[go: up one dir, main page]

JPH01320408A - Thin film monitor using laser and film thickness measuring method - Google Patents

Thin film monitor using laser and film thickness measuring method

Info

Publication number
JPH01320408A
JPH01320408A JP15519188A JP15519188A JPH01320408A JP H01320408 A JPH01320408 A JP H01320408A JP 15519188 A JP15519188 A JP 15519188A JP 15519188 A JP15519188 A JP 15519188A JP H01320408 A JPH01320408 A JP H01320408A
Authority
JP
Japan
Prior art keywords
laser
thin film
film thickness
film
monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15519188A
Other languages
Japanese (ja)
Inventor
Noboru Otani
昇 大谷
Kazuhiko Kawamura
和彦 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15519188A priority Critical patent/JPH01320408A/en
Publication of JPH01320408A publication Critical patent/JPH01320408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子材料を始めとする薄膜作成或はエツチング
時の薄膜の膜厚の変化を測定する装置及び方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus and method for measuring changes in the thickness of thin films, including electronic materials, during production or etching.

〔従来の技術〕[Conventional technology]

従来、薄膜の膜厚を薄膜形成或はエツチング時にモニタ
ーしようとする場合、光学技術]ンタク)  Vol、
  1 1  (1973)  N(L9  Page
  l  7−2 2  (横田英嗣)に開示されてい
るように単色光での反射率あるいは透過率を測定する方
法、異なる2波長での反射率または透過率を比較する方
法、分光反射率または分光透過率を監視する方法などが
用いられていた。なかでも単色光での反射率あるいは透
過率を測定する方法は、その装置構成の簡便さなどから
広く用いられ、その場合光源としては気体レーザー(主
にl1e−Neレーザー)がその安定性、単色性、出力
強度などの点から用いられていた。
Conventionally, when trying to monitor the thickness of a thin film during thin film formation or etching, optical technology] Vol.
1 1 (1973) N(L9 Page
Methods for measuring reflectance or transmittance with monochromatic light, methods for comparing reflectance or transmittance at two different wavelengths, spectral reflectance or spectroscopy as disclosed in 7-2 2 (Hidetsugu Yokota) Methods such as monitoring transmittance were used. Among these methods, the method of measuring reflectance or transmittance using monochromatic light is widely used due to the simplicity of the device configuration. It was used in terms of performance, output strength, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来使用されていた気体レーザー(lie−Neガスレ
ーザー)の発振波長域(633n*)では薄膜の光の吸
収係数が太き(薄膜の膜厚をその気体レーザーでモニタ
ーしようとした場合、ある厚さ(たとえばアモルファス
シリコン薄膜の場合約111m)に達すると薄膜の光の
吸収係数が大きいため多重干渉の効果が弱められ膜厚の
決定が困難になるといった問題点があった。
In the oscillation wavelength range (633n*) of the conventionally used gas laser (lie-Ne gas laser), the light absorption coefficient of the thin film is large (if you try to monitor the thickness of the thin film with the gas laser, it will be difficult to detect a certain thickness). When the thickness of the thin film reaches a certain height (for example, about 111 m in the case of an amorphous silicon thin film), the light absorption coefficient of the thin film is large, which weakens the effect of multiple interference and makes it difficult to determine the film thickness.

本発明は、このような問題点に鑑み、薄膜の膜厚を2μ
m程度までモニターする技術を提供しようとするもので
ある。
In view of these problems, the present invention reduces the thickness of the thin film to 2 μm.
The aim is to provide a technology that can monitor up to m.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、薄膜形成或はエツチング装置の真空室内に設
置された基板上にレーザーを照射して薄膜の膜厚を測定
するレーザーと検出器とデジタルボルトメーターと制御
用コンピュータからなる装置において、照射するレーザ
ーの波長を700nm〜800nn+とし、薄膜形成或
はエツチングと同時にその膜厚の変化を光の多重干渉効
果によりモニターすることを特徴とする。
The present invention is an apparatus consisting of a laser, a detector, a digital voltmeter, and a control computer that measures the thickness of a thin film by irradiating a laser onto a substrate installed in a vacuum chamber of a thin film forming or etching apparatus. The wavelength of the laser used is 700 nm to 800 nm+, and the change in film thickness is monitored simultaneously with the formation or etching of a thin film by the multiple interference effect of light.

〔作 用〕[For production]

発明者等が実施例として取り上げたアモルファスシリコ
ン薄膜を例にとり、本発明の作用を詳細に説明する。発
明者等は上記課題を解決するためアモルファスシリコン
薄膜の吸収係数の波長依存性と膜厚モニターに利用する
多重干渉効果について実験と理論的検討を行なった。吸
収係数の波長依存性の測定結果の一例を第1図に示す。
The effects of the present invention will be explained in detail by taking as an example an amorphous silicon thin film that the inventors took up as an example. In order to solve the above problems, the inventors conducted experiments and theoretical studies on the wavelength dependence of the absorption coefficient of an amorphous silicon thin film and the multiple interference effect used for film thickness monitoring. An example of the measurement results of the wavelength dependence of the absorption coefficient is shown in FIG.

一般に1μm〜2μmの膜厚をモニターしようとした場
合、発明者等が行った種々の実験の結果によれば、測定
装置の光学配置にも依存するがほぼ3000cm−’以
下の吸収係数であるとl pm超の膜厚の測定が可能と
なることを見い出した。また光学系の調整を容易に行う
ためには可視光であることが必要で、以上のことを考慮
するとアモルファスシリコン薄膜のように光の吸収係数
の大きい薄膜の膜厚を1n〜2μlまでモニターしよう
とした場合、第1図から使用すべき光の波長は700n
m〜800nmの間であることが求められる。このよう
な波長範囲で発振する膜厚モニターに適当なレーザーの
代表的なものとしてA7CaAs、 GaAsP、 I
nGaAsおよびA/Ga1nPなどの半導体レーザー
を用いるのが良い。
Generally, when trying to monitor a film thickness of 1 μm to 2 μm, the absorption coefficient is approximately 3000 cm or less, depending on the optical arrangement of the measuring device, according to the results of various experiments conducted by the inventors. It has been found that it is possible to measure film thicknesses exceeding 1 pm. Also, in order to easily adjust the optical system, visible light is necessary, and considering the above, it is recommended to monitor the thickness of thin films with a large light absorption coefficient, such as amorphous silicon thin films, from 1n to 2μl. In this case, the wavelength of light to be used from Figure 1 is 700n.
The wavelength is required to be between m and 800 nm. Typical lasers suitable for film thickness monitoring that oscillate in this wavelength range include A7CaAs, GaAsP, and I.
Semiconductor lasers such as nGaAs and A/Ga1nP are preferably used.

半導体レーザーは700nm〜800nmの波長範囲で
発振可能であるが、従来その発振モード−の不安定性か
らその適用が困難とされていた。しかしながら近年の半
導体レーザー技術の進展により安定な発振が可能となり
、本発明では高い安定性を有する半導体レーザーを吸収
の強い薄膜の膜厚モニターの光源として用いた。発振波
長が700nm〜800nmの半導体レーザーを用いる
ことにより、従来の技術の測定波長域(Ile−Neレ
ーザー;633nm)では吸収係数が大きく (200
00cra−’程度)膜厚l pta程度までの測定が
困難であった薄膜でも、本発明で用いた光源の波長域で
は吸収係数が小さくなり(約3000cl’以下)膜厚
2μm程度まで充分測定可能となる。発明者等が用いた
測定装置の光学配置に対してその効果を計算すると、ア
モルファスシリコン薄膜に対して膜厚IInn及び2p
mでの全体の光量に対する多重干渉による信号強度の割
合(シグナル/バックグランド比)は、630 r++
++ (He−Neレーザー)で1 pm ; 0.0
13及び21’m i 3 X I Q−4,700n
m(半導体レーザー)で1μm ; 0.292及び2
μm;0.143となる。膜厚を正確に決定するために
は、シグナル/バックグランド比が0.1以上であるこ
とが必要で、上記の計算は発振波長700nmのレーザ
ーで膜厚2μmまで膜厚モニター可能であることを示し
ている。
Semiconductor lasers can oscillate in the wavelength range of 700 nm to 800 nm, but their application has heretofore been considered difficult due to the instability of their oscillation modes. However, recent advances in semiconductor laser technology have made stable oscillation possible, and in the present invention, a highly stable semiconductor laser is used as a light source for monitoring the thickness of a thin film with strong absorption. By using a semiconductor laser with an oscillation wavelength of 700 nm to 800 nm, the absorption coefficient is large (200 nm) in the measurement wavelength range of conventional technology (Ile-Ne laser; 633 nm).
Even for thin films that are difficult to measure up to a film thickness of about 1 pta (approx. becomes. Calculating the effect on the optical arrangement of the measuring device used by the inventors, the film thickness IInn and 2p for the amorphous silicon thin film were calculated.
The ratio of signal intensity due to multiple interference to the total light amount at m (signal/background ratio) is 630 r++
++ (He-Ne laser) at 1 pm; 0.0
13 and 21'm i 3 X I Q-4,700n
m (semiconductor laser) 1 μm; 0.292 and 2
μm: 0.143. In order to accurately determine the film thickness, the signal/background ratio must be 0.1 or more, and the above calculation shows that it is possible to monitor film thickness up to 2 μm using a laser with an oscillation wavelength of 700 nm. It shows.

さらに、副次的な効果として半導体レーザーは光強度を
電気的に容易に変化させることができるので、 ・膜形成或はエツチング過程への影響、S/N比等を考
慮した光強度の調整が容易 ・光強度変調によるモニター信号のS/N比向上向上易 また半導体レーザーが気体レーザーと比べ、小型、低コ
スト、低消費エネルギー、長寿命なため、膜厚モニター
システムが ・膜形成或はエツチング装置への取付場所等の自由度が
大きく、取付も容易、 ・低コスト、 ・管理が容易で低維持費 となった。
Furthermore, as a secondary effect, the light intensity of semiconductor lasers can be easily changed electrically, so it is possible to adjust the light intensity by taking into account the influence on the film formation or etching process, the S/N ratio, etc. Easy to improve the S/N ratio of the monitor signal by light intensity modulation Also, since semiconductor lasers are smaller, lower cost, consume less energy, and have a longer lifespan than gas lasers, film thickness monitoring systems can be used for film formation or etching. It has a high degree of freedom in terms of where it can be installed on the device, and is easy to install. ・Low cost. ・Easy to manage, resulting in low maintenance costs.

〔実施例] 第2図に本発明に用いた薄膜形成或はエツチング装置に
組み込んだ膜厚モニター装置の概略図(薄膜形成或はエ
ツチング装置に関する他の付属装置は図示していない)
を示す。半導体レーザー2としてはIV G a A 
s半導体レーザー(発振波長750nm)を用い、その
レーザー光を真空室(薄膜成長室)■に入射石英窓3を
通して導入し、基板表面(膜成長表面)4で反射させる
。その際レーザー光は薄膜による多重干渉効果及び吸収
により強度変化を受ける。強度変化を受けたレーザー光
は出射石英窓5を通って真空室外に出て検出器(シリコ
ンフォトダイオード)6に入る。検出器の出力(電流)
はデジタルボルトメータ7によりデジタル信号に変換さ
れ制御用コンピュータ8に送られる。
[Example] Fig. 2 is a schematic diagram of a film thickness monitoring device incorporated into a thin film forming or etching apparatus used in the present invention (other auxiliary devices related to the thin film forming or etching apparatus are not shown).
shows. As the semiconductor laser 2, IV Ga A
A semiconductor laser (oscillation wavelength: 750 nm) is used, and its laser light is introduced into a vacuum chamber (thin film growth chamber) through an input quartz window 3 and reflected by the substrate surface (film growth surface) 4. At this time, the laser beam undergoes intensity changes due to multiple interference effects and absorption by the thin film. The laser beam that has undergone the intensity change passes through the output quartz window 5, exits the vacuum chamber, and enters the detector (silicon photodiode) 6. Detector output (current)
is converted into a digital signal by the digital voltmeter 7 and sent to the control computer 8.

第3図に本発明をアモルファスシリコン膜(吸収係数;
633nmで1.8 X 10’ cm−’、750n
mで6.7 X 10” cn+−’)に適用した場合
の実施例を示す、縦軸は検出器(シリコンフォトダイオ
ード)の出力電流(単位;++A)を示し、横軸は堆積
時間(単位;分)(膜厚に対応)を示す。堆積時間の増
加と共に、すなわち膜厚の増加と共にフォトダイオード
の出力が多重干渉効果により周期的に変化しているのが
わかる。本実験(レーザー人射角(P偏光)  ; 7
7”、 l膜(アモルファスシリコン膜)の屈折率、 
3.43 )の場合、周期的変化の1周期に対応する膜
厚は0.114μで、従ってこの実験では約12周期(
膜厚;0.114fmの12倍〜約1、4 arm )
までシグナル/バックグランド比を大きく変化させるこ
となく膜厚が測定できたことになる。また他の結果から
本発明により膜厚が2nに達した場合にも充分膜厚モニ
ターできた。
Figure 3 shows the present invention in an amorphous silicon film (absorption coefficient;
1.8 x 10'cm-' at 633 nm, 750n
The vertical axis shows the output current (unit: ++A) of the detector (silicon photodiode), and the horizontal axis shows the deposition time (unit: ++A). minutes) (corresponding to the film thickness). It can be seen that as the deposition time increases, that is, as the film thickness increases, the output of the photodiode changes periodically due to the multiple interference effect. Angle (P polarization); 7
7”, refractive index of l film (amorphous silicon film),
3.43), the film thickness corresponding to one period of periodic change is 0.114μ, so in this experiment, approximately 12 periods (
Film thickness: 12 times of 0.114fm to approximately 1.4 arm)
This means that the film thickness could be measured without significantly changing the signal/background ratio. Further, other results show that the present invention was able to adequately monitor the film thickness even when the film thickness reached 2n.

〔発明の効果〕〔Effect of the invention〕

本発明の効果を以下にまとめると、発振波長が可視光域
で且つできるだけ長波長の700nm〜800n−の半
導体レーザーを膜厚モニターの光源として用いた結果、 l)従来の技術の測定波長域(例えばHe−Neレーザ
−S630nm)で吸収係数の大きい薄膜の膜厚を約2
μmまで光学系の調整が容易に行える可視光域で測定で
きるようになった。
To summarize the effects of the present invention, as a result of using a semiconductor laser with an oscillation wavelength in the visible light range and as long as possible in the wavelength range of 700 nm to 800 nm as a light source for the film thickness monitor, l) the measurement wavelength range of the conventional technology ( For example, with a He-Ne laser (S630 nm), the thickness of a thin film with a large absorption coefficient is approximately 2
It is now possible to measure in the visible light range, where the optical system can be easily adjusted down to μm.

さらに、副次的な結果として 2) 光強度を電気的に容易に変化させることができる
ので、 ■膜形成或はエツチング過程への影響、S/N比等を考
慮した光強度の調整が容易 ■光強度変調によるモニター信号のS/N比向上向上易 また、 3) 半導体レーザーが気体レーザーと比べ、小型、低
コスト、低消費エネルギー、長寿命なため、膜厚モニタ
ーシステムが ■膜形成或はエツチング装置への取付場所等の自由度が
大きく、取付も容易、 ■低コスト、 ■管理が容易で低維持費 となるなどの効果がある。
Furthermore, as a secondary result, 2) since the light intensity can be easily changed electrically, it is easy to adjust the light intensity taking into account the influence on the film formation or etching process, the S/N ratio, etc. ■It is easy to improve the S/N ratio of the monitor signal by light intensity modulation. 3) Compared to gas lasers, semiconductor lasers are smaller, lower cost, consume less energy, and have a longer lifespan. It has the following effects: it has a large degree of freedom in terms of where it can be installed on the etching device, it is easy to install, ■ it is low cost, and ■ it is easy to manage and has low maintenance costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で取り上げたアモルファスシリ
コン薄膜の吸収係数の波長依存性を示すグラフで、縦軸
はアモルファスシリコン薄膜の吸収係数(単位;cm−
’)を表し、横軸は光の波長(単位; nm)を表す。 曲線は光の波長の増加に伴う吸収係数の減少番表してお
り、633nm 、700n+a、750nm 、80
0nmでの吸収係数はそれぞれ1.8×10’ 、3.
IXLO’ 、6.7XIO”、3.3X10”である
。 第2図は本発明で用いた膜厚モニター装置の概略図で、
1は真空室(膜成長室)、2は半導体レーザー(#JG
aAs半導体レーザー;し50nm)、3は入射石英窓
、4は基板、5は出射石英窓、6は検出器(シリコンフ
ォトダイオード)、7はデジタルボルトメータ、8は制
御用コンピュータを示す。 第3図は検出器(シリコンフォトダイオード)の出力電
流と堆積時間(膜厚に対応)との関係を示す図で、縦軸
は゛検出器の出力電!(単位;mA)を表し、横軸は堆
積時間(単位;分)を表す。曲線は膜厚増加に伴う出力
電流の周期的変化(1周期=膜厚0.114μm)を表
している。 フオhダイオーp震方し出力(mA)
FIG. 1 is a graph showing the wavelength dependence of the absorption coefficient of the amorphous silicon thin film taken up in the examples of the present invention. The vertical axis is the absorption coefficient (unit: cm-) of the amorphous silicon thin film.
'), and the horizontal axis represents the wavelength of light (unit: nm). The curve shows the decrease in the absorption coefficient as the wavelength of light increases: 633nm, 700n+a, 750n+a, 80nm.
The absorption coefficients at 0 nm are 1.8×10' and 3.
IXLO', 6.7XIO", 3.3X10". Figure 2 is a schematic diagram of the film thickness monitoring device used in the present invention.
1 is a vacuum chamber (film growth chamber), 2 is a semiconductor laser (#JG
aAs semiconductor laser (50 nm), 3 is an incident quartz window, 4 is a substrate, 5 is an output quartz window, 6 is a detector (silicon photodiode), 7 is a digital voltmeter, and 8 is a control computer. Figure 3 is a diagram showing the relationship between the output current of the detector (silicon photodiode) and the deposition time (corresponding to film thickness), where the vertical axis is the output current of the detector! (unit: mA), and the horizontal axis represents deposition time (unit: minutes). The curve represents a periodic change in the output current as the film thickness increases (1 cycle = film thickness 0.114 μm). Fo-h-diode-p shivering output (mA)

Claims (2)

【特許請求の範囲】[Claims] (1)薄膜形成或はエッチング装置の真空室内に設置さ
れた基板上にレーザーを照射して薄膜の膜厚を測定する
レーザーと検出器とデジタルボルトメータと制御用コン
ピュータからなる装置において、照射するレーザーの波
長を700nm〜800nmとすることを特徴とするレ
ーザーを使った膜厚モニター。
(1) Measure the thickness of a thin film by irradiating a laser onto a substrate installed in the vacuum chamber of a thin film forming or etching device. A film thickness monitor using a laser, characterized in that the wavelength of the laser is 700 nm to 800 nm.
(2)特許請求の範囲第1項記載の膜厚モニターを用い
て薄膜形成或はエッチングと同時にその膜厚の変化を光
の多重干渉効果によりモニターすることを特徴とするレ
ーザーを使った膜厚測定方法。
(2) Film thickness using a laser, characterized in that the film thickness monitor according to claim 1 is used to monitor changes in film thickness simultaneously with thin film formation or etching using the multiple interference effect of light. Measuring method.
JP15519188A 1988-06-23 1988-06-23 Thin film monitor using laser and film thickness measuring method Pending JPH01320408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15519188A JPH01320408A (en) 1988-06-23 1988-06-23 Thin film monitor using laser and film thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15519188A JPH01320408A (en) 1988-06-23 1988-06-23 Thin film monitor using laser and film thickness measuring method

Publications (1)

Publication Number Publication Date
JPH01320408A true JPH01320408A (en) 1989-12-26

Family

ID=15600481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15519188A Pending JPH01320408A (en) 1988-06-23 1988-06-23 Thin film monitor using laser and film thickness measuring method

Country Status (1)

Country Link
JP (1) JPH01320408A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020254A1 (en) * 1994-01-20 1995-07-27 Seiko Epson Corporation Surface emission type semiconductor laser, method and apparatus for producing the same
EP0666337A1 (en) * 1994-01-28 1995-08-09 Applied Materials, Inc. Method and apparatus for measuring the deposition rate of opaque films
US5724145A (en) * 1995-07-17 1998-03-03 Seiko Epson Corporation Optical film thickness measurement method, film formation method, and semiconductor laser fabrication method
US5754297A (en) * 1994-01-28 1998-05-19 Applied Materials, Inc. Method and apparatus for monitoring the deposition rate of films during physical vapor deposition
KR101288131B1 (en) * 2011-03-29 2013-07-19 주식회사 에스에프에이 Glass deposition apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020254A1 (en) * 1994-01-20 1995-07-27 Seiko Epson Corporation Surface emission type semiconductor laser, method and apparatus for producing the same
US5621750A (en) * 1994-01-20 1997-04-15 Seiko Epson Corporation Surface emission type semiconductor laser, method and apparatus for producing the same
KR100363503B1 (en) * 1994-01-20 2003-02-05 세이코 엡슨 가부시키가이샤 Surface-emitting semiconductor laser and its manufacturing method
EP0666337A1 (en) * 1994-01-28 1995-08-09 Applied Materials, Inc. Method and apparatus for measuring the deposition rate of opaque films
US5754297A (en) * 1994-01-28 1998-05-19 Applied Materials, Inc. Method and apparatus for monitoring the deposition rate of films during physical vapor deposition
US5724145A (en) * 1995-07-17 1998-03-03 Seiko Epson Corporation Optical film thickness measurement method, film formation method, and semiconductor laser fabrication method
KR101288131B1 (en) * 2011-03-29 2013-07-19 주식회사 에스에프에이 Glass deposition apparatus

Similar Documents

Publication Publication Date Title
CN100451608C (en) Optical sensor for thin film detection
US4454001A (en) Interferometric method and apparatus for measuring etch rate and fabricating devices
US4906844A (en) Phase sensitive optical monitor for thin film deposition
US5350236A (en) Method for repeatable temperature measurement using surface reflectivity
US5409538A (en) Controlling method of forming thin film, system for said controlling method, exposure method and system for said exposure method
CN101515558A (en) Method for on-line detection of film growth rate and stress
US5467732A (en) Device processing involving an optical interferometric thermometry
JPWO2013018197A1 (en) Temperature measuring method and temperature measuring device for semiconductor layer
Kunz et al. Grating couplers in tapered waveguides for integrated optical sensing
JPH01320408A (en) Thin film monitor using laser and film thickness measuring method
US5472505A (en) Apparatus for monitoring films during MOCVD
US5364187A (en) System for repeatable temperature measurement using surface reflectivity
EP0545302A1 (en) Method and apparatus for monitoring oxide superconducting film
Pickering Correlation of in situ ellipsometric and light scattering data of silicon-based materials with post-deposition diagnostics
CN101413827A (en) Method for detecting laser wavelength by Goos-Hanchen displacement characteristic
JPS5948786B2 (en) Molecular beam crystal growth method
JP2001165628A (en) Film thickness measuring device
JPH0494533A (en) Detection of film thickness to be etched, film thickness detector, and etcher
Maracas et al. Ellipsometry for III–V epitaxial growth diagnostics
JPH0346386A (en) Thickness controlling method and device for reflection preventive film
JPS5948928A (en) Weakly absorbent thin film thickness adjustment device
JPS619575A (en) Method and device for forming thin film
EP0652304A1 (en) Film forming method and apparatus for carrying out the same
JP2970020B2 (en) Method of forming coating thin film
Guidotti et al. Nulling optical bridge for nonintrusive temperature measurements