JPH01315492A - Method for producing high concentration coal water slurry - Google Patents
Method for producing high concentration coal water slurryInfo
- Publication number
- JPH01315492A JPH01315492A JP14571988A JP14571988A JPH01315492A JP H01315492 A JPH01315492 A JP H01315492A JP 14571988 A JP14571988 A JP 14571988A JP 14571988 A JP14571988 A JP 14571988A JP H01315492 A JPH01315492 A JP H01315492A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- oil
- surfactant
- added
- cwm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003245 coal Substances 0.000 title claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 239000002002 slurry Substances 0.000 title claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000004094 surface-active agent Substances 0.000 claims abstract description 36
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 17
- 238000010298 pulverizing process Methods 0.000 claims abstract description 7
- 239000007764 o/w emulsion Substances 0.000 claims description 3
- 239000003250 coal slurry Substances 0.000 claims 1
- 239000003921 oil Substances 0.000 abstract description 21
- 239000000295 fuel oil Substances 0.000 abstract description 17
- 239000000839 emulsion Substances 0.000 abstract description 13
- 239000003945 anionic surfactant Substances 0.000 abstract description 9
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 abstract description 4
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 abstract description 2
- 239000002245 particle Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 239000011148 porous material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Liquid Carbonaceous Fuels (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、輸送容易な低粘性の高濃度石炭水スラリーの
R進方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an R-adjustment method for a low-viscosity, high-concentration coal-water slurry that is easy to transport.
本発明の対象とする高濃度石炭水スラリー(Coal
Water Mixture、以後CWMと称する)は
、塊炭利用システムにおける輸送や貯蔵時の自然発火、
粉塵飛散などの安全上の問題を解消し、石炭を取り扱い
の容易な流体燃料に変換する方法として石油代替エネル
ギーのひとつとして発案されたものであり、実用化に最
も至近距離にある石炭流体化技術として注目されている
。Highly concentrated coal water slurry (Coal
Water Mixture (hereinafter referred to as CWM) is spontaneous ignition during transportation and storage in lump coal utilization systems.
This coal fluidization technology was developed as an energy alternative to oil as a way to solve safety problems such as dust scattering and convert coal into an easy-to-handle fluid fuel, and is the closest to practical application. It is attracting attention as
上記CWMは、粉砕した石炭と水との混合物であり、C
WMをボイラで効率よく燃焼するためにはその流動性を
損うことなく極力石炭濃度を増大する必要があり、この
際には水中での石炭粒子の分散性を高めるための界面活
性剤の添加が不可欠となっている。しかし、これら界面
活性剤が高価であるためCWMのコストアップは避けら
れず、CWMのコスト低下のためにはできるだけ少量の
添加量ですむような対策を講じなければならない。The above CWM is a mixture of pulverized coal and water, and CWM is a mixture of pulverized coal and water.
In order to efficiently burn WM in a boiler, it is necessary to increase the coal concentration as much as possible without impairing its fluidity, and in this case, it is necessary to add a surfactant to increase the dispersibility of coal particles in water. has become essential. However, since these surfactants are expensive, an increase in the cost of CWM is unavoidable, and in order to reduce the cost of CWM, measures must be taken to reduce the amount added as much as possible.
ところで、これまでCWMの製造方法としては、石炭を
水と界面活性剤の存在下で湿式粉砕して製造する方法が
用いられている。この場合、界面活性剤を石炭の粉砕中
と粉砕後に分けて添加するという二段階添加法及び界面
活性剤を粉砕経過時間ごとに分割してミル中に添加する
という分割添加法が、特、開昭58−168693号公
報、特開昭59−20390号公報に記載されている。By the way, as a method for producing CWM, a method has been used so far in which coal is wet-pulverized in the presence of water and a surfactant. In this case, a two-step addition method in which the surfactant is added separately during and after the coal is pulverized, and a divided addition method in which the surfactant is added into the mill in divided portions depending on the elapsed time of pulverization have been proposed. It is described in Japanese Patent Application Laid-Open No. 59-20390.
しかし、この方法においても、CWMの分散性に寄与し
ない石炭の細孔表面への界面活性剤の吸着を防ぐことは
むずかしい。However, even with this method, it is difficult to prevent the surfactant from being adsorbed onto the pore surface of the coal, which does not contribute to the dispersibility of CWM.
上記従来技術ではCWM中の界面活性剤の添加量の低減
に有効な界面活性剤添加方法が充分に配慮されていない
ため、前述したように、CWMの分散性に寄与しない石
炭細孔表面にまで界面活性剤が吸着し、その結果、必要
添加量以上の界面活性剤を添加しておりCWMのコスト
アップが問題であるとされている。In the above conventional technology, sufficient consideration has not been given to the method of adding surfactant that is effective in reducing the amount of surfactant added in CWM. The surfactant is adsorbed, and as a result, the amount of surfactant added is greater than the required amount, which is considered to be a problem in increasing the cost of CWM.
そこで、本発明者らは、CW Mの製造工程における界
面活性剤の添加量低減に関して、その添加方法について
鋭意検討を行った。Therefore, the present inventors conducted extensive studies on the method of adding surfactant in order to reduce the amount of surfactant added in the manufacturing process of CWM.
本発明の目的は界面活性剤の添加量を低減し。The purpose of the present invention is to reduce the amount of surfactant added.
かつCWM粘度を低減して有利なCWMを提供すること
にある。and to provide an advantageous CWM by reducing CWM viscosity.
本発明は上記課題の解決のためになされたものであり、
本発明の目的は、CWMの製造において、界面活性剤分
子によって安定化された疎水性油の油滴、すなわち第1
図に示すような疎水性油の油滴の回りに界面活性剤分子
がその極性基を水相の方に向けて配向している油滴を含
有する水中油滴型(O/W)のエマルジョンを石炭の微
粉砕時に添加することにより達成される。The present invention has been made to solve the above problems,
The object of the present invention is to use oil droplets of hydrophobic oil stabilized by surfactant molecules, i.e. the first
An oil-in-water (O/W) emulsion containing oil droplets of hydrophobic oil with surfactant molecules oriented with their polar groups toward the aqueous phase as shown in the figure. This is achieved by adding it during pulverization of coal.
CWMでは、界面活性剤が石炭の表面に疎水−結合によ
って吸着し石炭表面を帯電し、その静電反発力によって
石炭微粒子の凝集を防止し安定化する。In CWM, a surfactant is adsorbed onto the surface of coal through hydrophobic bonds, charges the surface of the coal, and its electrostatic repulsion prevents and stabilizes coal fine particles from agglomerating.
しかし、石炭表面には親水性の含酸素官能基(カルボキ
シル基、ヒドロキシル基など)及び灰分等が存在してい
るため、この部分では親水性が増し石炭と界面活性剤の
疎水結合の親和力が減少し吸着しにくくなっている。However, because the coal surface contains hydrophilic oxygen-containing functional groups (carboxyl groups, hydroxyl groups, etc.) and ash, the hydrophilicity increases in this area and reduces the affinity of the hydrophobic bond between the coal and the surfactant. This makes it difficult to absorb.
また、石炭は多くの細孔をもっている。第2図に示すよ
うに石炭を乾式粉砕して分級した各種粒径のものに界面
活性剤含有水を混合した時の平衡吸着量は粒径の影響を
うけずに一定であることから、界面活性剤分子は石炭粒
子の外表面のみでなく細孔表面にまで拡散して吸着され
ていることがわかる。しかし、この細孔内表面に吸着し
た界面活性剤は静電反発力に関係せず上記安定化に寄与
せず1石炭微粒子の凝集の防止には有効ではない。Coal also has many pores. As shown in Figure 2, the equilibrium adsorption amount when surfactant-containing water is mixed with coal of various particle sizes obtained by dry crushing and classification is constant without being affected by the particle size. It can be seen that the activator molecules are diffused and adsorbed not only on the outer surface of the coal particles but also on the pore surfaces. However, the surfactant adsorbed on the inner surface of the pores is not related to electrostatic repulsion, does not contribute to the above-mentioned stabilization, and is not effective in preventing agglomeration of fine coal particles.
本発明では、上記したエマルジョンを石炭の粉−砕時に
添加することで、第3図に示すようにエマルジョンの疎
水性油の油滴で石炭の細孔をふさぎ同時に油滴表面を形
成している界面活性剤分子を石炭の外表面に吸着させ、
かつ石炭の外表面に存在する親水性基及び親水性物質を
も、上記エマルジョンの疎水性油でコーティングするこ
とで疎水性となし同時にエマルジョンの油滴の表面を形
成している界面活性剤分子を充分有効に吸着させ、CW
Mにおける界面活性剤の添加量の低減を可能とする。ま
た、この石炭の外表面に吸着した界面活性剤によって石
炭粒子の凝集が防止されCWMの粘度が低下し高濃度化
が可能になる。In the present invention, by adding the above-mentioned emulsion at the time of pulverizing coal, oil droplets of hydrophobic oil in the emulsion block the pores of the coal and at the same time form an oil droplet surface, as shown in Figure 3. Surfactant molecules are adsorbed onto the outer surface of the coal,
In addition, the hydrophilic groups and hydrophilic substances present on the outer surface of the coal are made hydrophobic by coating them with the hydrophobic oil of the emulsion, and at the same time, the surfactant molecules forming the surface of the oil droplets of the emulsion are Sufficiently effective adsorption and CW
This makes it possible to reduce the amount of surfactant added in M. Furthermore, the surfactant adsorbed on the outer surface of the coal prevents coal particles from agglomerating, lowering the viscosity of CWM and making it possible to increase the concentration.
なお1本発明において、界面活性剤及び疎水性油として
は、任意のものを用いることができるが、界面活性剤と
しては例えば陰イオン系界面活性剤。Note that in the present invention, any surfactant and hydrophobic oil can be used, and examples of the surfactant include anionic surfactants.
ナフタリンスルホン酸ナトリウムホルマリン縮合物など
が、疎水性油としては例えばA重油などが好適に用いら
れる。For example, sodium naphthalene sulfonate formalin condensate is preferably used, and as the hydrophobic oil, heavy oil A is preferably used.
以下、実施例により、本発明をさらに具体的に説明する
。EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.
〈実施例1〉
国内炭の太平洋炭を粉砕し第4図に示した粒径分布とな
るように調整する。この粒径調整した石炭65gをとり
、これに0.39g の陰イオン系界面活性剤と0.2
〜0.8gの範囲で添加量を変化させたA重油と水とか
らなり、第1図に示した油滴を含有する水中油滴型(O
/W)のエマルジョン35gを加え混合し、それぞれの
A重油添加量におけるCWMの粘度を回転粘度計を用い
て25℃にて測定した。<Example 1> Pacific coal, a domestic coal, was ground and adjusted to have the particle size distribution shown in FIG. Take 65g of the coal whose particle size has been adjusted, add 0.39g of anionic surfactant and 0.2g of the anionic surfactant.
The oil-in-water type (O
/W) was added and mixed, and the viscosity of CWM at each added amount of heavy oil A was measured at 25° C. using a rotational viscometer.
次にこれと比較のためA重油の添加操作を省いて陰イオ
ン系界面活性剤0.3g が単独で分散している状態の
水35gを上記石炭65gに加えて混合し、上記と同様
の方法によってCWMの粘度を測定した。第1表にせん
断速度18s″″1におけるこのCWMの見かけ粘度(
以下粘度と略す)を測定した結果を示す。Next, for comparison, 35 g of water in which 0.3 g of anionic surfactant was dispersed alone was added to 65 g of the above coal and mixed, omitting the addition operation of heavy oil A, and the same method as above was carried out. The viscosity of CWM was measured by Table 1 shows the apparent viscosity (
The results of measuring the viscosity (hereinafter abbreviated as viscosity) are shown below.
第 1 表
第1表に示す結果から、A重油添加量の増加に従ってC
WMの粘度は低下することがわかる。また、陰イオン系
界面活性剤をその約2倍量のへ重油ととも水中油滴型(
O/W)エマルジョンとして添加することでCWMの粘
度はA重油無添加時と比較して約34%低下することも
第1表から認められる。Table 1 From the results shown in Table 1, as the amount of A heavy oil added increases, C
It can be seen that the viscosity of WM decreases. In addition, anionic surfactants are mixed with about twice the amount of heavy oil in an oil-in-water type (oil-in-water type).
It is also seen from Table 1 that by adding CWM as an O/W) emulsion, the viscosity of CWM is reduced by about 34% compared to when heavy oil A is not added.
〈実施例2〉
実施例1で使用した石炭を同じ要領で粒径rljmする
。この粒径調整した石炭65gをとり、これに0.13
〜0.39gの範囲で添加量を変化させた陰イオン系界
面活性剤を含有する水35gを加えて混合し、各添加量
におけるCWMの粘度を回転粘度計を用いて25℃にて
測定した。<Example 2> The particle size of coal used in Example 1 was determined to rljm in the same manner. Take 65g of this coal whose particle size has been adjusted and add 0.13g to it.
35 g of water containing anionic surfactants with varying amounts added in the range of ~0.39 g was added and mixed, and the viscosity of CWM at each added amount was measured at 25°C using a rotational viscometer. .
また、上記石炭65gをとり、これに上記界面活性剤添
加量に対して2倍量のA重油を添加し・て第1図に示し
た油滴を含有する水中油滴型(O/W)のエマルジョン
35gを加えて混合し、各添加量におけるCWMの粘度
を上記と同様の方法で測定した。これらのCWMの粘度
を第5図に示す。In addition, 65 g of the above coal was taken, and twice the amount of A heavy oil was added to the amount of surfactant added to form an oil-in-water type (O/W) containing oil droplets as shown in Figure 1. 35 g of the emulsion was added and mixed, and the viscosity of CWM at each addition amount was measured in the same manner as above. The viscosities of these CWMs are shown in FIG.
第5図から、粘度1500mPa−8以下のCWMを製
造するための界面活性剤の必要添加量としては、 11
3イオン系界面活性剤をその2倍量のへ重油と共に上記
水中油滴型(○/W)のエマルジョンとして添加するこ
とで約32%低減できることがわかる。From Figure 5, the required amount of surfactant to be added to produce CWM with a viscosity of 1500 mPa-8 or less is 11
It can be seen that by adding the 3-ion surfactant together with twice the amount of heavy oil as the oil-in-water type (○/W) emulsion, the reduction can be achieved by about 32%.
〈実施例3〉
前記実施例1のCWM調製法により、重油の添加量を0
.8 g 一定とし、添加する重油の種類をかえてCW
Mを調製し、実施例1に記載したと同方法でCWMの粘
度を測定した。その結果を第2表に示す。<Example 3> Using the CWM preparation method of Example 1, the amount of heavy oil added was reduced to 0.
.. 8g constant, CW by changing the type of heavy oil added
M was prepared and the viscosity of the CWM was measured in the same manner as described in Example 1. The results are shown in Table 2.
なお、第2表中、A、B、Cの各重油は、疎水性の強さ
が異なり、疎水性の強さはA>B>Cの順でA重油がも
つとも疎水性が強い。In Table 2, the heavy oils A, B, and C have different hydrophobic strengths, and the hydrophobic strengths are in the order of A>B>C, with heavy oil A having the strongest hydrophobicity.
第 1 表
第2表の結果から、陰イオン系界面活性剤を重油ととも
に水中油滴型(O/W)のエマルジョンとして添加する
際には、疎水性の強い重油を用いた方がCWMの粘度低
下に有効であることがわかる。From the results shown in Table 1 and Table 2, when adding an anionic surfactant together with heavy oil as an oil-in-water (O/W) emulsion, it is better to use highly hydrophobic heavy oil to reduce the viscosity of CWM. It can be seen that it is effective in reducing
本発明によれば、CWMの製造において前記第1図に示
すような疎水性油の油滴の回りに界面活性剤分子が配向
している油滴を含有する水中油滴型(O/W)のエマル
ジョンを石炭の微粉砕時に添加することにより、石炭の
細孔を疎水性の油で埋めかつ石炭の表面をより疎水性と
し、少ない界面活性剤の使用量で低粘度のCWMを製造
することができる。According to the present invention, in the production of CWM, an oil-in-water type (O/W) containing oil droplets in which surfactant molecules are oriented around oil droplets of hydrophobic oil as shown in FIG. By adding this emulsion during the pulverization of coal, the pores of the coal are filled with hydrophobic oil, the surface of the coal is made more hydrophobic, and CWM with low viscosity can be produced using a small amount of surfactant. I can do it.
第1図は本発明で使用するエマルジョンに含有される油
滴の模式図、第2図は石炭粒径の違いによる界面活性剤
吸着量の経時変化を示す図、第3図は本発明において油
滴の石炭への吸着状態を示す模式図、第4図はCWM製
造に適した石炭の粒径分布図、第5図は界面活性剤の添
加方法の違いによる界面活性剤添加量とCWMの粘度と
の関係県1図
?捜・緊i) o−41io応狂斉1・分千第2図
社息時間(h)
杢3図
地40
ミ
#L′4生(μm)
来S凹
;Figure 1 is a schematic diagram of oil droplets contained in the emulsion used in the present invention, Figure 2 is a diagram showing changes over time in the amount of surfactant adsorbed due to differences in coal particle size, and Figure 3 is a diagram showing oil droplets contained in the emulsion used in the present invention. A schematic diagram showing the state of adsorption of droplets onto coal. Figure 4 is a particle size distribution diagram of coal suitable for CWM production. Figure 5 is the amount of surfactant added and the viscosity of CWM depending on the method of adding surfactant. Relationship with prefecture 1 map? Search/Kin i) o-41io Okkyusei 1, minute 1,000 2nd figure company breath time (h) 杢3 figure ground 40 Mi#L'4 raw (μm) Next S concavity;
Claims (1)
面活性剤分子によつて安定化された疎水性油の油滴を含
有する水中油滴型(O/W)のエマルジョンを石炭の微
粉砕時に添加することを特徴とする高濃度石炭スラリー
の製造方法。1. In a method for producing a highly concentrated coal-water slurry, an oil-in-water (O/W) emulsion containing oil droplets of hydrophobic oil stabilized by surfactant molecules is added during pulverization of coal. A method for producing a highly concentrated coal slurry, characterized in that the slurry is added.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14571988A JPH01315492A (en) | 1988-06-15 | 1988-06-15 | Method for producing high concentration coal water slurry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14571988A JPH01315492A (en) | 1988-06-15 | 1988-06-15 | Method for producing high concentration coal water slurry |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01315492A true JPH01315492A (en) | 1989-12-20 |
Family
ID=15391548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14571988A Pending JPH01315492A (en) | 1988-06-15 | 1988-06-15 | Method for producing high concentration coal water slurry |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01315492A (en) |
-
1988
- 1988-06-15 JP JP14571988A patent/JPH01315492A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4090853A (en) | Colloil product and method | |
JPH01315492A (en) | Method for producing high concentration coal water slurry | |
JPH0553198B2 (en) | ||
US4599089A (en) | Coal-water dispersion | |
US1432178A (en) | Artificial fuel and method of making same | |
AU656184B2 (en) | Production method of high-concentration coal-water slurry | |
JPH0315957B2 (en) | ||
CA1275020A (en) | Method of maintaining a stabilized coal-water slurry | |
JPS58134189A (en) | Solid fuel aqueous suspension and manufacture | |
EP0118440B1 (en) | Coal-water dispersion and method of the manufacture thereof | |
JPH0978075A (en) | Manufacturing system for high density coal-water or coal-oil slurry | |
JPS61111153A (en) | Manufacture of petroleum coke for fuel and crushing assistant for fuel petroleum coke | |
JPS58168693A (en) | Preparation of coal/water slurry | |
JPH0724299A (en) | Production of fine hollow glass sphere | |
JPS6247238B2 (en) | ||
JPS59159892A (en) | Viscosity depressant for concentrated coal/water slurry | |
KR100317419B1 (en) | Emulsion oil and manufacturing method thereof | |
JP2019131775A (en) | Monodisperse nano-emulsion solution and manufacturing method thereof | |
JPH0367118B2 (en) | ||
JPS5823436B2 (en) | Additive for pulverized coal-oil mixture | |
JPS6011589A (en) | Dispersion stabilizer for aqueous slurry of dust coal | |
JPH0412755B2 (en) | ||
JPS5853986A (en) | Production of emulsion-type com fuel | |
JPS6055090A (en) | Equipment for producing coal/water slurry | |
JPH0794671B2 (en) | Low viscosity stabilization method for coal water slurry |