[go: up one dir, main page]

JPH01315280A - Method of driving ultrasonic motor and vibrator for the motor - Google Patents

Method of driving ultrasonic motor and vibrator for the motor

Info

Publication number
JPH01315280A
JPH01315280A JP63147260A JP14726088A JPH01315280A JP H01315280 A JPH01315280 A JP H01315280A JP 63147260 A JP63147260 A JP 63147260A JP 14726088 A JP14726088 A JP 14726088A JP H01315280 A JPH01315280 A JP H01315280A
Authority
JP
Japan
Prior art keywords
elastic plate
vibrator
vibration
plate
ultrasonic motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63147260A
Other languages
Japanese (ja)
Other versions
JP2646668B2 (en
Inventor
Osamu Onishi
修 大西
Osamu Myoga
修 冥加
Takeshi Inoue
武志 井上
Sadayuki Takahashi
高橋 貞行
Tadayasu Uchikawa
内川 忠保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63147260A priority Critical patent/JP2646668B2/en
Publication of JPH01315280A publication Critical patent/JPH01315280A/en
Application granted granted Critical
Publication of JP2646668B2 publication Critical patent/JP2646668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain a reduced thickness and a high driving force by mounting a piezoelectric actuator at the other free end of an elastic plate secured at its one side end. CONSTITUTION:An ultrasonic motor is composed of a stainless steel elastic plate 21, a piezoelectric ceramic plate 22, electrodes 23, a piezoelectric actuator 24, and a Teflon sheet 25, and the plate 21 is clamped with bolts 28 at stainless steel jigs 26, 27. When an AC electric field of 25kHz is applied from a seizure electrode 23 to the plate 22, an AC electric field in which its phase is advanced at 90 deg. is applied to the actuator 24, and a stainless steel roller 29 is brought into pressure contact with the top of the actuator 24, the roller 29 is rotated in a direction of the arrow 201. Thus, when the volume of the ceramics is equal as compared with the ultrasonic motor using a longitudinal bending multiplex mode vibrator, higher maximum speed and starting driving force are obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超音波振動エネルギーを利用したモータに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a motor that utilizes ultrasonic vibration energy.

(従来の技術) 超音波モータとして、従来弾性板の片面に圧電セラミッ
ク板を接着し、長さ方向縦振動と幅方向屈曲振動の二つ
の共振周波数を一致もしくは接近させ、その近傍の周波
数の電界を圧電体に印加することにより前記二つの振動
を縮退状態で励振する振動子(以後縦−屈曲多重モード
振動子と呼ぶ)を利用する定在波超音波モータが提案さ
れている。以下図面を参照しながら説明する。
(Prior technology) Conventionally, as an ultrasonic motor, a piezoelectric ceramic plate is bonded to one side of an elastic plate, and the two resonance frequencies of longitudinal vibration in the longitudinal direction and bending vibration in the width direction are made to match or approach each other, and an electric field of a frequency near the two resonance frequencies is generated. A standing wave ultrasonic motor has been proposed that utilizes a vibrator (hereinafter referred to as a longitudinal-flexural multimode vibrator) that excites the two vibrations in a degenerate state by applying the above-described vibrations to a piezoelectric body. This will be explained below with reference to the drawings.

まず縦−屈曲多重モード振動子の一例を第5図に示す。First, FIG. 5 shows an example of a longitudinal-flexural multimode vibrator.

これは長さ方向の一次の縦振動と幅方向の一次の屈曲振
動を縮退状態で励振する振動子である。第5図(a)は
正面図、第5図(C)は側面図である。
This is a vibrator that excites first-order longitudinal vibration in the length direction and first-order bending vibration in the width direction in a degenerate state. FIG. 5(a) is a front view, and FIG. 5(C) is a side view.

厚さ方向に一様に分極した圧電セラミック板52の上下
両面に金属電極膜53を設け、それを弾性板51の底面
に張り合わせている。このとき弾性板51と圧電セラミ
ック板52は、長さ方向の1次の縦振動モードと幅方向
の1次の屈曲振動モードの共振周波数が一致するような
寸法となっている。このような振動子の金属電極間に2
つの振動モードの共振周波数と等しい交流電圧を印加す
る事により、第5図(b)、(d)で表される振幅変位
分布を持つ定在波が励振される。ここで第5(b)にお
ける54は長さ方向の1次の縦振動の変位分布、第5図
(d)における55は幅方向の一次の屈曲振動の変位分
布を示す。このように縦−屈曲多重モード振動子は2種
類の異なる振動モードを縮退させて使用していた。
Metal electrode films 53 are provided on both upper and lower surfaces of a piezoelectric ceramic plate 52 that is uniformly polarized in the thickness direction, and are bonded to the bottom surface of an elastic plate 51. At this time, the elastic plate 51 and the piezoelectric ceramic plate 52 are dimensioned so that the resonant frequencies of the first-order longitudinal vibration mode in the length direction and the first-order bending vibration mode in the width direction match. 2 between the metal electrodes of such a vibrator
By applying an AC voltage equal to the resonance frequency of the two vibration modes, a standing wave having an amplitude displacement distribution shown in FIGS. 5(b) and 5(d) is excited. Here, 54 in FIG. 5(b) indicates a displacement distribution of first-order longitudinal vibration in the length direction, and 55 in FIG. 5(d) indicates a displacement distribution of first-order bending vibration in the width direction. In this way, the longitudinal-flexural multimode vibrator uses two different vibration modes in a degenerate manner.

(発明が解決しようとする問題点) 上記振動子を利用した定在波型超音波モータは、従来の
進行波を利用した超音波モータと比較して、速度・駆動
力が共に大きく、駆動方法、弾性板の形状に工夫を凝ら
すことにより、更に高速度・高駆動力化が可能である。
(Problems to be Solved by the Invention) The standing wave type ultrasonic motor using the above-mentioned vibrator has higher speed and driving force than the conventional ultrasonic motor using traveling waves, and the driving method By devising the shape of the elastic plate, even higher speeds and higher driving forces are possible.

また、長さ方向縦振動と幅方向屈曲振動という複数のモ
ードの共振周波数を一致させる必要があるために、振動
子を設計する際に自由度が小さく、実際に使用する共振
モードである長さ方向縦振動モード付近に複数の高次の
長さ方向屈曲振動によるスフリアス振動が発生し、これ
らのスプリアス振動を抑える事は極めて難しかった。そ
のため自励式で駆動することが困難であるという欠点が
あった。
In addition, because it is necessary to match the resonant frequencies of multiple modes, longitudinal vibration in the longitudinal direction and bending vibration in the width direction, there is a small degree of freedom when designing the vibrator. Spurious vibrations caused by multiple high-order longitudinal bending vibrations occur near the directional longitudinal vibration mode, and it is extremely difficult to suppress these spurious vibrations. Therefore, there was a drawback that it was difficult to drive in a self-excited manner.

(問題点を解決するための手段) 本発明は、片方の端部を固定した弾性板と、他方の自由
な端部において横滑り可能な状態で弾性板の主面に接触
する位置に弾性板の厚さ方向に変位する圧電アクチュエ
ータを設置したことを特徴とする超音波モータ用振動子
とこの振動子を用いた超音波モータの駆動方法である。
(Means for Solving the Problems) The present invention has an elastic plate fixed at one end, and an elastic plate at a position where the other free end contacts the main surface of the elastic plate so as to be able to slide sideways. The present invention provides a vibrator for an ultrasonic motor characterized by installing a piezoelectric actuator that is displaced in the thickness direction, and a method for driving an ultrasonic motor using this vibrator.

(作用) 第1図(a)は本発明における振動子の基本構成例の側
面図である。以下、図面を参照しながら説明する。
(Function) FIG. 1(a) is a side view of an example of the basic configuration of a vibrator in the present invention. This will be explained below with reference to the drawings.

弾性板11の主面に圧電体12が設けられており、端部
15は固定されている。また自由端の下部には他の部材
に固定された圧電体13があり、この圧電体13が弾性
板11のX軸方向の動きを拘束しないように圧電体13
に摺動性シート14を置きこの摺動性シート14が弾性
板11に接触する構造になっている。このような振動子
において、弾性体11の長手方向縦振動1次モードの共
振周波数と等しい交流電界を圧電体12に印加すると、
弾性板11にはX軸方向の振幅が大きい振動16が発生
する。X軸方向の変位の分布を第1図(b)に示す。第
1図(b)19から分かるように、弾性体の自由端付近
が最も振動振幅となる。また弾性板11の自由端の下部
にある圧電体13に交流電界を印加すると、圧電体の上
部は第1図(a)17に示すように2軸方向に振動する
。この振動17はシート14を通して弾性板11に伝わ
る。その結果、弾性板11の自由端において振動16と
振動17を合成した楕円運動18を得ることができる。
A piezoelectric body 12 is provided on the main surface of the elastic plate 11, and an end portion 15 is fixed. Further, there is a piezoelectric body 13 fixed to another member at the lower part of the free end, and the piezoelectric body 13
A slidable sheet 14 is placed on the elastic plate 11, and the slidable sheet 14 contacts the elastic plate 11. In such a vibrator, when an alternating current electric field equal to the resonant frequency of the first mode of longitudinal longitudinal vibration of the elastic body 11 is applied to the piezoelectric body 12,
A vibration 16 with a large amplitude in the X-axis direction is generated in the elastic plate 11. The distribution of displacement in the X-axis direction is shown in FIG. 1(b). As can be seen from FIG. 1(b) 19, the vibration amplitude is highest near the free end of the elastic body. Further, when an alternating current electric field is applied to the piezoelectric body 13 located at the lower part of the free end of the elastic plate 11, the upper part of the piezoelectric body vibrates in biaxial directions as shown in FIG. 1(a) 17. This vibration 17 is transmitted to the elastic plate 11 through the sheet 14. As a result, an elliptical motion 18, which is a combination of the vibrations 16 and 17, can be obtained at the free end of the elastic plate 11.

従来の縦−屈曲多重モード振動子では2種類の振動モー
ドの共振周波数を一致させる必要があり、これらの共振
周波数は振動子の形状に大きく依存する。従って二つの
異なる振動モードの共振周波数を一致させるためには、
振動子に対して厳密な寸法が要求されるのみならず、振
動子を構成する材料の材料定数に関しても厳しい要求が
ある。
In conventional longitudinal-flexural multimode vibrators, it is necessary to match the resonance frequencies of two types of vibration modes, and these resonance frequencies largely depend on the shape of the vibrator. Therefore, in order to match the resonance frequencies of two different vibration modes,
Not only are strict dimensions required for the vibrator, but there are also strict requirements regarding the material constants of the materials that make up the vibrator.

従って、実際に上記縦−屈曲多重モード振動子を製造す
る場合は、二つの振動モードの周波数調整が必要不可欠
であった。これに対して本発明の方法によれば、共振状
態の振動モードは一種類だけであるために、寸法の自由
度がはるかに大きくなる。またスプリアス振動が本質的
に少ないために、使用共振モードにおいて自励発振が容
易になる。
Therefore, when actually manufacturing the longitudinal-flexural multimode vibrator, it is essential to adjust the frequencies of the two vibration modes. On the other hand, according to the method of the present invention, there is only one type of vibration mode in the resonant state, so the degree of freedom in size is much greater. Furthermore, since spurious vibrations are essentially low, self-oscillation is facilitated in the used resonance mode.

(実施例) 以下、本発明の実施例について図を参照しながら説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第2図は本発明の超音波モータの実施例の一つを示す図
である。第2図中、21はステンレス鋼製弾性板、22
は圧電セラミック板、23は銀の焼付は電極、24は圧
電アクチュエータで、25はテフロン製シート、弾性板
21はボルト28によってステンレス鋼製治具26およ
び27に固定されている。振動子の寸法は、弾性板21
が長さ80mm、幅15mm、厚さ3mmで、この内長
さ30mmの部分が治具26,27に固定されている。
FIG. 2 is a diagram showing one embodiment of the ultrasonic motor of the present invention. In Figure 2, 21 is a stainless steel elastic plate, 22
23 is a piezoelectric ceramic plate, 23 is a silver baked electrode, 24 is a piezoelectric actuator, 25 is a Teflon sheet, and the elastic plate 21 is fixed to stainless steel jigs 26 and 27 by bolts 28. The dimensions of the vibrator are as follows: elastic plate 21
has a length of 80 mm, a width of 15 mm, and a thickness of 3 mm, and a portion of 30 mm in length is fixed to jigs 26 and 27.

また圧電セラミック板22は長さ25mm、幅15mm
、厚さ1mmで圧電アクチュエータ23は10mm立方
である。本振動子において弾性板21の長手方向縦振動
1次モードの共振周波数は25kHzとなる。
Furthermore, the piezoelectric ceramic plate 22 has a length of 25 mm and a width of 15 mm.
, the thickness is 1 mm, and the piezoelectric actuator 23 is 10 mm cubic. In this vibrator, the resonance frequency of the first mode of longitudinal longitudinal vibration of the elastic plate 21 is 25 kHz.

焼付は電極23から圧電セラミック板22に25kHz
の交流電界を印加し、圧電アクチュエータ24には位相
が90°進んだ交流電界を印加し、さらに、圧電アクチ
ュエータ24上部にステンレス鋼製ローラ29を10k
gfで圧接したところ、ローラ29は矢印201の方向
に回転した。縦−屈曲多重モード振動子を用いた超音波
モータに比べて、圧電セラミックの体積が等しい場合、
約1.5倍の最高速度および約2倍の起動駆動力が得ら
れた。
Baking is performed from the electrode 23 to the piezoelectric ceramic plate 22 at 25kHz.
An alternating current electric field with a phase lead of 90° is applied to the piezoelectric actuator 24, and a stainless steel roller 29 of 10 k is applied above the piezoelectric actuator 24.
When pressed with gf, the roller 29 rotated in the direction of the arrow 201. Compared to an ultrasonic motor using a longitudinal-flexural multimode vibrator, when the volume of the piezoelectric ceramic is equal,
Approximately 1.5 times the maximum speed and approximately twice the starting driving force were obtained.

第3図は第2図の振動子の弾性板21の上面にも圧電セ
ラミック板31を設置したものである。これにより、弾
性板21の上下面が対称になるため、20〜30kHz
の範囲内の屈曲振動のスプリアスを約20dB低減する
ことができた。
In FIG. 3, a piezoelectric ceramic plate 31 is also installed on the upper surface of the elastic plate 21 of the vibrator shown in FIG. As a result, the upper and lower surfaces of the elastic plate 21 are symmetrical, so that the frequency of 20 to 30 kHz is
It was possible to reduce the spurious vibration of bending vibration within the range of about 20 dB.

第4図はシートフィーダとしての実施例の一つを示す図
で、第2図のローラ29上部にゴム製ローラ41を配置
し、二つのローラ29・41の間に紙43を挿入したも
のである。ゴム製ローラ41は紙43・ステンレス鋼製
ローラ29に対して3kgfの力で、またステンレス鋼
製ローラ29は弾性板11に対して10kgfの力で圧
接した。この結果、縦−屈曲多重モードを利用したシー
トフィーダと比較して、約1.3倍の最高速度・約2.
8倍の起動駆動力が得られた。
FIG. 4 shows one embodiment of the sheet feeder, in which a rubber roller 41 is placed above the roller 29 in FIG. 2, and a paper 43 is inserted between the two rollers 29 and 41. be. The rubber roller 41 was pressed against the paper 43 and the stainless steel roller 29 with a force of 3 kgf, and the stainless steel roller 29 was pressed against the elastic plate 11 with a force of 10 kgf. As a result, the maximum speed is approximately 1.3 times higher and the maximum speed is approximately 2.5 times higher than that of a sheet feeder that uses longitudinal-bending multiple modes.
Eight times the starting driving force was obtained.

(発明の効果) 以上述べたように、本発明によれば超音波エネルギーを
利用した薄型高駆動力のモータが実現でき、例えばOA
機器等の超薄型化が図れるといった長所を有し、工業的
価値が多大である。
(Effects of the Invention) As described above, according to the present invention, it is possible to realize a thin, high-driving-power motor that utilizes ultrasonic energy.
It has the advantage of allowing devices to be made ultra-thin, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の振動子の基本構成図、第1図(
b)は変位分布図、第2図、第3図、第4図は実施例構
成図、第5図(a)、(C)は従来型振動子の基本構成
図、第5図(b)、(d)は変位分布図である。 図において、11,21.51は弾性板、12.13は
圧電体、14.25は摺動性シート、15は固定面、1
6.17.18は振動方向、19,54.55は変位分
布、22.31.52は圧電セラミック板、24は圧電
アクチュエータ、23,32.53は銀の焼付は電極、
26.27は支持治具、28はボルト、29.41はロ
ーラ、201,42はローラの回転方向、43は薄い紙
、44は紙の進行方向。
FIG. 1(a) is a basic configuration diagram of the vibrator of the present invention.
b) is a displacement distribution diagram, Figures 2, 3, and 4 are embodiment configuration diagrams, Figures 5 (a) and (C) are basic configuration diagrams of a conventional vibrator, and Figure 5 (b) , (d) is a displacement distribution diagram. In the figure, 11, 21.51 are elastic plates, 12.13 are piezoelectric bodies, 14.25 are sliding sheets, 15 are fixed surfaces, 1
6.17.18 is the vibration direction, 19, 54.55 is the displacement distribution, 22.31.52 is the piezoelectric ceramic plate, 24 is the piezoelectric actuator, 23, 32.53 is the silver baking electrode,
26 and 27 are support jigs, 28 are bolts, 29 and 41 are rollers, 201 and 42 are the rotational directions of the rollers, 43 is thin paper, and 44 is the direction in which the paper travels.

Claims (1)

【特許請求の範囲】 (1.)片方の端部を固定し他方の端部を自由にした弾
性板の長手方向縦振動一次モードの共振振動と、横滑り
可能な状態で弾性板の主面他方の端部領域に接触するよ
うに配置した圧電体による前記弾性板の厚さ方向に変位
する非共振状態の振動を組み合わせ、弾性板に接して配
置されたローラを回転させることを特徴とする超音波モ
ータの駆動方法。 (2.)片方の端部を固定した弾性板と、他方の端部に
おいて横滑り可能な状態で弾性板の主面の他の端部近傍
に接触する位置に、弾性板の厚さ方向に変位する圧電ア
クチュエータを設置したことを特徴とする超音波モータ
用振動子。
[Scope of Claims] (1.) Resonant vibration of the first mode of longitudinal longitudinal vibration of an elastic plate with one end fixed and the other free, and the other main surface of the elastic plate in a sideways sliding state. The ultrasonic device is characterized by rotating a roller disposed in contact with the elastic plate by combining vibration in a non-resonant state that is displaced in the thickness direction of the elastic plate by a piezoelectric body disposed so as to be in contact with an end region of the elastic plate. How to drive a sonic motor. (2.) An elastic plate with one end fixed, and a displacement in the thickness direction of the elastic plate at a position where it contacts the vicinity of the other end of the main surface of the elastic plate in a state where it can skid sideways at the other end. A vibrator for an ultrasonic motor, characterized by being equipped with a piezoelectric actuator.
JP63147260A 1988-06-14 1988-06-14 Driving method of ultrasonic motor and vibrator for ultrasonic motor Expired - Lifetime JP2646668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63147260A JP2646668B2 (en) 1988-06-14 1988-06-14 Driving method of ultrasonic motor and vibrator for ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63147260A JP2646668B2 (en) 1988-06-14 1988-06-14 Driving method of ultrasonic motor and vibrator for ultrasonic motor

Publications (2)

Publication Number Publication Date
JPH01315280A true JPH01315280A (en) 1989-12-20
JP2646668B2 JP2646668B2 (en) 1997-08-27

Family

ID=15426208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63147260A Expired - Lifetime JP2646668B2 (en) 1988-06-14 1988-06-14 Driving method of ultrasonic motor and vibrator for ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2646668B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362557B1 (en) * 2000-08-28 2002-03-26 International Business Machines Corporation Ultrasonic method and actuator for inducing motion of an object
JP2009232642A (en) * 2008-03-25 2009-10-08 Taiheiyo Cement Corp Ultrasonic motor device
JP2009240148A (en) * 2008-03-04 2009-10-15 Taiheiyo Cement Corp Ultrasonic motor
JP2009240149A (en) * 2008-03-06 2009-10-15 Taiheiyo Cement Corp Ultrasonic motor
JP2010273409A (en) * 2009-05-20 2010-12-02 Nec Tokin Corp Piezoelectric power generation unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362557B1 (en) * 2000-08-28 2002-03-26 International Business Machines Corporation Ultrasonic method and actuator for inducing motion of an object
JP2009240148A (en) * 2008-03-04 2009-10-15 Taiheiyo Cement Corp Ultrasonic motor
JP2009240149A (en) * 2008-03-06 2009-10-15 Taiheiyo Cement Corp Ultrasonic motor
JP2009232642A (en) * 2008-03-25 2009-10-08 Taiheiyo Cement Corp Ultrasonic motor device
JP2010273409A (en) * 2009-05-20 2010-12-02 Nec Tokin Corp Piezoelectric power generation unit

Also Published As

Publication number Publication date
JP2646668B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
JP3118251B2 (en) Ultrasonic driving device and method
JPH01315280A (en) Method of driving ultrasonic motor and vibrator for the motor
JP2605355B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPS61224880A (en) Vibration wave motor
JP2847758B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JP2590536B2 (en) Ultrasonic motor
JPH01264582A (en) Ultrasonic linear motor
JPH01144372A (en) Vibrator for ultrasonic motor
JPH0669303B2 (en) Ultrasonic motor oscillator
JPH01126178A (en) Ultrasonic motor
JPH07337046A (en) Ultrasonic motor drive
JPH06169582A (en) Ultrasonic driving device
JPS6277071A (en) Linear elastic wave motor
JPS63257474A (en) Ultrasonic motor
JP2517021B2 (en) Object moving device
JPS5989583A (en) Driving device using piezoelectric vibrator
JPS63294271A (en) Ultrasonic wave motor
JPS62285834A (en) Paper feed device
JPS63290176A (en) Driving method for supersonic motor
JPH01110071A (en) Driving method for supersonic motor
JPH01308172A (en) Ultrasonic wave driver
JP2538026B2 (en) Planar ultrasonic actuator
JPH01315277A (en) Ultrasonic motor
JPS63294270A (en) Driving method for ultrasonic wave motor
JPH0723037Y2 (en) Ultrasonic linear motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12