポリオールとして主としてエチレングリコ
ールのみであるという高選択性を示す。更に本発
明法で得られるグリコールアルデヒドの収率は米
国特許第3920753号に記載の方法によつて得られ
るものより実質的に大きい。 故に本発明はホルムアルデヒド、一酸化炭素お
よび水素から従来得られたよりも実質的に高い収
率でグリコールアルデヒドを生成する。方法と比
較してよりよい収率で唯一の検出量のポリオール
生成物としてエチレングリコールを生成するので
ある。 グリコールアルデヒドは唯一の検出しうる共生
成物メタノールから容易に分離出来て高純度で生
成される。またメタノールが問題でない場合は本
発明の反応生成物は分離することなく有機合成に
おけるグリコールアルデヒド源として使用出来
る。反応混合物中ホルムアルデヒド以外の検出さ
れる唯一のアルデヒドはグリコールアルデヒドで
あるので、反応混合物はグリコールアルデヒドの
還元によるエチレングリコールの生成にそのまゝ
使用して唯一のポリオール生成物としてグリコー
ルを生成出来る。 従来法において反応生成物が多数回分留によつ
てさえ分離が極めて困難なポリオール類混合物
(エチレングリコールを含む)であるという事実
が重大な障害であることはもちろん明白である。 本発明の方法は加温加圧においてロジウム含有
触媒の存在において成るべく適当する溶媒中でホ
ルムアルデヒド、一酸化炭素および水素を接触さ
せることによつて行なわれる。この型の反応に通
常使われる種々の方法もすべて有効なガス―液接
触が出来る限り使用出来るので接触方法は精密を
要しない。故にこの方法はホルムアルデヒド溶液
を一酸化炭素および水素の混合物と共に一定条件
でロジウム触媒と接触させて行なうことが出来
る。またホルムアルデヒド溶液を一定温度圧力条
件において一酸化炭素と水素の混合物のもとで触
媒上に滴下させることも出来る。 反応は引きつづいてのエチレングリコールの製
造を連続して適当な温度と圧力のもとで進行させ
て行なうことも出来るし、あるいはまた反応をグ
リコールアルデヒドが生成する第1段の終りで停
止させ第2段を適当な還元方法のもとで行なわせ
てグリコールアルデヒドのアルデヒド基を1価ア
ルコール基に転化させてエチレングリコールを得
てもよい。 上述したとおり本発明反応の主生成物はグリコ
ールアルデヒドとメタノールである。グリコール
アルデヒドはアルデヒド類の代表的反応であるア
セタール類を生成する傾向があり分子中に1価ア
ルコール基があるのでこの化合物はヘミアセター
ル類およびアセタール同志で下式に示す様な直線
状および環式アセタール類を生成する: またグリコールアルデヒドはメタノールと、ま
たもしあればエチレングリコールとアセタール類
およびヘミ―アセタール類を生成する。特にアセ
タール類は水素添加に抵抗するのでエチレングリ
コールへの効果的還元をすることが出来る様遊離
アルデヒドに加水分解することが必要である。 加水分解反応は少なくも等モル量の水が反応混
合物中にある丈けで行なわせることが出来る。故
に等モル量の水が加水分解を完全にする為に必要
で、等モル量より少なければ混合物中にあるアセ
タールの加水分解はそれ丈け少なくなり、したが
つてそれ丈けエチレングリコールの収量が低くな
る。還元段階の直前および(又は)同時にアセタ
ールを加水分解するのが便利である。 しばしば上記アセタールの実質的加水分解に必
要な水量が既に第1段反応中に含まれており、そ
れは少量、例えば約0.5乃至約10容量%で最良結
果を得るに理想的である。また水が不充分である
場合必要な水量を第2段反応にバツチ式で又は反
応工程にわたり連続して単に添加すればよい。こ
の場合経験上水の最適最終量は水添混合物を基準
として約10乃至30容量%の範囲である。 加水分解を行なうには酸の存在が特に望まし
い。故にこの目的の為ハロゲン化水素酸、硫酸お
よびりん酸の様な強礦酸又は成るべくは弱有機
酸、特に酢酸およびプロピオン酸の様な低級アル
カン酸を使用する。反応溶媒が強礦酸と反応する
場合、例えば加水分解されるアミド溶媒の場合は
強礦酸は避ける必要がある。次に述べることから
明らかなとおりアミド溶媒が普通好ましく、特に
第1段反応においてそうであり、この溶媒を使う
場合アセタール加水分解を接触するに弱酸を使う
ことが好ましい。使用する酸量は重要ではなく、
この分野の知識ある者には明白であろうが痕跡量
でさえ効果がある。 故に本発明反応の通常含水量は生成したアセタ
ールの少なくとも一部を加水分解し加水分解され
た部分はエチレングリコールに還元されるので別
の加水分解工程が常に必要ではないことは明らか
である。しかしエチレングリコール収量を最大に
するには最大加水分解を確保ししたがつてエチレ
ングリコールの最大収量を実現するため加水分解
工程を入れることが必要である。したがつて必ず
しも重要ではないが加水分解工程を入れることは
酸があつてもなくても、水添加は簡単なことなの
で容易に実施出来るよい方法である。 加水分解―水素添加組合せ工程は本明細書に組
合せ反応の参考として加えた米国特許第4024197
号、2721223号、2888492号および2729650号に記
載の既知の方法で行なうことが出来る。 本発明反応の触媒はロジウム元素、又はロジウ
ム化合物、複合物又は塩又はそれらの混合物をそ
のまゝ又は分子ふるいゼオライト、アルミナ、シ
リカ、陰イオン交換樹脂又は重合性配位子の様な
固体担体に沈着又は固着させて用いる。活性型の
触媒は一酸化炭素との複合結合のロジウム、即ち
追加配位子をもつロジウムカルボニルより成る、
このことは、例えば米国特許第3527809号、およ
び上記第3833634号に記載されており両特許は一
酸化炭素および有機配位子および配位子としての
水素を含むロジウム複合物についての参考文献と
してここに挙げる。米国特許第3833634号に記載
のとおり適当する有機配位子は少なくとも1の窒
素原子および(又は)少なくとも1の酸素原子を
もちその原子はロジウムと配位結合をするに利用
する1対の電子をもつ化合物類である。有機配位
子の例には種々のピペラジン類、ジピリジル類、
N―置換ジアミン類、アミノピリジル類、グリコ
ール類、アルコオキシ置換酢酸類:テトラヒドロ
フラン、ジオクサン、1,2―ジメトオキシベン
ゼン、アルキレングリコール類のアルキルエーテ
ル類、アルカノールアミン類、イミノジ酢酸、ニ
トリロ―3酢酸、エチレンジアミン―4酢酸等が
ある。米国特許第3527809号にはトリアルキル、
トリアリールおよびトリシクロアルキル亜りん酸
塩およびトリアリールフオスフイン類の様なりん
含有配位子および同様のアンチモンおよび砒素化
合物が記載されている。 触媒は反応媒質中に溶解型又は懸濁液状で又は
多孔質担体上に沈着して使用出来る。触媒は種々
の方法で製造出来る。例えば触媒は一酸化炭素と
の錯塩を先づ生成した後反応媒質に混合してもよ
く又は触媒をロジウム又はロジウム化合物と一酸
化炭素とを直接反応させてその場で生成すること
も出来る、これは選んだ有機配位子の存在におい
て反応媒質中に有機配位子―一酸化炭素―ロジウ
ム複合物を生成させるのである。 得た生成物は普通上記アセタール類の形であり
必要ならば共生成物メタノールと反応溶媒から分
留によつて分離出来る。ガスクロマトグラフ法と
質量分光分析は生成物をグリコールアルデヒドと
同定するに使われる。また純グリコールアルデヒ
ドのジメドン誘導体(5,5―ジメチルシクロヘ
キサン―1,3―ジオン)をつくり、本発明法に
よる代表的反応から得た生成物のジメドン誘導体
と比較し両者が同一であるとわかつた。誘導体の
NMR分析は生成物がグリコールアルデヒドであ
ると確認した。更に反応生成物中に検出されたア
ルデヒド類はホルムアルデヒドとグリコールアル
デヒドのみであつた。上記分析法ではグリオキザ
ールは検出されなかつた。 本発明反応のグリコールアルデヒドとメタノー
ルの生成は比較的短時間、普通1時間以内で実質
的に完了し生成物の実質的収量は30分位、又はそ
れ以下で得られる。普通あつても少量のエチレン
グリコールが検出されるのみである。 当然ながら本発明反応に使用するロジウム触媒
はまた引き続いて行ないうるエチレングリコール
を生成する為の第2段反応の水添触媒としても役
立つ。故に本発明反応を続けさせれば結局水添反
応はエチレングリコールを生成する。本発明反応
からあるグリコールアルデヒドアセタール類を加
水分解する為必要に応じ水を加えることによつて
特によい収量が得られかくてエチレングリコール
の最大収量となる。一般に本発明反応のロジウム
触媒は第2段水素添加反応用の有効触媒である
が、普通の反応条件で他の水添触媒がする程の短
い反応時間は与えない。 第2段反応時間を短縮する為にパラジウムとニ
ツケルの様な金属触媒上で還元工程をさせること
は可能であり、また普通別の反応器で第2段反応
をさせるのが好ましい。故に選んだ温度、圧力条
件のもとで反応器中で本発明反応を行なわせ本発
明生成完了後、反応混合物から分離してもしなく
ても、選んだ温度、圧力条件のもとで別の反応器
に移して加水分解条件、即ち含まれているグリコ
ールアルデヒドアセタール類を加水分解する為少
なくも化学量論的量の水の存在のもとで水添反応
を行なわせるのである。 また反応条件を調整して第2段反応を1の反応
器内で行なうことも出来る。水添反応段階に選ん
だ水添触媒を加えまた必要ならば加水分解用の水
も加えて水添反応を進行させる。この後者の修正
において本発明反応のロジウム触媒があつてもな
くても本発明反応混合物に水添触媒を加える。一
般にロジウム触媒を除去した方がよく、特に触媒
の競合が水添反応を妨げない様また更に重要なこ
とは反応をより正確に調整出来る様もし簡単に除
去出来るならばした方がよい。 したがつて本発明は唯一の検出出来るアルデヒ
ド生成物としてグリコールアルデヒドの簡単な選
択的製法を提供するものである。 本発明反応中に使用する触媒量は精密を要しな
いしまた相当変化出来る。もちろん少なくとも触
媒の接触効果量を使用する必要がある。一般に適
当な反応速度を与える効果ある触媒量で充分であ
る。反応媒質リツトル当りロジウム0.001g原子
程度の少量で充分であるが、0.1グラム原子を超
えた量は反応速度に著しく影響すると思えない。
一般に触媒の効果量はリツトル当り約0.005乃至
約0.025グラム原子である。 反応条件は広範な加温と加圧で操作出来るので
甚しく精密を要しない。製造装置の実用限度が反
応を行なわせる温度と圧力の選択を大半定める。
故に市販の製造装置を使用すれば選択温度は少な
くとも75℃から約250℃またはも少し高く迄とす
べきである。一般に好ましい操業温度は約100乃
至約175℃である。圧力は少なくも約10気圧から
製造装置の可能な範囲迄とすべきである。極めて
高圧の装置は非常に高価であるから約700気圧迄
の圧力が提案される。圧力は特に上記の好ましい
温度範囲を用いた場合約250乃至約400気圧とする
のが適当である。 反応は極性物質を溶解し選択性を最大とする為
成可くアプロテイツクである溶媒中で行なうこと
がよい。適当する溶媒は多種類あるが例を挙げれ
ばアミド窒素の各水素が炭化水素基で置換されて
いるN―置換アミド類、例えば1―メチルピロリ
ジン―2―オン、N,N―ジメチル―アセトアミ
ド、N,N―ジエチルアセトアミド、N―メチル
ピペリドン、1,2―ジメチルピロリジン―2―
オン、1―ベンジルピロリジン―2―オン、N,
N―ジメチルプロピオンアミド、ヘキサメチル―
フオスフオリツクトリアミドおよび同様の液体ア
ミド類;アセトニトリル、ベンゾニトリル、プロ
ピオニトリル等の様なニトリル類;テトラヒドロ
フラン、ジオクサンおよびテトラヒドロピランの
様な環式エーテル類;ジエチルエーテル、アルキ
レングリコール類およびポリアルキレングリコー
ル類の1,2―ジメトオキシ―ベンゼンアルキル
エーテル類、例えばエチレングリコール、プロピ
レングリコールおよびジ―、トリ―およびテトラ
エチレングリコール類のメチルエーテル類の様な
エーテル類;アセトン、メチルイソブチルケトン
およびシクロヘキサノンの様なケトン類;酢酸エ
チル、プロピオン酸エチルおよびラウリン酸メチ
ルの様なエステル類;酢酸、プロピオン酸および
カプリル酸の様な有機酸類;およびメタノール、
エタノール、プロパノール、2―エチルヘキサノ
ール等の様なアルカノール類;およびそれらの混
合物がある。溶媒の多数は媒質中で不活性である
が他のものは配位子として官能しうるものであ
る。選ばれた溶媒は反応条件のもとで液体である
ことが必要である。 溶媒を使用すればその性質により生成物の収量
およびエチレングリコールへの選択性に影響をも
つと思われる。例えば低級アルカン酸類、例えば
酢酸が例えば共―溶媒として本発明反応中にある
場合反応はより急速に進行する様であるがグリコ
ール収量は幾分減少し一方メタノール収量は増加
する。酢酸を反応混合物の約10乃至約20容量%の
量で使つた場合反応は酢酸を含まぬ同じ溶媒で必
要な時間の約半分の時間で進行したがメタノール
生成は増加(55%対40%)しグリコール生成は減
少(30%対48%)した。更にピリジン、トリエチ
ルアミンのような塩基性アミン類および匹敵した
塩基度をもつアミン類は得られるグリコールアル
デヒド収量に負の影響を示す様に思われまたこの
影響はアミン対ロジウムのモル比が増加するにつ
れてより大きくなる。故にアミンが共―溶媒とし
て含まれている場合でさえ、アミンの含まれない
溶媒系と比較すればグリコールアルデヒドの収量
は減少の傾向を示す。水、フエノール類およびカ
ルボン酸類、例えば酢酸の様なプロテイツク溶媒
が多量、例えば約30―40容量%以上あればグリコ
ールアルデヒド収量に同様の悪影響を示す。殆ん
どの場合グリコールアルデヒド収量の減少はメタ
ノール収量の増加となるがある場合にはホルムア
ルデヒドの転化が減少して両者の収量が減少す
る。故にグリコールアルデヒドとエチレングリコ
ールの最適収量とメタノールの最小収量を望むな
らば塩基性アミン又は多量のプロテイツク溶媒は
特に本発明反応においては普通避けるべきであ
る。 反対に、ある溶媒系はグリコールアルデヒドと
エチレングリコール生成に高い選択性を示す。ま
た多くの場合メタノールの実質的低収量が得られ
る。特に有機アミド類の様な溶媒はグリコールア
ルデヒドとエチレングリコール生成に高い選択性
を示し多くの場合メタノールの実質的低収量が得
られるのでこれらの溶媒は好ましい。炭化水素溶
媒も使用出来るがよい溶媒よりもグリコールアル
デヒドとエチレングリコールの低収量となる。 好ましい溶媒はアプロテイツク有機アミド類で
ある。考えられるアミド類にはピロリジン類およ
びピペリドン類における様なアミド基が環構造の
一部である様な環状アミド類;N―アシルピペリ
ジン類、ピロール類、ピロリジン類、ピペラジン
類、モルフオリン類等の様なアシル化された環式
アミン類、成可くはそのアシル基が低級アルカン
酸、例えば酢酸から誘導されたもの;およびアセ
トアミド類、フオルムアミド類、プロピオンアミ
ド類、カプロアミド類における様なアミド基が環
構造の一部でない様な非環状アミド類がある。最
も好ましいアミド類はアミド水素原子が炭素原子
8迄をもつ炭化水素基で充分置換されているもの
である。炭化水素基とはアルキル、成可くメチ
ル、エチル、およびブチルの様な低級アルキル;
ベンジルおよびフエネチルの様なアラルキル;シ
クロペンチルおよびシクロヘキシルの様なシクロ
アルキル;およびアリルおよびペンテニルの様な
アルケニルである。好ましいアミド窒素置換基は
低級アルキル、特にメチル、エチルとプロピル基
およびアラルキル、特にベンジルである。最も好
ましいアミド溶媒は1―メチルピロリジン―2―
オン、1―エチルピロリジン―2―オン、1―ベ
ンジルピロリジン―2―オン、N,N―ジエチル
アセトアミド、およびN,N―ジエチルプロピオ
ンアミドである。 ニトリル溶媒にはアセトニトリル、ベンゾニト
リル、フエニルアセトニトリル、カプロニトリル
等の様な炭素原子約8迄を含むすべての有機ニト
リルを含む。溶媒混合物も使用出来る。 塩基性窒素を含む溶媒を用いた場合塩基性窒素
をもつ配位子とロジウムカルボニル複合物の使用
は一般にエチレングリコール生成の低選択性およ
び普通メタノール生成増加を伴なう。この為に望
むエチレングリコール生成が減少するので塩基性
窒素をもつ配位を含む触媒は普通避けられる。酸
素をもつ配位子はエチレングリコール収量の点で
はよい結果を与えると思われるので上記塩基性窒
素をもつ配位子よりも好ましい。アセチルアセト
ネート陰イオンと生成したロジウム錯塩、Rh
(CO2)(C5H7O2)およびヘキサロジウムヘキサ
ジカルボニル、Rh6(CO)16によつて最良結果が得
られ、またこれらは容易に入手又は製造出来るの
で最も好ましい。 反応圧力は反応器内に含まれるガス、即ち一酸
化炭素および水素およびあるとすれば窒素の様な
不活性稀釈ガス全部の圧力を表わす。ガス系にお
いては全圧力は成分ガスの分圧の合計である。こ
の反応において、水素対一酸化炭素のモル比は約
1/10乃至約10/1、好ましくは約1/5乃至約
5/1の範囲であり反応圧は反応器中のこれらの
ガス圧を調整して適当なものとする。 最良結果を得る為に一酸化炭素対水素のモル比
は一酸化炭素の高い分圧がグリコールアルデヒド
の生成によい本発明反応において高く保つ。エチ
レングリコール生成のための第2段反応において
は水素の高分圧が還元反応に望ましい。故にグリ
コールアルデヒドを生成する本発明反応では普通
一酸化炭素の分圧は水素のそれの約3乃至約10倍
に調節する。第2段水添反応においては水素の分
圧を反応を促進する高い価に調節する。供給ガス
のこの調節は容易に行なわれ、例えば本発明反応
完了後反応器の圧力を下げた後水素の高分圧とす
る様水素ガス圧を上げる丈けでよい。本発明反応
のガス系中の一酸化炭素は水素ガス圧を上げる前
に反応器から完全に排出する必要はない。もちろ
ん一酸化炭素はある触媒系についてはそれを多分
毒すると知られている様にその効果を減少するの
でその様な触媒系を使つた場合は一酸化炭素を排
出した方がよい。 最初からあるロジウム触媒上でも又は他の金属
水添触媒上でも第2相反応を別の反応器中で行な
わせる場合は反応は普通の接触水添反応における
とおり稀釈ガスなしで水素ガスのもとで通常行な
う。 本発明のホルムアルデヒド源はパラホルムアル
デヒド、メチラール、ホルマリン液およびポリオ
キシメチレン類を含むこの方法に普通使われるど
んなものでもよい。この内パラホルムアルデヒド
を使つて最良結果が得られるのでこれがよい。溶
媒中のホルムアルデヒド溶液、(溶媒は反応溶媒
が便利である)、例えばN―メチル―ピロリジン
―2―オンの様な水性反応溶媒中のホルムアルデ
ヒド溶液が使用出来る。メチラールを使用すると
エチレングリコール収量が低下する。安定性がよ
いのでトリオキサンを使用すればホルムアルデヒ
ド放出の為加水分解剤を使う必要がある。 この種の方法ではいづれも同じ様に本発明の方
法はバツチ法、準連続法および連続法で操作出来
る。反応器は使用温度と圧力に耐える材料でつく
られまた反応器の内面は実質的に不活性である必
要がある。熱交換器等の反応を調整する普通の調
整装置をつける。反応器には震動、動揺、撹拌、
振動等による反応混合物の混合装置をつける必要
がある。第1段又は第2段反応器中に操作中触媒
および反応体を補充する為随時入れられる様にし
ておく。回収した触媒、溶媒および未反応原料は
再循還出来る。 生成混合物は混合物中に含まれる割合に関係な
く知られた方法、特に分留によつて容易に成分に
分離出来るのでエチレングリコールとメタノール
の相対収量は余り精密を要しない。したがつてエ
チレングリコールが反応混合物の10―20%であつ
ても、特にエチレングリコールの連続製法におい
て混合物から容易に分離出来、メタノールをホル
ムアルデヒドとして再循環出来るのである。 反応は適当な反応速度を得る為少なくも約100
℃の温度で行なわせるが、より小さな反応速度と
する為に幾分低い反応温度を用いてもよい。約1
時間又はそれ以下の反応時間に対し温度は約100
乃至約175℃、好ましくは約120乃至約140℃とす
べきである。一酸化炭素の分圧は水素分圧に比べ
て高い方がよく、その比率は約2:1乃至約10:
1がよく、約3:1乃至約8:1が更に好まし
い。使用ガスの全圧力は一般に約1000乃至約
9000psiに保つが、約3000乃至約7000psiが好まし
い。もちろんより高温および高圧も使用出来るが
それに相当した利点がなく特殊高圧装置が必要と
なるので普通は避けられる。 実施例 1 71ml容量のガラスライナーの付いたステンレス
スチール反応容器に次の反応混合物を装入した: Rh(CO)2(C7H5O2) 2.5ミリモル 95%パラホルムアルデヒド 237ミリモル H2O 5ml N―メチルピロリジノン 114ml 容器圧力を2500psi(PCO=2000psiとPH2
500psi)とした後130℃,1750rpmで加熱撹拌し
た。15分毎に試料をとり分析した結果次のとおり
である。(濃度=ミリモル)
The present invention relates to a process for the production of glycolaldehyde by the reaction of formaldehyde, carbon monoxide and hydrogen in the presence of a rhodium catalyst. Glycolaldehyde is a valuable intermediate in organic synthesis, including the production of serine, and is particularly useful as an intermediate in the production of ethylene glycol by catalytic hydrogenation. Ethylene glycol is a highly valuable industrial chemical with a wide range of uses including use as a coolant, antifreeze, monomer for polyester production, solvent, and intermediate for industrial chemical production. The reaction of formaldehyde with carbon monoxide and hydrogen is a known reaction, especially with ethylene glycol,
Produces methanol and higher polyhydroxy compounds. For example, US Pat. No. 2,451,333 describes the production of a mixture of polyhydroxy compounds including ethylene glycol, glycerol and higher polyols by the reaction of formaldehyde, carbon monoxide and hydrogen over a cobalt catalyst. There are various metal catalysts such as nickel, manganese,
Iron, chromium, copper, platinum, molybdenum, palladium, zinc, cadmium, ruthenium and their compound catalysts have also been published. US Pat. No. 3,920,753 discloses a process for producing glycolaldehyde by reacting formaldehyde with carbon monoxide and hydrogen under controlled reaction conditions in the presence of a cobalt catalyst, but the conversion yield is low. Polyols are also produced by the reaction of carbon monoxide and hydrogen over various metal catalysts. US Patent No.
No. 3,833,634 describes a rhodium-catalyzed reaction that produces ethylene glycol, propylene glycol, glycerol, methanol, ethanol, methyl acetate, etc. Rhodium catalysts are also used in the production of oxygenated derivatives of alkenes, alkadienes and alkenoic acid esters by reaction with carbon monoxide and hydrogen, as described in U.S. Pat. No. 3,081,357.
No. 3527809, No. 3544635, No. 3577219, and
Described in No. 3917661. Traditional ethylene glycol production processes are characterized by a mixture of products, with the main co-products being propylene glycol and glycerin, along with the lower alcohols, methyl and ethyl alcohol. Therefore, when the desired product is ethylene glycol, these processes are hampered by expensive and time-consuming separation procedures. Furthermore, the reaction efficiency with respect to the yield of ethylene glycol is usually not high due to the concomitant formation of considerable amounts of co-products. It has now been discovered that the reaction of formaldehyde, carbon monoxide, and hydrogen over a rhodium catalyst is a two-step reaction that produces glycolaldehyde and methanol in the first step and ethylene glycol in the second step. This reaction is therefore similar to that obtained using cobalt catalysts as disclosed in the above-mentioned US Pat. Shows high selectivity for only ethylene glycol. Furthermore, the yield of glycolaldehyde obtained with the process of the present invention is substantially greater than that obtained with the process described in US Pat. No. 3,920,753. Thus, the present invention produces glycolaldehyde in substantially higher yields than previously obtained from formaldehyde, carbon monoxide, and hydrogen. It produces ethylene glycol as the only detectable polyol product in better yields compared to other methods. Glycolaldehyde is easily separated from the only detectable co-product, methanol, and is produced in high purity. Furthermore, if methanol is not a problem, the reaction product of the present invention can be used as a source of glycolaldehyde in organic synthesis without separation. Since the only aldehyde other than formaldehyde detected in the reaction mixture is glycolaldehyde, the reaction mixture can be used directly to produce ethylene glycol by reduction of glycolaldehyde to produce glycol as the only polyol product. It is, of course, clear that in the conventional process the fact that the reaction product is a mixture of polyols (including ethylene glycol) which is extremely difficult to separate even by multiple fractional distillations is a significant obstacle. The process of the invention is carried out by contacting formaldehyde, carbon monoxide and hydrogen, preferably in a suitable solvent, in the presence of a rhodium-containing catalyst at elevated pressure. The contacting method does not require precision as all of the various methods commonly used for this type of reaction can be used as long as effective gas-liquid contact is possible. The process can therefore be carried out by contacting a formaldehyde solution with a mixture of carbon monoxide and hydrogen under constant conditions with a rhodium catalyst. It is also possible to drop the formaldehyde solution onto the catalyst under constant temperature and pressure conditions in a mixture of carbon monoxide and hydrogen. The reaction can be carried out with the subsequent production of ethylene glycol proceeding continuously at suitable temperature and pressure, or alternatively the reaction can be stopped at the end of the first stage when glycolaldehyde is formed and the reaction can be carried out in a continuous manner. The second stage may be carried out under a suitable reduction method to convert the aldehyde groups of glycolaldehyde to monohydric alcohol groups to obtain ethylene glycol. As mentioned above, the main products of the reaction of the present invention are glycolaldehyde and methanol. Glycolaldehyde tends to produce acetals, which is a typical reaction of aldehydes, and since there is a monohydric alcohol group in the molecule, this compound is composed of hemiacetals and acetals, which form linear and cyclic forms as shown in the following formula. Generate acetals: Glycolaldehyde also forms acetals and hemi-acetals with methanol and, if present, ethylene glycol. In particular, acetals resist hydrogenation and require hydrolysis to free aldehydes to enable effective reduction to ethylene glycol. The hydrolysis reaction can be carried out as long as at least equimolar amounts of water are present in the reaction mixture. Therefore, an equimolar amount of water is required for complete hydrolysis; less than an equimolar amount will result in less hydrolysis of the acetal in the mixture and therefore a higher yield of ethylene glycol. It gets lower. It is convenient to hydrolyze the acetal immediately before and/or simultaneously with the reduction step. Often the amount of water necessary for substantial hydrolysis of the acetal is already included in the first stage reaction, and small amounts, such as from about 0.5 to about 10% by volume, are ideal for obtaining best results. If there is insufficient water, the required amount of water can simply be added to the second stage reaction in batches or continuously over the course of the reaction. In this case, experience has shown that the optimum final amount of water is in the range of about 10 to 30% by volume, based on the hydrogenated mixture. The presence of an acid is particularly desirable to effect the hydrolysis. For this purpose, therefore, use is made of hydrohalic acids, strong phosphoric acids such as sulfuric acid and phosphoric acid, or preferably weak organic acids, especially lower alkanoic acids such as acetic acid and propionic acid. If the reaction solvent reacts with strong mineral acids, for example in the case of an amide solvent that is hydrolyzed, strong mineral acids should be avoided. As will be apparent from the following discussion, amide solvents are generally preferred, particularly in the first stage reactions, and when this solvent is used it is preferred to use a weak acid to catalyze the acetal hydrolysis. The amount of acid used is not critical;
As is obvious to those knowledgeable in the field, even trace amounts are effective. It is therefore clear that a separate hydrolysis step is not always necessary since the usual water content of the reactions of the invention will hydrolyze at least a portion of the acetal formed and the hydrolyzed portion will be reduced to ethylene glycol. However, to maximize the ethylene glycol yield, it is necessary to include a hydrolysis step to ensure maximum hydrolysis and thus achieve the maximum yield of ethylene glycol. Therefore, although it is not necessarily important, adding a hydrolysis step is a good method that can be easily carried out with or without acid, since adding water is a simple process. The combined hydrolysis-hydrogenation process is described in US Pat. No. 4,024,197, which is incorporated herein by reference to the combined reaction.
No. 2721223, No. 2888492 and No. 2729650. The catalyst for the reaction of the present invention is rhodium element, or a rhodium compound, composite, or salt, or a mixture thereof, either as such or on a solid support such as molecular sieve zeolite, alumina, silica, anion exchange resin, or polymerizable ligand. Use by depositing or fixing. The active catalyst consists of rhodium in complex bond with carbon monoxide, i.e. rhodium carbonyl with additional ligands.
This is described, for example, in U.S. Pat. No. 3,527,809, and in U.S. Pat. Listed below. Suitable organic ligands, as described in U.S. Pat. No. 3,833,634, have at least one nitrogen atom and/or at least one oxygen atom that has a pair of electrons available for coordination with the rhodium. It is a class of compounds with Examples of organic ligands include various piperazines, dipyridyls,
N-substituted diamines, aminopyridyls, glycols, alkoxy-substituted acetic acids: tetrahydrofuran, dioxane, 1,2-dimethoxybenzene, alkyl ethers of alkylene glycols, alkanolamines, iminodiacetic acid, nitrilo-triacetic acid , ethylenediamine-tetraacetic acid, etc. U.S. Patent No. 3,527,809 includes trialkyl,
Phosphorus-containing ligands such as triaryl and tricycloalkyl phosphites and triarylphosphines and similar antimony and arsenic compounds have been described. The catalyst can be used in dissolved or suspended form in the reaction medium or deposited on a porous support. Catalysts can be manufactured in a variety of ways. For example, the catalyst may be first formed as a complex with carbon monoxide and then mixed into the reaction medium, or the catalyst may be formed in situ by directly reacting rhodium or a rhodium compound with carbon monoxide. produces an organic ligand-carbon monoxide-rhodium complex in the reaction medium in the presence of the selected organic ligand. The products obtained are usually in the form of the acetals mentioned above and can be separated from the co-product methanol and the reaction solvent by fractional distillation if necessary. Gas chromatography and mass spectrometry were used to identify the product as glycolaldehyde. Furthermore, a dimedone derivative (5,5-dimethylcyclohexane-1,3-dione) of pure glycolaldehyde was prepared and compared with the dimedone derivative of the product obtained from a representative reaction according to the method of the present invention, and it was found that the two were identical. . of derivatives
NMR analysis confirmed the product to be glycolaldehyde. Further, the aldehydes detected in the reaction product were only formaldehyde and glycolaldehyde. Glyoxal was not detected by the above analytical method. The production of glycolaldehyde and methanol in the reaction of the present invention is substantially completed in a relatively short time, usually within one hour, and a substantial yield of product is obtained in about 30 minutes or less. Usually only small amounts of ethylene glycol are detected. Naturally, the rhodium catalyst used in the reaction of the invention also serves as a hydrogenation catalyst for the subsequent second stage reaction to produce ethylene glycol. Therefore, if the reaction of the present invention is allowed to continue, the hydrogenation reaction will eventually produce ethylene glycol. Particularly good yields are obtained by adding water as necessary to hydrolyze certain glycolaldehyde acetals from the reaction of the invention, thus resulting in maximum yields of ethylene glycol. Generally, the rhodium catalysts of the present reaction are effective catalysts for the second stage hydrogenation reaction, but do not provide the short reaction times that other hydrogenation catalysts do under common reaction conditions. It is possible to run the reduction step over a metal catalyst such as palladium and nickel to shorten the second stage reaction time, and it is usually preferred to run the second stage reaction in a separate reactor. Therefore, after the reaction of the present invention is carried out in a reactor under the selected temperature and pressure conditions, and after the completion of the production of the present invention, another reaction is carried out under the selected temperature and pressure conditions, whether or not it is separated from the reaction mixture. The mixture is transferred to a reactor and subjected to a hydrogenation reaction under hydrolysis conditions, ie, in the presence of at least a stoichiometric amount of water to hydrolyze the contained glycolaldehyde acetals. Furthermore, the second stage reaction can be carried out in one reactor by adjusting the reaction conditions. A selected hydrogenation catalyst is added to the hydrogenation reaction stage, and if necessary, water for hydrolysis is also added to allow the hydrogenation reaction to proceed. In this latter modification, a hydrogenation catalyst is added to the reaction mixture of the invention with or without the rhodium catalyst of the reaction of the invention. It is generally better to remove the rhodium catalyst, especially if it can be easily removed so that catalyst competition does not interfere with the hydrogenation reaction and, more importantly, allows for more precise control of the reaction. The present invention therefore provides a simple, selective process for the production of glycolaldehyde as the only detectable aldehyde product. The amount of catalyst used during the reaction of this invention does not require precision and can vary considerably. Of course, it is necessary to use at least a catalytically effective amount of catalyst. Generally, an effective amount of catalyst to provide a suitable reaction rate is sufficient. Although as little as 0.001 g atom of rhodium per liter of reaction medium is sufficient, amounts in excess of 0.1 g atom do not appear to significantly affect the reaction rate.
Generally, the effective amount of catalyst is about 0.005 to about 0.025 gram atoms per liter. The reaction conditions do not require great precision as they can be manipulated over a wide range of heating and pressurizing conditions. The practical limits of the manufacturing equipment largely dictate the choice of temperature and pressure at which the reaction is carried out.
Therefore, using commercially available manufacturing equipment, the selected temperature should be at least 75°C to about 250°C or even slightly higher. Generally preferred operating temperatures are about 100 to about 175°C. Pressures should be at least about 10 atmospheres to as far as the manufacturing equipment allows. Since extremely high pressure equipment is very expensive, pressures up to about 700 atmospheres are suggested. Suitably, the pressure is from about 250 to about 400 atmospheres, especially using the preferred temperature ranges noted above. The reaction is preferably carried out in a suitable solvent to dissolve polar substances and maximize selectivity. There are many types of suitable solvents, but examples include N-substituted amides in which each hydrogen of the amide nitrogen is replaced with a hydrocarbon group, such as 1-methylpyrrolidin-2-one, N,N-dimethyl-acetamide, N,N-diethylacetamide, N-methylpiperidone, 1,2-dimethylpyrrolidine-2-
on, 1-benzylpyrrolidin-2-one, N,
N-dimethylpropionamide, hexamethyl-
phosphoric triamides and similar liquid amides; nitriles such as acetonitrile, benzonitrile, propionitrile etc.; cyclic ethers such as tetrahydrofuran, dioxane and tetrahydropyran; diethyl ether, alkylene glycols and polyalkylenes. Ethers such as 1,2-dimethoxy-benzene alkyl ethers of glycols, such as ethylene glycol, propylene glycol and methyl ethers of di-, tri- and tetraethylene glycols; such as acetone, methyl isobutyl ketone and cyclohexanone esters such as ethyl acetate, ethyl propionate and methyl laurate; organic acids such as acetic acid, propionic acid and caprylic acid; and methanol,
Alkanols such as ethanol, propanol, 2-ethylhexanol, etc.; and mixtures thereof. Many of the solvents are inert in the medium, while others can be functionalized as ligands. It is necessary that the chosen solvent be liquid under the reaction conditions. The nature of the solvent used will affect the product yield and selectivity to ethylene glycol. For example, when lower alkanoic acids, such as acetic acid, are present in the reaction of the invention, eg as a co-solvent, the reaction appears to proceed more rapidly, but the glycol yield is somewhat reduced while the methanol yield is increased. When acetic acid was used at about 10% to about 20% by volume of the reaction mixture, the reaction proceeded in about half the time required with the same solvent without acetic acid, but methanol production increased (55% vs. 40%). Glycol production was reduced (30% vs. 48%). Furthermore, basic amines such as pyridine, triethylamine, and amines with comparable basicity appear to have a negative effect on the resulting glycolaldehyde yield, and this effect decreases as the amine to rhodium molar ratio increases. Become bigger. Therefore, even when amines are included as co-solvents, the yield of glycolaldehyde tends to decrease when compared to solvent systems without amines. Large amounts of protective solvents such as water, phenols, and carboxylic acids, such as acetic acid, such as greater than about 30-40% by volume, have a similar negative effect on glycolaldehyde yield. In most cases, a decrease in glycolaldehyde yield results in an increase in methanol yield; in some cases, formaldehyde conversion decreases, reducing both yields. Therefore, basic amines or large amounts of protective solvents should generally be avoided, especially in the reactions of this invention if optimum yields of glycolaldehyde and ethylene glycol and minimal yields of methanol are desired. Conversely, some solvent systems exhibit high selectivity for glycolaldehyde and ethylene glycol production. Also, substantially low yields of methanol are often obtained. In particular, solvents such as organic amides are preferred because they exhibit high selectivity for glycolaldehyde and ethylene glycol formation, often resulting in substantially lower yields of methanol. Hydrocarbon solvents can also be used but result in lower yields of glycolaldehyde and ethylene glycol than better solvents. Preferred solvents are aprotic organic amides. Possible amides include cyclic amides in which the amide group is part of the ring structure, such as in pyrrolidines and piperidones; N-acylpiperidines, pyrroles, pyrrolidines, piperazines, morpholins, etc. acylated cyclic amines, or those whose acyl group is derived from a lower alkanoic acid, such as acetic acid; and amide groups such as in acetamides, formamides, propionamides, caproamides, There are acyclic amides that are not part of the structure. The most preferred amides are those in which the amide hydrogen atoms are fully substituted with hydrocarbon groups having up to 8 carbon atoms. Hydrocarbon groups include alkyl, lower alkyl such as methyl, ethyl, and butyl;
aralkyls such as benzyl and phenethyl; cycloalkyls such as cyclopentyl and cyclohexyl; and alkenyls such as allyl and pentenyl. Preferred amide nitrogen substituents are lower alkyl, especially methyl, ethyl and propyl groups and aralkyl, especially benzyl. The most preferred amide solvent is 1-methylpyrrolidine-2-
1-ethylpyrrolidin-2-one, 1-benzylpyrrolidin-2-one, N,N-diethylacetamide, and N,N-diethylpropionamide. Nitrile solvents include all organic nitriles containing up to about 8 carbon atoms, such as acetonitrile, benzonitrile, phenylacetonitrile, capronitrile, and the like. Solvent mixtures can also be used. When solvents containing basic nitrogen are used, the use of rhodium carbonyl complexes with ligands containing basic nitrogen is generally associated with lower selectivity for ethylene glycol production and usually increased methanol production. Catalysts containing coordinations with basic nitrogens are generally avoided as this reduces the desired ethylene glycol production. Ligands with oxygen appear to give better results in terms of ethylene glycol yield and are therefore preferred over the aforementioned ligands with basic nitrogen. Rhodium complex salt formed with acetylacetonate anion, Rh
(CO 2 )(C 5 H 7 O 2 ) and hexalodium hexadicarbonyl, Rh 6 (CO) 16 give the best results and are most preferred as they are easily available or manufactured. Reaction pressure refers to the pressure of all the gases contained within the reactor, ie, carbon monoxide and hydrogen, and any inert diluent gases such as nitrogen. In gas systems, the total pressure is the sum of the partial pressures of the component gases. In this reaction, the molar ratio of hydrogen to carbon monoxide is in the range of about 1/10 to about 10/1, preferably about 1/5 to about 5/1, and the reaction pressure is the pressure of these gases in the reactor. Adjust it to make it suitable. For best results, the molar ratio of carbon monoxide to hydrogen is kept high in the reaction of the present invention, where a high partial pressure of carbon monoxide favors the formation of glycolaldehyde. In the second stage reaction for producing ethylene glycol, a high partial pressure of hydrogen is desirable for the reduction reaction. Therefore, in the reaction of the present invention to produce glycolaldehyde, the partial pressure of carbon monoxide is usually adjusted to about 3 to about 10 times that of hydrogen. In the second stage hydrogenation reaction, the partial pressure of hydrogen is adjusted to a high value that promotes the reaction. This adjustment of the feed gas is easily carried out, for example by lowering the pressure in the reactor after the completion of the reaction according to the invention and then increasing the hydrogen gas pressure to obtain a high partial pressure of hydrogen. The carbon monoxide in the gas system of the reaction of the present invention does not need to be completely evacuated from the reactor before raising the hydrogen gas pressure. Of course, carbon monoxide is known to possibly poison some catalyst systems, reducing their effectiveness, so it is better to vent the carbon monoxide when using such catalyst systems. If the second phase reaction is carried out in a separate reactor, whether over the initial rhodium catalyst or over other metal hydrogenation catalysts, the reaction is carried out under hydrogen gas without diluent gas as in ordinary catalytic hydrogenation reactions. This is usually done. The formaldehyde source of the present invention can be any commonly used in this process, including paraformaldehyde, methylal, formalin solution, and polyoxymethylenes. Of these, paraformaldehyde is preferred because it provides the best results. A solution of formaldehyde in a solvent (conveniently the solvent is the reaction solvent), for example a solution of formaldehyde in an aqueous reaction solvent such as N-methyl-pyrrolidin-2-one, can be used. Use of methylal reduces ethylene glycol yield. If trioxane is used because of its good stability, it is necessary to use a hydrolyzing agent due to the release of formaldehyde. As with all processes of this type, the process of the invention can be operated in batch, quasi-continuous and continuous processes. The reactor must be constructed of materials that can withstand the temperatures and pressures used and the interior surfaces of the reactor must be substantially inert. Attach a normal regulating device such as a heat exchanger to regulate the reaction. The reactor is subject to vibration, agitation, stirring,
It is necessary to provide a mixing device for the reaction mixture using vibration or the like. The first or second stage reactor can be accessed at any time during operation to replenish catalyst and reactants. The recovered catalyst, solvent and unreacted raw materials can be recycled. The relative yields of ethylene glycol and methanol do not require much precision since the product mixture can be easily separated into its components by known methods, especially fractional distillation, regardless of their proportions in the mixture. Therefore, even if ethylene glycol is 10-20% of the reaction mixture, it can be easily separated from the mixture, especially in continuous ethylene glycol production processes, and the methanol can be recycled as formaldehyde. The reaction time is at least about 100 to obtain a suitable reaction rate.
C., although somewhat lower reaction temperatures may be used to obtain lower reaction rates. Approximately 1
For reaction times of hours or less, the temperature is approximately 100
The temperature should be from about 175°C to about 175°C, preferably from about 120 to about 140°C. It is better for the partial pressure of carbon monoxide to be higher than the partial pressure of hydrogen, and the ratio is about 2:1 to about 10:
1 is preferable, and about 3:1 to about 8:1 is more preferable. The total pressure of the gas used is generally about 1000 to about
Maintained at 9000 psi, preferably from about 3000 to about 7000 psi. Of course, higher temperatures and pressures can be used, but are usually avoided as they do not offer any corresponding benefits and require special high pressure equipment. Example 1 A stainless steel reaction vessel with a glass liner of 71 ml capacity was charged with the following reaction mixture: Rh(CO) 2 (C 7 H 5 O 2 ) 2.5 mmol 95% paraformaldehyde 237 mmol H 2 O 5 ml N-Methylpyrrolidinone 114 ml Container pressure 2500 psi (P CO = 2000 psi and P H2 =
500 psi) and then heated and stirred at 130°C and 1750 rpm. Samples were taken every 15 minutes and analyzed, and the results are as follows. (concentration = mmol)

【表】 最終反応液中にあるアルデヒド類はホルムアル
デヒドとグリコールアルデヒドとして同定され他
のアルデヒド又はカルボキシル化合物は検出され
なかつた。グリコールアルデヒドは反応混合物か
ら例えば蒸留によつて分離出来るしあるいは反応
混合物は実施例2のとおり第2段反応に使用出来
る。この方法を160℃で反復した場合、初めの30
分を過ぎるとグリコールアルデヒド収量は実質的
に低下する。この方法を低い全圧(PCO=2000psi
およびPH2=500psi)で反復すればグリコールア
ルデヒドの収量低下は僅かである。 実施例 2 実施例1の方法を反復した、但し第1段反応は
1時間後に終らせ容器からガスを排出して圧力を
下げた後水素が全ガスの80モル%となる様水素で
5000psiにした。次いで第2段反応を進行させ15
分毎に試料をとり分析した結果は次のとおりであ
る。(濃度はミリモル)
[Table] The aldehydes in the final reaction solution were identified as formaldehyde and glycolaldehyde, and no other aldehydes or carboxyl compounds were detected. The glycolaldehyde can be separated from the reaction mixture, for example by distillation, or the reaction mixture can be used in the second stage reaction as in Example 2. If this method is repeated at 160°C, the first 30
The glycolaldehyde yield decreases substantially after 50 minutes. This method can be used at low total pressure (P CO = 2000psi
and P H2 =500 psi), the yield loss of glycolaldehyde is slight. Example 2 The method of Example 1 was repeated, except that the first stage reaction was completed after 1 hour, and after the gas was evacuated from the vessel and the pressure was lowered, hydrogen was added so that the hydrogen amounted to 80 mol% of the total gas.
I set it to 5000psi. Then proceed with the second stage reaction 15
Samples were taken and analyzed every minute, and the results are as follows. (concentration is mmol)

【表】 実験2において水素添加を始める前反応混合物
に氷酢酸10mlを加えた。試験3では水素添加開始
にあたり水20mlを加えた。 実施例 3 圧力容器に次の混合物を入れた: N―メチルピロリジノン 4ml 95%パラホルムアルデヒド 7.58ミリモル Rh(CO)2(C7H5O2) 0.7ミリモル 容器をCO(80モル%)とH2(20モル%)で
4000psiとし130℃で90分加熱した。 生成物分析は次のとおりであつた: MeOH 1.2ミリモル H2CO 0.5ミリモル グリコールアルデヒド 4.7ミリモル 次いで反応混合物を水素で加圧してH2 75モル
%とCO 25モル%とし150℃で5時間加熱して次
の組成を得た: MeOH 2.2ミリモル エチレングリコール 3.6ミリモル 還元工程をけい藻土上0.5gニツケルを用い水
および酢酸各0.5mlを反応混合物に加えて反復し
た。得た生成物の組成は次のとおりであつた: エチレングリコール 1.4ミリモル MeOH 1.0ミリモル 高沸点残渣 この方法をニツケル触媒の代りにPd/C(5
%)を使用し反復した生成物の組成は次のとおり
であつた: エチレングリコール 1.8ミリモル MeOH 1.7ミリモル 高沸点残渣 純グリコールアルデヒドを用いPd/Cと溶媒
としてN―メチルピロリジノンを使用し水素圧
3000psi,150℃,5時間還元反応を反復した場合
エチレングリコールの殆んど定量的な収量を得
た。Pd/Cの代りにけい藻土上のニツケルを使
用するとエチレングリコールの収量は低下した。
[Table] In Experiment 2, 10 ml of glacial acetic acid was added to the reaction mixture before starting hydrogenation. In Test 3, 20 ml of water was added at the start of hydrogenation. Example 3 A pressure vessel was charged with the following mixture: N-methylpyrrolidinone 4 ml 95% paraformaldehyde 7.58 mmol Rh(CO) 2 (C 7 H 5 O 2 ) 0.7 mmol The vessel was filled with CO (80 mol%) and H 2 (20 mol%)
It was heated at 4000 psi and 130°C for 90 minutes. Product analysis was as follows: MeOH 1.2 mmol H 2 CO 0.5 mmol Glycolaldehyde 4.7 mmol The reaction mixture was then pressurized with hydrogen to 75 mol% H 2 and 25 mol% CO and heated at 150° C. for 5 hours. The following composition was obtained: MeOH 2.2 mmol Ethylene glycol 3.6 mmol The reduction step was repeated using 0.5 g nickel on diatomaceous earth and adding 0.5 ml each of water and acetic acid to the reaction mixture. The composition of the product obtained was as follows: Ethylene glycol 1.4 mmol MeOH 1.0 mmol High-boiling residue This process was carried out using Pd/C (5
The composition of the replicated product was as follows: Ethylene glycol 1.8 mmol MeOH 1.7 mmol High-boiling residue Pd/C using pure glycolaldehyde and hydrogen pressure using N-methylpyrrolidinone as solvent.
An almost quantitative yield of ethylene glycol was obtained when the reduction reaction was repeated at 3000 psi and 150° C. for 5 hours. When nickel on diatomaceous earth was used instead of Pd/C, the yield of ethylene glycol decreased.

Claims (1)

【特許請求の範囲】 1 ホルムアルデヒド、一酸化炭素および水素を
ロジウム触媒の存在下加熱加圧下に反応させるこ
とを特徴とするグリコールアルデヒドの製造法。 2 温度が100〜175℃で圧力が250〜400気圧であ
る特許請求の範囲第1項に記載の方法。 3 ロジウム触媒が一酸化炭素との複合結合の形
のロジウムより成る特許請求の範囲第1項又は第
2項に記載の方法。 4 ロジウム触媒がロジウムジカルボニルアセチ
ルアセトネートより成る特許請求の範囲第1項〜
第3項のいづれか1項に記載の方法。 5 反応がアプロテイツク有機アミドより成る反
応溶媒中で行なわれる特許請求の範囲第1項〜第
4項のいづれかに記載の方法。 6 アミドがN―低級アルキルピロリジン―2―
オンより成る特許請求の範囲第5項に記載の方
法。 7 アミドがN―メチルピロリジン―2―オンよ
り成る特許請求の範囲第6項に記載の方法。 8 アミドがN,N―ジ―低級アルキルアセトア
ミドより成る特許請求の範囲第5項に記載の方
法。 9 アミドがN,N―ジエチルアセトアミドより
成る特許請求の範囲第8項に記載の方法。
[Claims] 1. A method for producing glycolaldehyde, which comprises reacting formaldehyde, carbon monoxide and hydrogen under heat and pressure in the presence of a rhodium catalyst. 2. The method according to claim 1, wherein the temperature is 100 to 175°C and the pressure is 250 to 400 atmospheres. 3. Process according to claim 1 or 2, in which the rhodium catalyst comprises rhodium in complex combination with carbon monoxide. 4 Claims 1 to 4 in which the rhodium catalyst comprises rhodium dicarbonylacetylacetonate
The method described in any one of Section 3. 5. The method according to any one of claims 1 to 4, wherein the reaction is carried out in a reaction solvent comprising an aprotic organic amide. 6 Amide is N-lower alkylpyrrolidine-2-
6. The method of claim 5, comprising: on. 7. The method of claim 6, wherein the amide comprises N-methylpyrrolidin-2-one. 8. The method according to claim 5, wherein the amide comprises N,N-di-lower alkyl acetamide. 9. The method of claim 8, wherein the amide comprises N,N-diethylacetamide.
JP61217332A 1976-09-17 1986-09-17 Production of glycol aldehyde Granted JPS62116536A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72412676A 1976-09-17 1976-09-17
US724126 1991-07-01

Publications (2)

Publication Number Publication Date
JPS62116536A JPS62116536A (en) 1987-05-28
JPH0132214B2 true JPH0132214B2 (en) 1989-06-29

Family

ID=24909126

Family Applications (2)

Application Number Title Priority Date Filing Date
JP11060877A Granted JPS5337606A (en) 1976-09-17 1977-09-16 Method of producing ethylene glycol
JP61217332A Granted JPS62116536A (en) 1976-09-17 1986-09-17 Production of glycol aldehyde

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP11060877A Granted JPS5337606A (en) 1976-09-17 1977-09-16 Method of producing ethylene glycol

Country Status (16)

Country Link
JP (2) JPS5337606A (en)
BE (1) BE858806A (en)
BR (1) BR7706226A (en)
CA (1) CA1089877A (en)
DE (1) DE2741589C2 (en)
DK (1) DK411477A (en)
ES (1) ES462430A1 (en)
FI (1) FI772720A (en)
FR (1) FR2363538A1 (en)
GB (1) GB1585604A (en)
IE (1) IE45512B1 (en)
IT (1) IT1086478B (en)
LU (1) LU78137A1 (en)
MX (1) MX146305A (en)
NL (1) NL7710187A (en)
NO (1) NO773188L (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1089876A (en) * 1976-10-21 1980-11-18 Robert G. Wall Alcohol production
DE2861830D1 (en) * 1977-12-16 1982-07-01 Monsanto Co Hydroformylation of formaldehyde with rhodium catalyst
US4317946A (en) 1980-06-27 1982-03-02 The Halcon Sd Group, Inc. Process for producing ethylene glycol via catalytic hydrogenation of glycolaldehyde
US4321414A (en) * 1980-08-26 1982-03-23 The Halcon Sd Group, Inc. Catalytic hydrogenation of glycolaldehyde to produce ethylene glycol
US4382148A (en) * 1981-03-24 1983-05-03 Shell Oil Company Process for the preparation of glycol aldehyde
US4414421A (en) * 1981-08-03 1983-11-08 Shell Oil Company Process for the preparation of glycol aldehyde
US4496781A (en) * 1984-04-05 1985-01-29 The Halcon Sd Group, Inc. Process for the production of ethylene glycol through the hydroformylation of glycol aldehyde
US7420093B2 (en) 2006-09-29 2008-09-02 Eastman Chemical Company Process for the preparation of glycolaldehyde

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840326A (en) * 1971-09-23 1973-06-13
JPS5010276A (en) * 1973-05-31 1975-02-01
JPS5014614A (en) * 1973-06-12 1975-02-15

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2451333A (en) * 1945-04-28 1948-10-12 Du Pont Synthesis of polyhydroxy compounds
US3833634A (en) * 1971-12-21 1974-09-03 Union Carbide Corp Manufacture of polyfunctional compounds
CA1089876A (en) * 1976-10-21 1980-11-18 Robert G. Wall Alcohol production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840326A (en) * 1971-09-23 1973-06-13
JPS5010276A (en) * 1973-05-31 1975-02-01
JPS5014614A (en) * 1973-06-12 1975-02-15

Also Published As

Publication number Publication date
FR2363538B1 (en) 1983-11-18
FI772720A (en) 1978-03-18
CA1089877A (en) 1980-11-18
IT1086478B (en) 1985-05-28
MX146305A (en) 1982-06-03
BR7706226A (en) 1978-07-04
FR2363538A1 (en) 1978-03-31
JPS627177B2 (en) 1987-02-16
IE45512L (en) 1978-03-17
JPS5337606A (en) 1978-04-06
DE2741589C2 (en) 1986-10-23
NL7710187A (en) 1978-03-21
GB1585604A (en) 1981-03-11
JPS62116536A (en) 1987-05-28
BE858806A (en) 1978-03-16
NO773188L (en) 1978-03-20
IE45512B1 (en) 1982-09-08
ES462430A1 (en) 1978-06-01
DE2741589A1 (en) 1978-03-23
DK411477A (en) 1978-03-18
LU78137A1 (en) 1978-06-01

Similar Documents

Publication Publication Date Title
US4200765A (en) Glycol aldehyde and ethylene glycol processes
US4064145A (en) Production of tetrahydrofuran
JPS6010012B2 (en) Manufacturing method of ethylene glycol
US5986126A (en) Process for the production of 6-aminocapronitrile and/or hexamethylenediamine
JPH0132214B2 (en)
US4405821A (en) Process for preparing glycolaldehyde and/or ethylene glycol
EP0061791B1 (en) Process for the preparation of glycol aldehyde
US4503260A (en) Glycolaldehyde process
US4620949A (en) Process for amidocarbonylation of cyclic amides
US4590298A (en) Production of hydroxyketones from formaldehyde
US4973769A (en) Preparation of 1,2,4-butanetriol
JPS61194043A (en) Manufacture of 2-alkyl-1,4-butanedial
CA1041122A (en) Production of triethanolmethane and 3-methyl-1,5-pentanediol
EP0170830B1 (en) A process for amido carbonylation of an aldehyde to n-acetyl alpha-amino acids
US4044059A (en) One-step method for hydrolyzing and hydrogenating acetal-aldehydes
USRE32084E (en) Glycol aldehyde and ethylene glycol processes
US4414421A (en) Process for the preparation of glycol aldehyde
EP0331512B1 (en) Hydroformylation of aqueous formaldehyde using a rhodium-tricyclohexylphosphine catalyst system
KR100529763B1 (en) Production method for benzenedimethanol compound
US4806678A (en) Process for the hydroformylation of allylic esters using a cobalt catalyst
JPH0462304B2 (en)
JP2696382B2 (en) Method for producing alkanediol
JPS5846509B2 (en) New 2-methylene-3-substituted butanal and its production method
US5760275A (en) Cyanoacetals by hydroformlation of unsaturated nitriles in the presence of orthoesters
US20100145106A1 (en) Production process of nucleus-halogenated methylbenzyl alcohol