JPH01316186A - Ground simulation testing device for manipulator for space - Google Patents
Ground simulation testing device for manipulator for spaceInfo
- Publication number
- JPH01316186A JPH01316186A JP63148254A JP14825488A JPH01316186A JP H01316186 A JPH01316186 A JP H01316186A JP 63148254 A JP63148254 A JP 63148254A JP 14825488 A JP14825488 A JP 14825488A JP H01316186 A JPH01316186 A JP H01316186A
- Authority
- JP
- Japan
- Prior art keywords
- manipulator
- workpiece
- force
- worked
- torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
- Manipulator (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、宇宙空間において使用されるマニピュレー
タの地上模擬試験装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a ground simulation test device for a manipulator used in outer space.
(従来の技術)
従来、宇宙用マニピユレータの地上模擬試験装置として
は、第3図に示すように、ペイロードと称する被作業体
1及びマニピュレータ2をエアパッド等の浮上機構3で
それぞれ基板面より浮上させ、これら被作業体1及びマ
ニピュレータ2の水平面内における摩擦を少なくするこ
とにより、宇宙空間と略同様の無重力環境を模擬する方
法が採られていた。(Prior Art) Conventionally, as shown in FIG. 3, a ground simulation test device for a space manipulator has been designed to levitate a workpiece 1 called a payload and a manipulator 2 above a substrate surface using a levitation mechanism 3 such as an air pad. A method has been adopted in which a zero gravity environment substantially similar to outer space is simulated by reducing the friction between the workpiece 1 and the manipulator 2 in the horizontal plane.
しかしながら、上記地上模擬試験装置では、その浮上機
構3により被作業体1及びマニピュレータ2を浮上させ
て摩擦力を少なくするにより、無重力環境を模擬してい
るために、正確な無重力環境試験が困難で、その信頼性
が低いという問題を有してい。また、これによれば、被
作業体1の質量が大きくなると、その摩擦力が無視でき
なくなるため、適用することが困難となるという問題も
有していた。However, in the above-mentioned ground simulation test device, the workpiece 1 and manipulator 2 are levitated by the levitation mechanism 3 to reduce frictional force, thereby simulating a zero-gravity environment, making it difficult to conduct accurate zero-gravity environment tests. , which has the problem of low reliability. Further, according to this method, when the mass of the workpiece 1 becomes large, the frictional force cannot be ignored, so that it becomes difficult to apply the method.
(発明が解決しようとする課題)
以上述べたように、従来の宇宙用マニピュレ−夕の地上
模擬試験装置では、正確な無重力環境試験が困難で、信
頼性が低くいと共に、質量が大きいものに適用すること
が困難であるという問題を有していた。(Problems to be Solved by the Invention) As described above, with the conventional ground simulation test equipment for space manipulators, it is difficult to perform accurate weightless environment tests, the reliability is low, and the mass of the space manipulator is large. The problem was that it was difficult to apply.
この発明は上記の事情に鑑みてなされたもので、簡易な
構成で、かつ、信頼性の高い無重力環境試験を実現し得
るようにした宇宙用マニピュレータの無重力模擬試験装
置を提供することを目的とする。This invention was made in view of the above circumstances, and the purpose is to provide a zero-gravity simulation test device for a space manipulator that has a simple configuration and is capable of realizing a highly reliable zero-gravity environment test. do.
[発明の構成]
(課題を解決するための手段)
この発明はマニピュレータを基板面より浮上する第1の
浮上手段と、前記マニピュレータに保持される被作業体
を前記基板面より浮上させる第2の浮上手段と、前記マ
ニピュレータにより前記被作業体に付与される力・トル
クを検出する検出手段と、この検出手段で検出した力・
トルクより前記被作業体の無重力環境における運動を演
算して求める演算手段と、この演算手段で求めた演算値
に対応して前記被作業体を駆動する駆動手段とを備えて
宇宙用マニピュレータの地上模擬試験装置を構成したも
のである。[Structure of the Invention] (Means for Solving the Problem) The present invention includes a first floating means for floating a manipulator above a substrate surface, and a second floating means for floating a workpiece held by the manipulator above the substrate surface. a floating means, a detection means for detecting the force/torque applied to the workpiece by the manipulator, and a detection means for detecting the force/torque applied to the workpiece by the manipulator;
The space manipulator is equipped with a calculation means for calculating the motion of the workpiece in a weightless environment from torque, and a drive means for driving the workpiece in accordance with the calculated value obtained by the calculation means. This is a mock test device.
(作用)
上記構成によれば、マニピュレータにより模擬用被作業
体に力・トルクが付与れると、模擬用被作業体は、駆動
手段を介して付与された力・トルクに対応した無重力環
境と略同様の運動が行われる。従って、マニピュレータ
は、その力・トルクに対応した無重力環境と略同様の駆
動状態が模擬用被作業体を介して確保され、正確な地上
模擬試験が実現できる。(Function) According to the above configuration, when a force/torque is applied to the simulated workpiece by the manipulator, the simulated workpiece moves into a zero gravity environment corresponding to the force/torque applied via the drive means. A similar exercise is performed. Therefore, the manipulator is ensured through the simulating workpiece that a driving state substantially similar to that in a zero-gravity environment corresponding to the force and torque of the manipulator is achieved, and an accurate ground simulation test can be realized.
(実施例)
以下、この発明の実施例について、図面を参照して詳細
に説明する。(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第1図はこの発明の一実施例に係る宇宙用マニピュレー
タの地上模擬試験装置を示すもので、ペイロードと称す
る被作業体の模擬用被作業体10は、?”f上機構11
を介して基板上に浮上自在に配置される。この模擬用被
作業体10は、駆動機構部12に着脱自在に装着される
。この駆動機構部12は、例えば回転機IN 12 a
、矢印A、B方向駆動用の第1の並進機構12a及び
矢印C,D方向駆動用の第2の並進機構12bで構成さ
れ、模擬用被作業体10を2次元的に駆動制御する。FIG. 1 shows a ground simulation test device for a space manipulator according to an embodiment of the present invention, in which a workpiece 10 for simulating a workpiece called a payload is ? "f upper mechanism 11
It is arranged so that it can float freely on the substrate via the substrate. This simulating workpiece 10 is detachably attached to the drive mechanism section 12. This drive mechanism section 12 includes, for example, a rotating machine IN 12 a
, a first translation mechanism 12a for driving in the directions of arrows A and B, and a second translation mechanism 12b for driving in the directions of arrows C and D, and drives and controls the simulated workpiece 10 two-dimensionally.
また、模擬用被作業体10には、マニピュレータ保持用
の被保持部10aが形成され、この被保持部10には力
・トルクセンサ13が設けられる。Further, a held part 10a for holding the manipulator is formed on the simulating workpiece 10, and a force/torque sensor 13 is provided on this held part 10.
そして、模擬用被作業体10の被保持部10aには試験
用マニピュレータ14が取付けられる。このマニピュレ
ータ14は浮上機構15を介して浮上自在に基板上に設
けられ、図示しない操作部により選択的に駆動される。A test manipulator 14 is attached to the held portion 10a of the simulated workpiece 10. This manipulator 14 is provided on the substrate so that it can float freely via a floating mechanism 15, and is selectively driven by an operation section (not shown).
さらに、力・トルクセンサ13の出力端には第2図に示
すように、演算部16に接続される。この演算部16は
入力した力・トルク信号より、予め設定された模擬用被
作業体10のダイナミックスに対応して駆動指令信号を
演算して求めて駆動制御部17に出力する。この駆動制
御部17は上記駆動機構部12に接続されており、入力
した駆動指令信号に対応した駆動信号を上記駆動機構部
12の回転機構12a1第1及び第2の並進機構12b
、12cに出力して模擬用被作業体10を無重力環境と
略同様の運動を行ないせしめる。この際、上記駆動制御
部17は、その駆動信号の利得が駆動機構部12の図示
しないセンサからの回転角信号、並進信号に対応して調
整される。Furthermore, the output end of the force/torque sensor 13 is connected to a calculation section 16, as shown in FIG. The calculation section 16 calculates and obtains a drive command signal based on the input force/torque signals in accordance with the dynamics of the simulated workpiece 10 set in advance, and outputs the signal to the drive control section 17 . This drive control section 17 is connected to the drive mechanism section 12, and transmits a drive signal corresponding to the input drive command signal to the rotation mechanism 12a1 and the first and second translation mechanisms 12b of the drive mechanism section 12.
, 12c to cause the simulated workpiece 10 to perform movements substantially similar to those in a zero gravity environment. At this time, the gain of the drive signal of the drive control section 17 is adjusted in accordance with a rotation angle signal and a translation signal from a sensor (not shown) of the drive mechanism section 12.
上記構成において、マニピュレータ14の無重力試験を
行なう場合は、先ず、模擬用被作業体10及びマニピュ
レータ14を浮上機構11及び15を介して浮上させた
後、マニピュレータ14が図示しない操作部を介して駆
動される。すると、模擬用被作業体10の力・トルクセ
ンサ13は、マニピュレータ14の作動にともない模擬
用被作業体10に付与される力・トルクを検出して、そ
の力・トルク信号を演算部16に出力する。ここで、演
算部16は上述したように、予め設定されている所望の
被作業体に対応したダイナミックスを演算して模擬用被
作業体10の無重力環境における運動を求めて、その運
動に対応した駆動指令信号を駆動制御部17に出力する
。この駆動制御部17は、入力した駆動指令信号に対応
した駆動信号を駆動機構部12の回転機構12a、第1
及び第2の並進機構12b、12cに出力して駆動制御
し、模擬用被作業体10を無重力環境と同様に駆動させ
る。これにより、マニピュレータ14は、無重力環境と
同様の動作が模擬される。In the above configuration, when performing a zero-gravity test on the manipulator 14, first, the simulated workpiece 10 and the manipulator 14 are levitated via the levitation mechanisms 11 and 15, and then the manipulator 14 is driven via an operation section (not shown). be done. Then, the force/torque sensor 13 of the simulated workpiece 10 detects the force/torque applied to the simulation workpiece 10 as the manipulator 14 operates, and sends the force/torque signal to the calculation unit 16. Output. Here, as described above, the calculation unit 16 calculates the dynamics corresponding to the desired workpiece set in advance, determines the motion of the simulated workpiece 10 in a weightless environment, and responds to the movement. The generated drive command signal is output to the drive control section 17. The drive control section 17 transmits a drive signal corresponding to the input drive command signal to the rotation mechanism 12a of the drive mechanism section 12, the first
The output signal is output to the second translation mechanisms 12b and 12c for drive control, and the simulated workpiece 10 is driven in the same way as in a zero gravity environment. This simulates the operation of the manipulator 14 similar to that in a zero gravity environment.
なお、上記演算部16は、図示しない切換え手段により
、試験をするための被作業体の質量特性パラメータが可
変設定可能に構成され、質量の異なった各種の被作業体
の無重力環境における運動を演算して求め、各種の質量
特性に対応した駆動指令信号を生成する。The calculation unit 16 is configured such that the mass characteristic parameters of the workpiece to be tested can be variably set by a switching means (not shown), and calculates the motion of various workpieces with different masses in a weightless environment. and generate drive command signals corresponding to various mass characteristics.
このように、上記宇宙用マニピュレータの地」二模擬試
験装置は、マニピュレータ14により模擬用被作業体1
0に付与される力・トルクを検出して無重力環境におけ
る運動を演算して求め、その演算値に対応して模擬用被
作業体10を駆動制御して、その力・トルクに対応した
無重力環境におけるマニピュレータ14の運動を模擬用
被作業体10を介して模擬するように構成したことによ
り、その力・トルクに対応した無重力環境と略同様の駆
動状態が確保されるため、信頼性の高い地上模擬試験が
実現できる。また、これによれば、質量の異なる被作業
体を演算部16の質量特性のパラメータを可変設定する
だけで、適用することができることにより、簡便な取扱
いも確保することができると共に、質量の大きいものか
ら小さいものまでの被作業体を用いたマニピュレータの
地」二模擬試験を正確に行なうことができる。In this manner, the above-mentioned space manipulator base 2 simulation test device allows the manipulator 14 to move the simulating workpiece 1
Detect the force/torque applied to zero gravity, calculate the motion in a zero gravity environment, drive and control the simulated workpiece 10 according to the calculated value, and create a zero gravity environment corresponding to the force/torque. By simulating the movement of the manipulator 14 through the simulating workpiece 10, a driving state approximately similar to that in a zero-gravity environment corresponding to the force/torque can be ensured. Mock exams are possible. Further, according to this, it is possible to apply workpieces with different masses by simply variably setting the parameters of the mass characteristics of the calculation unit 16, thereby ensuring easy handling, and It is possible to accurately conduct simulation tests of manipulators using workpieces ranging from small to small objects.
なお、この発明は上記実施例に限ることなく、その他、
この発明の要旨を逸脱しない範囲で種々の変形を実施し
得ることは勿論のことである。Note that this invention is not limited to the above embodiments, but also includes
It goes without saying that various modifications can be made without departing from the spirit of the invention.
[発明の効果]
以上詳述したように、この発明によれば、簡易な構成で
、かつ、信頼性の高い無重力環境試験を実現し得るよう
にした宇宙用マニピュレータの無重力模擬試験装置を提
供することができる。[Effects of the Invention] As detailed above, according to the present invention, there is provided a zero-gravity simulation test device for a space manipulator that has a simple configuration and is capable of realizing a highly reliable zero-gravity environment test. be able to.
第1図はこの発明の一実施例に係る宇宙用マニピュレー
タの地上模擬試験装置を示す+14成図、第2図は第1
図の制御系を示すブロック図、第3図は従来の宇宙用マ
ニピュレータの地上模擬試験装置を示す構成図である。
10・・・模擬用被作業体、10a・・・保持部、11
゜15・・・浮上機構、12・・・駆動機構部、12a
・・・回転機構、12b、12c・・・第1及び第2の
並進機構、13・・・力・トルクセンサ、14・・・マ
ニピュレータ、16・・・演算部、17・・・駆動制御
部。
出願人代理人 弁理士 鈴江武彦
第2図
第3v!JFIG. 1 is a +14 diagram showing a ground simulation test device for a space manipulator according to an embodiment of the present invention, and FIG.
FIG. 3 is a block diagram showing a control system, and FIG. 3 is a configuration diagram showing a conventional ground simulation test device for a space manipulator. 10...Simulation workpiece, 10a...Holding part, 11
゜15... Levitation mechanism, 12... Drive mechanism section, 12a
... Rotation mechanism, 12b, 12c... First and second translation mechanism, 13... Force/torque sensor, 14... Manipulator, 16... Calculation section, 17... Drive control section . Applicant's agent Patent attorney Takehiko Suzue Figure 2, Figure 3v! J
Claims (1)
、前記マニピュレータに保持される被作業体を前記基板
面より浮上させる第2の浮上手段と、前記マニピュレー
タにより前記被作業体に付与される力・トルクを検出す
る検出手段と、この検出手段で検出した力・トルクより
前記被作業体の無重力環境における運動を演算して求め
る演算手段と、この演算手段で求めた演算値に対応して
前記被作業体を駆動する駆動手段とを具備したことを特
徴とする宇宙用マニピュレータの地上模擬試験装置。a first floating means for floating a manipulator above a substrate surface; a second floating means for floating a workpiece held by the manipulator above the substrate surface; and a force applied to the workpiece by the manipulator. a detection means for detecting torque; a calculation means for calculating and calculating the motion of the workpiece in a weightless environment from the force/torque detected by the detection means; A ground simulation test device for a space manipulator, characterized by comprising a driving means for driving a working body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63148254A JP2635690B2 (en) | 1988-06-17 | 1988-06-17 | Ground manipulator for space manipulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63148254A JP2635690B2 (en) | 1988-06-17 | 1988-06-17 | Ground manipulator for space manipulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01316186A true JPH01316186A (en) | 1989-12-21 |
JP2635690B2 JP2635690B2 (en) | 1997-07-30 |
Family
ID=15448674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63148254A Expired - Lifetime JP2635690B2 (en) | 1988-06-17 | 1988-06-17 | Ground manipulator for space manipulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2635690B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0227887U (en) * | 1988-08-16 | 1990-02-22 | ||
JPH042600A (en) * | 1990-04-18 | 1992-01-07 | Kawasaki Heavy Ind Ltd | Zero gravity simulator |
CN103979121A (en) * | 2014-04-30 | 2014-08-13 | 清华大学 | Harmonic drive-containing space manipulator simulation device |
CN105675285A (en) * | 2016-03-23 | 2016-06-15 | 南京航空航天大学 | Spatial intelligence flexible manipulator tester |
CN108423202A (en) * | 2018-05-11 | 2018-08-21 | 天津航天机电设备研究所 | A kind of micro- low-gravity simulation device and simulation experiment method |
JP2023107213A (en) * | 2022-01-21 | 2023-08-02 | 燕山大学 | Planetary rover magnetic levitation gravity compensation experimental platform based on parallel-connected attitude adjustment |
-
1988
- 1988-06-17 JP JP63148254A patent/JP2635690B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0227887U (en) * | 1988-08-16 | 1990-02-22 | ||
JPH042600A (en) * | 1990-04-18 | 1992-01-07 | Kawasaki Heavy Ind Ltd | Zero gravity simulator |
CN103979121A (en) * | 2014-04-30 | 2014-08-13 | 清华大学 | Harmonic drive-containing space manipulator simulation device |
CN105675285A (en) * | 2016-03-23 | 2016-06-15 | 南京航空航天大学 | Spatial intelligence flexible manipulator tester |
CN105675285B (en) * | 2016-03-23 | 2018-03-02 | 南京航空航天大学 | A kind of space intelligent flexible mechanical arm experimental rig |
CN108423202A (en) * | 2018-05-11 | 2018-08-21 | 天津航天机电设备研究所 | A kind of micro- low-gravity simulation device and simulation experiment method |
CN108423202B (en) * | 2018-05-11 | 2023-09-22 | 天津航天机电设备研究所 | A micro-low gravity simulation device and simulation test method |
JP2023107213A (en) * | 2022-01-21 | 2023-08-02 | 燕山大学 | Planetary rover magnetic levitation gravity compensation experimental platform based on parallel-connected attitude adjustment |
Also Published As
Publication number | Publication date |
---|---|
JP2635690B2 (en) | 1997-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6581437B2 (en) | Motion platform and method of use | |
USRE37528E1 (en) | Direct-drive manipulator for pen-based force display | |
US5501114A (en) | Three-dimensional free motion apparatus | |
JP3123784B2 (en) | 3D shaking table | |
US6343243B1 (en) | Method for determining load parameters for a manipulator | |
CN111571563B (en) | Semi-physical simulation system and method for asteroid attachment mechanism | |
Tempel et al. | Estimating inertial parameters of suspended cable-driven parallel robots—Use case on CoGiRo | |
CN113848751A (en) | Ground simulation system of drag-free spacecraft | |
Korayem et al. | Development of ICASBOT: a cable-suspended robot’s with Six DOF | |
JP4054984B2 (en) | Robot control apparatus and control method | |
JPH01316186A (en) | Ground simulation testing device for manipulator for space | |
CN105823600A (en) | Dynamic balancing method for motion mechanism on three-axis air bearing table | |
Vertut et al. | General design criteria for manipulators | |
Makhdoomi et al. | Emulating on-orbit interactions using forward dynamics based cartesian motion | |
Plumpton et al. | Atlas motion platform mecanum wheel jacobian in the velocity and static force domains | |
Oboe et al. | Development of a water ski simulator for indoor training with proprioceptive and visual feedback | |
Meggiolaro et al. | Achieving fine absolute positioning accuracy in large powerful manipulators | |
JP3243500B2 (en) | Zero gravity simulator and arbitrary gravity simulator | |
JP3080791B2 (en) | Auxiliary device for direct teaching of manipulators | |
JPS59189416A (en) | Guidance teaching method of industrial robot | |
CN115180190A (en) | Ground simulation system and experimental method for on-orbit operation extra-cabin maintenance tool of astronaut | |
Carignan et al. | Actively controlled mock-ups for EVA training in neutral buoyancy | |
JPH05154783A (en) | Relative motion simulator | |
JPS6254303A (en) | Robot controller | |
H Korayem et al. | Design and programming a 3D simulator and controlling graphical user interface of ICaSbot, a cable suspended robot |