[go: up one dir, main page]

JPH01314670A - Steering controller of front and rear wheel steering vehicle - Google Patents

Steering controller of front and rear wheel steering vehicle

Info

Publication number
JPH01314670A
JPH01314670A JP14536288A JP14536288A JPH01314670A JP H01314670 A JPH01314670 A JP H01314670A JP 14536288 A JP14536288 A JP 14536288A JP 14536288 A JP14536288 A JP 14536288A JP H01314670 A JPH01314670 A JP H01314670A
Authority
JP
Japan
Prior art keywords
steering
steering angle
rear wheel
force
goal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14536288A
Other languages
Japanese (ja)
Other versions
JP2577436B2 (en
Inventor
Osamu Tsurumiya
修 鶴宮
Masataka Izawa
将隆 伊澤
Masaru Abe
賢 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP14536288A priority Critical patent/JP2577436B2/en
Priority to FR8810305A priority patent/FR2620674B1/en
Priority to US07/226,070 priority patent/US4939653A/en
Priority to GB8818071A priority patent/GB2208375B/en
Priority to DE3825885A priority patent/DE3825885A1/en
Publication of JPH01314670A publication Critical patent/JPH01314670A/en
Application granted granted Critical
Publication of JP2577436B2 publication Critical patent/JP2577436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/148Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering provided with safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1581Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by comprising an electrical interconnecting system between the steering control means of the different axles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To obtain good turning performance regardless of the coefficient of friction of the surface of a road, by correcting the goal steering force of a rear wheel determined from the deviation of a rear wheel goal steering angle decided according to wheel speed and a front wheel steering angle, and a real rear wheel steering angle, in proportion to the change of the front wheel steering angle by time. CONSTITUTION:Respective steering angle detection means A, B for detecting the steering angles of a front wheel and a rear wheel, and a vehicle speed detection means C are provided. And a rear wheel goal steering angle decision means D decides the goal steering angle of the rear wheel in proportion to the steering angle of the front wheel and vehicle speed detected, and also a rear wheel steering force decision means E decides the goal steering force of the rear wheel in proportion to the deviation of the rear wheel goal steering angle and a real rear wheel steering angle. And a front wheel steering speed detection means F for detecting the change of the front wheel steering angle by time is provided, the steering force correction means G corrects the rear wheel goal steering force in proportion to the change by time in such a way that the goal force is set smaller when the change by time is bigger. The goal steering force after correction controls a driving means H to steer the rear wheel to its goal steering angle.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は後輪をも転舵する前後輪操舵車両の操舵制御
装置に係り、詳しくは、後輪の操舵力を前輪の舵角の時
間的変化に応じ制御して旋回特性の向上を図る操舵制御
装置に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention relates to a steering control device for a front and rear wheel steered vehicle that also steers the rear wheels. The present invention relates to a steering control device that improves turning characteristics by controlling according to changes in the vehicle.

(従来の技術) 前輪とともに後輪も転舵する前後輪操舵車両にあっては
、一般に、前後輪の舵角比および位相を車速に応じ制御
して操縦性能の向上か図られる。
(Prior Art) In front and rear wheel steered vehicles in which both the front wheels and the rear wheels are steered, steering performance is generally improved by controlling the steering angle ratio and phase of the front and rear wheels according to the vehicle speed.

このような前後輪操舵車両は、低車速域において後輪を
前輪と逆方向(逆位相)に転舵させて旋回半径の小径化
(口頭性の向上)を図り、また、高車速域において後輪
を前輪と同方向(同位相)に転舵させて安定性の向上を
図る。
Such front and rear wheel steering vehicles steer the rear wheels in the opposite direction (opposite phase) to the front wheels in a low vehicle speed range to reduce the turning radius (improve maneuverability), and also steer the rear wheels in the opposite direction (opposite phase) to the front wheels in a low vehicle speed range to reduce the turning radius (improve maneuverability). Stability is improved by steering the wheels in the same direction (same phase) as the front wheels.

従来、この種の前後輪操舵車両の操舵制御装置は、特開
昭60−67272号公報に記載されたようなものか知
られている。この特開昭60−67272号公報に記載
された操舵制御装置は、パルスモータに操舵速度に応じ
たステップ角のパルス信号を出力してパルスモータによ
り後輪を転舵し、後輪を操舵速度に応じた特性てモータ
を応答させ、モータの追従性を向上させんとする。
Conventionally, a steering control device of this type for a front and rear wheel steered vehicle is known, such as the one described in Japanese Patent Application Laid-open No. 60-67272. The steering control device described in Japanese Patent Application Laid-Open No. 60-67272 outputs a pulse signal with a step angle corresponding to the steering speed to a pulse motor, steers the rear wheels by the pulse motor, and rotates the rear wheels at the steering speed. The aim is to improve the followability of the motor by making the motor respond according to characteristics.

(この発明か解決しようとする課題) しかしながら、上述の特開昭60−67272号公報の
操舵制御装置にあっては、ステップモータの出力トルク
は一定で、また、ステップモータの出力軸の回転角と後
輪の転舵角とか所定の比率で対応じて後輪の転舵角速度
もステップモータの出力軸の回転速度に応じ一義的に決
定される。このため、このような操舵制御装置では、走
行路面の摩擦係数を考慮しておらず、後輪は常に目標角
度に転舵されて、路面状態に応じた旋回O,l、性は得
られないという問題点かあった。
(Problem to be solved by the present invention) However, in the above-mentioned steering control device of JP-A-60-67272, the output torque of the step motor is constant, and the rotation angle of the output shaft of the step motor is The steering angle of the rear wheels is determined at a predetermined ratio, and the steering angular velocity of the rear wheels is also uniquely determined according to the rotational speed of the output shaft of the step motor. For this reason, such steering control devices do not take into account the coefficient of friction of the road surface, and the rear wheels are always steered to the target angle, making it impossible to achieve turning angles depending on the road surface conditions. There was a problem.

一方、上述のような問題点を解決するには、後輪の転舵
角速度を走行路面の摩擦係数に応じて制御することも考
えられるが、走行路面の摩擦係数を検出するセンサ等か
不可欠で製造コストの増大を招くという問題点かある。
On the other hand, in order to solve the above-mentioned problems, it is possible to control the turning angular velocity of the rear wheels according to the friction coefficient of the road surface, but it is essential to have a sensor that detects the friction coefficient of the road surface. There is a problem in that it increases manufacturing costs.

この発明は、上述の問題点に鑑みてなされたもので、セ
ンサ等を用いること無く後輪の転舵角速度か走行路面の
摩擦係数に応答する操舵制御装置を1是イ共することを
目的とする。
This invention was made in view of the above-mentioned problems, and an object of the present invention is to provide a steering control device that responds to the steering angular velocity of the rear wheels or the friction coefficient of the road surface without using sensors or the like. do.

(課題を解決するだめの手段) この発明にかかる前後輪操舵車両の操舵制御装置は、第
1図の構成図に示すように、操向ハンドルの操舵に応じ
前輪とともに後輪を転舵する前後輪操舵車両において、
前輪の転舵角度を検出する前輪舵角検知手段と、後輪の
転舵角度を検出する後輪舵角検知手段と、車速を検出す
る車速検知手段と、該車速検知手段により検出された車
速および前記前輪舵角検知手段により検出された前輪の
転舵角度に応じて後輪の目標転舵角度を決定する後輪目
標舵角決定手段と、該後輪目標舵角決定手段により決定
された後輪の目標転舵角度と前記後輪舵角検知手段によ
り検出された後輪の転舵角度との偏差に応じて後輪の目
標操舵力を決定する後輪操舵力決定手段と、前輪の転舵
角度の時間的変化を検出する前輪操舵速度検知手段と、
該操舵速度検知手段により検出された時間的変化に応じ
て前記後輪操舵力決定手段により決定された目標操舵力
を前記時間的変化か大きい場合に小さくなるように補正
する操舵力補正手段と、該操舵力補正手段により補正さ
れた目標操舵力で後輪を目標転舵角度に転舵する駆動手
段と、を備えることか要旨である。
(Means for Solving the Problem) As shown in the configuration diagram of FIG. 1, the steering control device for a front and rear wheel steered vehicle according to the present invention steers both the front wheels and the rear wheels in response to the steering of a steering wheel. In wheel steering vehicles,
Front wheel steering angle detection means for detecting the steering angle of the front wheels; rear wheel steering angle detection means for detecting the steering angle of the rear wheels; vehicle speed detection means for detecting vehicle speed; and the vehicle speed detected by the vehicle speed detection means. and rear wheel target steering angle determining means for determining a target steering angle of the rear wheels according to the steering angle of the front wheels detected by the front wheel steering angle detecting means; Rear wheel steering force determination means for determining a target steering force for the rear wheels according to a deviation between a target steering angle for the rear wheels and a steering angle for the rear wheels detected by the rear wheel steering angle detection means; front wheel steering speed detection means for detecting temporal changes in steering angle;
Steering force correction means for correcting the target steering force determined by the rear wheel steering force determination means in accordance with the temporal change detected by the steering speed detection means so that the target steering force determined by the rear wheel steering force determination means becomes smaller when the temporal change is large; The gist is to include a drive means for steering the rear wheels to a target steering angle using the target steering force corrected by the steering force correction means.

(作用) この発明にかかる前後輪操舵車両の操舵制御装置によれ
は、後輪の転舵角度の時間的変化は走行路面の摩擦係数
とほぼ対応じて起こり、決定された後輪の目標操舵力を
前輪の転舵角度の時間的変化に応じ該時間的変化が大き
い場合に小さくなるように補正するため、通常の操舵速
度において、安定性の向上か得られ、また操舵速度の速
い場合のヨーイングの発生を促すことかでき、加えて後
輪の転舵角速度すなわち過渡的な転舵角度は走行路面の
摩擦係数か小さい場合に犬ぎくなり、摩擦係数の低い路
面での安定性を高めることかでき、後輪の転舵角に走行
路面の摩擦係数に依存した特性を付与でき、走行路面の
摩擦係数の如何にかかわらず良好な旋回特性か得られる
(Function) According to the steering control device for a front and rear wheel steering vehicle according to the present invention, the temporal change in the steering angle of the rear wheels occurs approximately in correspondence with the coefficient of friction of the road surface, and the determined target steering of the rear wheels is achieved. Since the force is corrected in accordance with the temporal change in the steering angle of the front wheels so that it becomes smaller when the temporal change is large, stability can be improved at normal steering speeds, and stability can be improved at high steering speeds. This can promote the occurrence of yawing, and in addition, the steering angular velocity of the rear wheels, that is, the transient steering angle, becomes jerky when the coefficient of friction of the road surface is small, and this improves stability on roads with a low coefficient of friction. This makes it possible to impart characteristics dependent on the friction coefficient of the running road surface to the steering angle of the rear wheels, and to obtain good turning characteristics regardless of the friction coefficient of the running road surface.

(実施例) 以下、この発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第2図から第6図はこの発明の一実施例にかかる前後輪
操舵車両の操舵制御装置を示し、第2図が全体概略図、
第3図かブロック図、第4図かフローチャートである。
2 to 6 show a steering control device for a front and rear wheel steering vehicle according to an embodiment of the present invention, and FIG. 2 is an overall schematic diagram;
FIG. 3 is a block diagram, and FIG. 4 is a flow chart.

第2図において、11は操向ハンドルであり、操向ハン
ドル11はステアリングシャフト12を介してラックア
ントピニオン式のステアリングキア機構13に連結され
ている。ステアリングシャフト12には、ステアリング
シャフト12の回転角度を検出する舵角センサ(前輪舵
角検知手段)14およびステアリングシャフト12の回
転角速度を検出する操舵速度センサ(前輪操舵速度検知
手段)15か設りられている。舵角センサ14は、エン
コーダ等から構成され、後述するコントローラ16に結
線された該コントローラ16に操舵角度(前輪舵角)を
表す検知信号を出力する。
In FIG. 2, reference numeral 11 denotes a steering handle, and the steering handle 11 is connected to a rack-and-pinion type steering gear mechanism 13 via a steering shaft 12. The steering shaft 12 is provided with a steering angle sensor (front wheel steering angle detection means) 14 for detecting the rotation angle of the steering shaft 12 and a steering speed sensor (front wheel steering speed detection means) 15 for detecting the rotational angular velocity of the steering shaft 12. It is being The steering angle sensor 14 is composed of an encoder and the like, and outputs a detection signal representing a steering angle (front wheel steering angle) to a controller 16, which will be described later.

また、操舵速度センサ15は、コントローラ16に結線
された発電機等から構成され、コントローラ16に操舵
速度(前輪舵角の時間的変化)を表す検知信号を出力す
る。なお、言うまでも無いか、操舵速度センサ15は舵
角センサ14の検知信号を微分演算する微分回路等で代
替できる。
Further, the steering speed sensor 15 is composed of a generator or the like connected to the controller 16, and outputs a detection signal representing the steering speed (temporal change in front wheel steering angle) to the controller 16. Needless to say, the steering speed sensor 15 can be replaced by a differential circuit or the like that performs a differential operation on the detection signal of the steering angle sensor 14.

ステアリングギア機構13は、周知のように、ステアリ
ングシャフト12と一体的に回転するビニオンギア13
aおよびビニオンギア13aと噛合して車幅方向に延在
するラック13bを備え、ラック13bの両端かそれぞ
れ、左右の前輪18FL、18FRのナックルアーム1
9FL。
As is well known, the steering gear mechanism 13 includes a pinion gear 13 that rotates integrally with the steering shaft 12.
Knuckle arms 1 of left and right front wheels 18FL and 18FR are provided at both ends of the rack 13b, respectively, and are provided with a rack 13b that meshes with a pinion gear 13a and a binion gear 13a and extends in the vehicle width direction.
9FL.

19FRにタイロッド17FL、17FR等から成るス
テアリングリンケージを介して連結されている。これら
前輪18FL、18FRにはそれぞれ車速センサ20F
L、20FRか設けられ、これら車速センサ20FL、
20FRかコントローラ1已に結線されて車速を表す信
号を出力する。
It is connected to 19FR via a steering linkage consisting of tie rods 17FL, 17FR, etc. These front wheels 18FL and 18FR each have a vehicle speed sensor 20F.
L, 20FR are provided, and these vehicle speed sensors 20FL,
It is connected to one side of the 20FR controller and outputs a signal representing the vehicle speed.

また、後述するように、後輪18RL、18RRにもそ
れぞれ車速センサ20RL、20RRか設けられ、これ
ら車速センサ20RL、20RRもコントローラ16に
結線されて車速を表す信号を出力する。なお、言うまて
もないか、前述の舵角センサ14はステアリングギア機
構13のラック13bの移動距離あるいは前輪+8FL
Furthermore, as will be described later, vehicle speed sensors 20RL and 20RR are also provided for the rear wheels 18RL and 18RR, respectively, and these vehicle speed sensors 20RL and 20RR are also connected to the controller 16 to output a signal representing the vehicle speed. Needless to say, the above-mentioned steering angle sensor 14 detects the moving distance of the rack 13b of the steering gear mechanism 13 or the front wheel +8FL.
.

18FRの舵角を検知するセンサて代替できる。It can be replaced with a sensor that detects the steering angle of the 18FR.

21はコントローラ16に結線されて該コントローラ1
6から給電される電動機であり、電動機21は出力軸か
傘歯車機構22を介してラックアンドピニオン式のステ
アリングギア機構23に連結されている。傘歯車機構2
2は、電動機21の出力軸に固設された傘歯車22bお
よびステアリングギア機構23のビニオンギア23aと
一体的に回転する傘歯車22aを有している。ステアリ
ングギア機構23は、前述のステアリングギア機構23
と同様にビニオンギア23aおよびラック23bを有し
、ビニオンギア23aか電動機21に傘歯車機構22を
介し連結され、ラック23bの両端かそれぞれ左右の後
輪18RL、+8RRのナックルアーム19RL、19
RRにタイロッド17RL、17RR等から成るステア
リングリンケージを介して連結されている。ステアリン
グギア機構23のラック23bには、該ラック23bの
軸方向の移動距離を検出する後輪舵角センサ24が設け
られている。後輪舵角センサ24は、差動トランス等か
ら構成されてコントローラ16に結線され、ラック23
b0D8動距離で後輪18RL、18RRの舵角を検出
して該舵角を表す信号をコントローラ16に出力する。
21 is connected to the controller 16 and the controller 1
The electric motor 21 is connected to a rack-and-pinion steering gear mechanism 23 via an output shaft or a bevel gear mechanism 22. Bevel gear mechanism 2
2 has a bevel gear 22b fixed to the output shaft of the electric motor 21 and a bevel gear 22a that rotates integrally with a binion gear 23a of the steering gear mechanism 23. The steering gear mechanism 23 is the aforementioned steering gear mechanism 23.
Similarly, it has a binion gear 23a and a rack 23b, and the binion gear 23a is connected to the electric motor 21 via a bevel gear mechanism 22, and both ends of the rack 23b are connected to the knuckle arms 19RL, 19 of the left and right rear wheels 18RL, +8RR, respectively.
It is connected to RR via a steering linkage consisting of tie rods 17RL, 17RR, etc. The rack 23b of the steering gear mechanism 23 is provided with a rear wheel steering angle sensor 24 that detects the moving distance of the rack 23b in the axial direction. The rear wheel steering angle sensor 24 is composed of a differential transformer or the like, is connected to the controller 16, and is connected to the rack 23.
The steering angle of the rear wheels 18RL and 18RR is detected with a moving distance of b0D8, and a signal representing the steering angle is output to the controller 16.

この後輪舵角センサ24は、周知のように、コントロー
ラ16から交流パルス信号が一次コイルに人力し、ラッ
ク23bとともにコアが変位して二次コイルから差動信
号を出力する。なお、この実施例ては電動機21を後輪
18RL、18RRの転舵専用に設けているか、電動機
21の出力を前輪18FL、18FRとともに後輪18
RL。
As is well known, in this rear wheel steering angle sensor 24, an AC pulse signal is input from the controller 16 to the primary coil, the core is displaced together with the rack 23b, and a differential signal is output from the secondary coil. In this embodiment, the electric motor 21 is provided exclusively for steering the rear wheels 18RL and 18RR, or the output of the electric motor 21 is provided for steering the rear wheels 18 as well as the front wheels 18FL and 18FR.
R.L.

18RRへ分配し、後輪18RL、18RRへの操舵力
の伝達系に舵角関数発生機構等をイ」加したものでもこ
の発明か達成されることは言うまでもない。
It goes without saying that the present invention can also be achieved by adding a steering angle function generating mechanism to the transmission system of the steering force distributed to the rear wheels 18RR and rear wheels 18RL and 18RR.

コントローラ16は、第3図に示すように制御回路25
および駆動回路26を有し、制御回路25に前述したセ
ンサ14,15,20.24とともに後述する駆動回路
26の電流センサ28か接続され、また、駆動回路26
に前述の電動機2丁かI妾続されている。
The controller 16 includes a control circuit 25 as shown in FIG.
and a drive circuit 26, and a current sensor 28 of a drive circuit 26, which will be described later, is connected to the control circuit 25 together with the sensors 14, 15, 20.24 described above.
The two electric motors mentioned above are connected to this.

制御回路25は、定電圧回路30、マイクロコンピュー
タ回路31および人力インターフェース回路32,33
.34,35゜37等を備えている。定電圧回路30は
、バッテリにフユーズ等を介し接続され、各回路に一定
電圧の電力を供給する。人力インターフェース回路32
.33,34゜35.37は、それぞれが対応する前述
の各センサ14,15,20,24.28に接続され、
また、データバスを介してマイクロコンピュータ回路3
1に接続されている。舵角センサ14に接続された人力
インターフェース回路32は舵角センサ14の出力信号
を処理してマイクロコンピュータ回路31に前輪18F
L、18FRの操舵角度と方向とを表す信号を出力する
。操舵速度センサ15か接続した人力インターフェース
回路33は操舵速度センサ15の検知信号を処理してマ
イクロコンピュータ回路31に操舵速度を表すデジタル
信号を出力する。また、後輪舵角センサ24に接続され
たインターフェース回路35は、発振回路、整流回路お
よびローパスフィルタ等から成り、後輪舵角センサ24
の一次コイルに交流パルス信号を出力するとともに二次
コイルからの信号を整形してマイクロコンピュータ回路
31に出力する。車速センサ20に接続されたインター
フェース回路34は、波形整形回路および演算回路等か
ら成り、各車速センサ20の出力信号を基に車速を表す
信号をマイクロコンピュータ回路31へ出力する。電流
センサ28に接続されたインターフェース回路37は、
増幅回路およびA/Dコンバータ等を備え、電流センサ
28の出力信号をデジタル信号に変換してマイクロコン
ピュータ回路31に出力する。
The control circuit 25 includes a constant voltage circuit 30, a microcomputer circuit 31, and human interface circuits 32, 33.
.. It is equipped with 34, 35° and 37 degrees. The constant voltage circuit 30 is connected to a battery via a fuse or the like, and supplies constant voltage power to each circuit. Human interface circuit 32
.. 33, 34° 35.37 are connected to the respective corresponding sensors 14, 15, 20, 24.28,
In addition, the microcomputer circuit 3
Connected to 1. A human power interface circuit 32 connected to the steering angle sensor 14 processes the output signal of the steering angle sensor 14 and sends the signal to the microcomputer circuit 31 to the front wheel 18F.
It outputs a signal representing the steering angle and direction of L and 18FR. A human power interface circuit 33 connected to the steering speed sensor 15 processes the detection signal of the steering speed sensor 15 and outputs a digital signal representing the steering speed to the microcomputer circuit 31. Further, an interface circuit 35 connected to the rear wheel steering angle sensor 24 includes an oscillation circuit, a rectifier circuit, a low-pass filter, etc.
An alternating current pulse signal is output to the primary coil, and the signal from the secondary coil is shaped and output to the microcomputer circuit 31. The interface circuit 34 connected to the vehicle speed sensor 20 is composed of a waveform shaping circuit, an arithmetic circuit, etc., and outputs a signal representing the vehicle speed to the microcomputer circuit 31 based on the output signal of each vehicle speed sensor 20. The interface circuit 37 connected to the current sensor 28 is
It includes an amplifier circuit, an A/D converter, etc., converts the output signal of the current sensor 28 into a digital signal, and outputs the digital signal to the microcomputer circuit 31.

マイクロコンピュータ回路31は、CPU、ROM、R
AMおよびクロック等を備え、ROMに記憶されたプロ
グラムに従い各インターフェース回路32,33,34
,35.を経て各センサから人力する信号を処理して電
動機21へ+M電する電流のデユーティファクタを決定
し、このデユーティファクタを表すパルス幅変調信号(
PWM信号)g、h、i、jを駆動回路26に出力する
The microcomputer circuit 31 includes a CPU, ROM, R
Each interface circuit 32, 33, 34 is equipped with an AM, a clock, etc., and operates according to a program stored in a ROM.
, 35. The duty factor of the +M current flowing to the electric motor 21 is determined by processing the manually input signals from each sensor through
PWM signals) g, h, i, and j are output to the drive circuit 26.

駆動回路26は、昇圧回路38、ケート1〜ライブ回路
39、電流センサ28、リレー回路41およびスイッチ
回路40等を備え、ゲートl’ライブ回路39かバッテ
リに接続され、また、スイッチ回路40かリレー回路4
1を介しバッテリに接続されている。スイッチ回路40
は、4つの電界効果型トランジスタ(FET)Ql、Q
2.Q3゜Q4をブッリジ状に結線して成り、これらF
ETQl、Q2.Q3.Q4のゲートがゲートドライブ
回路39に接続されている。FETQl、Q2は、ドレ
インかバッテリに接線されてソースがFETQ3.Q4
のドレインに接糸充され、また、FETQ3.Q4はソ
ースか電流センサ28を介し接地(バッテリの一端子)
され、FETQI。
The drive circuit 26 includes a boost circuit 38, a gate 1 to live circuit 39, a current sensor 28, a relay circuit 41, a switch circuit 40, etc., and is connected to the gate l'live circuit 39 or the battery, and is connected to the switch circuit 40 or the relay. circuit 4
1 to the battery. switch circuit 40
are four field-effect transistors (FETs) Ql, Q
2. Q3゜Q4 are connected in a bridge shape, and these F
ETQl, Q2. Q3. The gate of Q4 is connected to a gate drive circuit 39. The drains of FETQl, Q2 are connected to the battery, and the sources are connected to FETQ3. Q4
The drain of FETQ3. Q4 is grounded through the source or current sensor 28 (one terminal of the battery)
and FETQI.

Q3のソース・トレイン接続部とFETQ2゜Q4のソ
ース・トレイン接続部との間に電動機21か接続されて
いる。昇圧回路38はバッテリの電圧を1−圧してケー
トドライブ回路39に出力し、ケートドライブ回路39
はマイクロコンピュータ回路31から入力するPWM信
号信号対、i、jに基ついてスイッチ回路40の各FE
TQ1.Q2.Q3.Q4のゲートに駆動信号を出力す
る。電流センサ28は電動機21に通電された電流を検
出してこの電流の検知信号を前述のインターフェース回
路37に出力する。なお、スイッチ回路40は、FET
QIのケートにPWM信号信号対応じたデユーティファ
クタの駆動信号か人力し、同様に、FETQ2のケート
にPWM信号り、FETQ3(7)ケートにPWM信号
i、FETQ4のゲートにPWM信号Jのデユーティフ
ァクタの駆動信号がそれぞれ人力する。
An electric motor 21 is connected between the source train connection of Q3 and the source train connection of FETs Q2 and Q4. The booster circuit 38 converts the battery voltage to 1-voltage and outputs it to the gate drive circuit 39.
is a PWM signal pair input from the microcomputer circuit 31, and each FE of the switch circuit 40 is
TQ1. Q2. Q3. A drive signal is output to the gate of Q4. The current sensor 28 detects the current applied to the motor 21 and outputs a detection signal of this current to the above-mentioned interface circuit 37. Note that the switch circuit 40 is an FET
A duty factor drive signal corresponding to the PWM signal signal is input to the gate of QI, a PWM signal is input to the gate of FET Q2, a PWM signal i is input to the gate of FET Q3 (7), and a drive signal of the PWM signal J is input to the gate of FET Q4. The drive signals of the utility factors are manually operated.

次に、この実施例の作用を第4図を参照して説明する。Next, the operation of this embodiment will be explained with reference to FIG.

この前後輪操舵装置の操舵制御装置は、マイクロコンピ
ュータ回路31において第4図のフローチャートに示す
一連の処理を実行して電動機21を制御する。
The steering control device for this front and rear wheel steering device controls the electric motor 21 by executing a series of processes shown in the flowchart of FIG. 4 in the microcomputer circuit 31.

ます、イグニッションキーが操作されてキースイッチか
ON位置に役人されると、マイクロコンピュータ回路3
1等に電力か供給され、マイクロコンピュータ回路31
が作動する。そして、ステップP1では、マイクロコン
ピュータ回路31の初期化(イニシャライズ)が行なわ
れ、内部のレジスタ等の記憶データの消去およびアドレ
ス指定等を行う。続いて、ステップP2においては、他
に定義されているサブルーチンに従い初期故障診断か行
なわれ、全てが正常に機能している場合にのみ以下の処
理を行う。
When the ignition key is operated and the key switch is turned to the ON position, the microcomputer circuit 3
Power is supplied to the first class, and the microcomputer circuit 31
is activated. In step P1, the microcomputer circuit 31 is initialized, and data stored in internal registers and the like are erased and addresses are designated. Subsequently, in step P2, an initial failure diagnosis is performed according to a subroutine defined elsewhere, and the following processing is performed only when everything is functioning normally.

ステップP3においては、各車速センサ20の出力信号
から車速Vを読み込み、続くステップP4において、車
速Vをアドレスとして、第5図に示すデータテーブル1
から舵角比kをマツプ検索する。この舵角比には、第5
図から明らかなように、所定車速V1より小さな低車速
域において負値(逆位相を表す)、所定車速V1より大
きな高車速域において正値(同位相を表す)を有する。
In step P3, the vehicle speed V is read from the output signal of each vehicle speed sensor 20, and in the subsequent step P4, the vehicle speed V is used as an address, and the data table 1 shown in FIG.
Search the steering angle ratio k from the map. This steering angle ratio includes the fifth
As is clear from the figure, it has a negative value (representing an opposite phase) in a low vehicle speed range smaller than the predetermined vehicle speed V1, and a positive value (representing the same phase) in a high vehicle speed range larger than the predetermined vehicle speed V1.

次に、ステップP5においては、舵角センサ14の出力
信号θ゛Ff!−読み込み、ステップP6において舵角
センサ14の中立補正係数θMにより中立位置からの舵
角θF(f9F−θ“F−0M)を算出する。この舵角
θFはステアリングシャフト12の回転角が前輪18F
L、18FRの舵角と対応するため前輪18FL、18
FRの舵角を表ず(以下、前輪舵角と記す)。続いて、
ステップP7ては、前輪舵角θFの正負すなわち方向を
判別し、前輪舵角θFが正であれはステップP8てフラ
グF】をOに設定し、また、前輪舵角θFか負であれは
ステップP9て前輪舵角θFを正値化(絶対値化)した
後にステップPIOてフラグF1を1に設定する。そし
て、次のステップpHにおいて、前輪舵角θFに舵角比
kを乗して後輪18RL、18RRの目標舵角(後輪目
標舵角)θRTを算出する。
Next, in step P5, the output signal θ゛Ff! of the steering angle sensor 14 is received. - Read, and in step P6, calculate the steering angle θF (f9F-θ"F-0M) from the neutral position using the neutral correction coefficient θM of the steering angle sensor 14. This steering angle θF is determined by the rotation angle of the steering shaft 12 being
Front wheels 18FL, 18 to correspond to the steering angle of L, 18FR.
It does not represent the steering angle of the FR (hereinafter referred to as front wheel steering angle). continue,
Step P7 determines whether the front wheel steering angle θF is positive or negative, that is, the direction, and if the front wheel steering angle θF is positive, step P8 sets the flag F] to O, and if the front wheel steering angle θF is negative, the step After the front wheel steering angle θF is converted into a positive value (absolute value) in step P9, the flag F1 is set to 1 in step PIO. Then, in the next step pH, the front wheel steering angle θF is multiplied by the steering angle ratio k to calculate the target steering angle (rear wheel target steering angle) θRT of the rear wheels 18RL and 18RR.

次に、ステップP12においては、車速■か所定車速■
。を超えているか否かを判断し、車速■か所定車速■。
Next, in step P12, the vehicle speed ■ or the predetermined vehicle speed ■
. It is determined whether the vehicle speed exceeds the specified vehicle speed ■ or the specified vehicle speed ■.

を超えていればステップP13゜PI3.PI3の処理
を行い、また、車速Vか所定車速■。以下であれはステ
ップP16.P17゜PI3の処理を行う。ステップP
13では、フラグF1の値を判別し、フラグF1が1て
あれはステップP14でフラグF3を1に設定し、また
、フラグF1が0てあれはステップPI5でフラグF3
をOに設定する。同様に、ステップP16ては、フラグ
F1の値を判別し、フラグF1が1であれはステップP
17でフラグF3に0を設定し、またフラグF 1 h
)0であれはステップP18てフラグF3を1に設定す
る。
If it exceeds step P13゜PI3. Processes PI3 and also sets vehicle speed V or predetermined vehicle speed■. Below is step P16. P17° PI3 processing is performed. Step P
13, the value of flag F1 is determined, and if flag F1 is 1, flag F3 is set to 1 in step P14, and if flag F1 is 0, flag F3 is set to 1 in step PI5.
Set to O. Similarly, in step P16, the value of flag F1 is determined, and if flag F1 is 1, step P16 is determined.
17 sets flag F3 to 0, and also sets flag F 1 h
) is 0, the flag F3 is set to 1 in step P18.

続くステップP19においては、後輪舵角センサ24の
出力信号θR1,θR2を読み込み、ステップP20て
他に定義されているサブルーチンに従い後輪舵角センサ
24の故障診断を行う。このステップP20ては、後輪
舵角センサ24が正常に機能していると診断された場合
にのみ以下の処理を実行する。そして、ステップP21
において、後輪舵角センサ24の出力信号θR1゜θR
2を減算処理して後輪舵角θRを算出する。
In the subsequent step P19, the output signals θR1 and θR2 of the rear wheel steering angle sensor 24 are read, and in step P20, a failure diagnosis of the rear wheel steering angle sensor 24 is performed according to a subroutine defined elsewhere. In this step P20, the following process is executed only when it is diagnosed that the rear wheel steering angle sensor 24 is functioning normally. And step P21
, the output signal θR1°θR of the rear wheel steering angle sensor 24
2 is subtracted to calculate the rear wheel steering angle θR.

続いて、ステップ22において、後輪舵角θRの正負を
判別し、後輪舵角θRが正であれはステップP23でフ
ラグF2をOに設定し、また、後輪舵角θRか負であれ
ばステップP24で後輪舵角θRを正値化(絶対値化)
した後ステップP25でフラグF2を1に設定する。次
のステップP26においては、フラグF2とフラグF3
との値を判別し、フラグF2.F3の値が異なれはステ
ップP27の処理を行い、また、フラグF2゜F3が同
値てあればステップP28からステップP33まての処
理を行う。ステップP27では、後輪目標舵角θRTと
後輪舵角θRとを加算して偏差△θRを算出する。また
、ステップP28では後輪目標舵角θRTから後輪舵角
θRを減して偏差△θRを算出し、この後、ステップP
29て偏差ΔθRの正負を判別する。このステップP2
9では、偏差ΔθRが負であると判別されると、ステッ
プP30て偏差ΔθRを正値化した後にステップI)3
1.P32.P33てフラグF3の値を置換する。すな
わち、ステップP31てフラグF3の値を判別し、フラ
グF3か0てあれはステップP32でフラグF3を1に
置換し、また、フラグF3が1であればステップP33
てフラグF3をOに置換する。
Next, in step 22, it is determined whether the rear wheel steering angle θR is positive or negative, and if the rear wheel steering angle θR is positive, the flag F2 is set to O in step P23, and if the rear wheel steering angle θR is negative, the flag F2 is set to O. In step P24, the rear wheel steering angle θR is converted into a positive value (absolute value).
After that, the flag F2 is set to 1 in step P25. In the next step P26, the flag F2 and the flag F3 are
and determines the value of flag F2. If the values of F3 are different, the process of step P27 is performed, and if the flags F2 and F3 are the same value, the processes of steps P28 to P33 are performed. In step P27, the deviation ΔθR is calculated by adding the rear wheel target steering angle θRT and the rear wheel steering angle θR. Further, in step P28, the rear wheel steering angle θR is subtracted from the rear wheel target steering angle θRT to calculate the deviation ΔθR, and after this, in step P
29 to determine whether the deviation ΔθR is positive or negative. This step P2
9, when it is determined that the deviation ΔθR is negative, the deviation ΔθR is made into a positive value in step P30, and then step I)3
1. P32. P33 and replaces the value of flag F3. That is, the value of flag F3 is determined in step P31, and if flag F3 is 0, flag F3 is replaced with 1 in step P32, and if flag F3 is 1, step P33 is performed.
The flag F3 is replaced with O.

続くステップP34においては操舵速度センサ】5の検
知信号から操舵速度δFft読み込み、ステップP35
において、第6図に示すデータテープル2から操舵速度
θFをアドレスとして補正係数αをマツプ検索する。そ
して、ステップP36において、上述の偏差ΔθRに補
正係数αを乗じて偏差ΔθRを補正する。上記第6図か
ら明らかなように、補正係数αは操舵速度θFが低い領
域で概略1、操舵速度δFが高い領域において漸減して
零になるため、この補正係数αて補正された偏差ΔθR
は操舵速度δFが高い領域で小さくなる。
In the following step P34, the steering speed δFft is read from the detection signal of the steering speed sensor ]5, and in step P35
Then, a map search is performed for the correction coefficient α from the data table 2 shown in FIG. 6 using the steering speed θF as an address. Then, in step P36, the deviation ΔθR is corrected by multiplying the deviation ΔθR by the correction coefficient α. As is clear from FIG. 6 above, the correction coefficient α is approximately 1 in the region where the steering speed θF is low, and gradually decreases to zero in the region where the steering speed δF is high. Therefore, the deviation ΔθR corrected by the correction coefficient α
becomes small in a region where the steering speed δF is high.

次に、ステップP37において、第7図に示すデータテ
ーブル3からイ扁差ΔeRをアドレスとして後輪操舵力
りをマツプ検索する。この後輪操舵力りは、電動機21
に通電する電流のデユーティファクタすなわち電流値を
表し、0に近い低偏差域ではOの不感帯を有し、偏差の
増加に従い増加して高偏差域で一定値をとる。
Next, in step P37, a map search is performed for the rear wheel steering force from the data table 3 shown in FIG. 7 using the height difference ΔeR as an address. This rear wheel steering force is generated by the electric motor 21
It represents the duty factor, that is, the current value, of the current applied to the current, and has a dead zone of O in a low deviation area close to 0, increases as the deviation increases, and takes a constant value in a high deviation area.

このステップP37では、上述のように偏差ΔθRは操
舵速度δFに基づき補正されて操舵速度eFが大きい領
域で前述のステップP27゜P28で算出された偏差よ
りも小さくなるため、操舵力りも操舵速度δFが小さい
領域よりも大きい領域で小さくなる。
In this step P37, the deviation ΔθR is corrected based on the steering speed δF as described above, and becomes smaller than the deviation calculated in steps P27 and P28 in the region where the steering speed eF is large, so that the steering force and the steering speed are It is smaller in regions where δF is large than in regions where δF is small.

続く、ステップP3Bにおいては、後輪操舵力りかOか
否かを判別し、後輪操舵力りか0てあればステップP3
9でPWM信号g、h、i、jにそれぞれO,0,1,
Iを設定し、また、後輪駆動力りが0でなければステッ
プP40でフラグF3の値を判別する。このステップP
40では、フラグF3が0であると判断されるとステッ
プP41でPWM信号g、h、t、jにそれぞれ1.0
,0.Dを設定し、また、フラグF3が1と判断される
とステップP42でPWM信号g。
Subsequently, in step P3B, it is determined whether the rear wheel steering force is O or not, and if the rear wheel steering force is 0, the process proceeds to step P3.
9, set the PWM signals g, h, i, and j to O, 0, 1, respectively.
I is set, and if the rear wheel drive force is not 0, the value of the flag F3 is determined in step P40. This step P
40, when it is determined that the flag F3 is 0, 1.0 is set to each of the PWM signals g, h, t, and j in step P41.
,0. D is set, and if it is determined that the flag F3 is 1, the PWM signal g is set in step P42.

h、i、jにそれぞれ0,1.D、Oを設定する。そし
て、ステップP43でPWM信号g1h、i、jを出力
する。したがって、電動m21は、後輪18RL、18
RRの転舵方向に応じデユーティファクタDの電流が通
電されて該電流に応じた操舵力で後輪18RL、18R
Rを目標舵角まで転舵し、また、非通電時には巻線が短
絡されて電気制動を行い後輪舵角を目標舵角に保持19
         ゛ する。この後、ステップP44で他に定義されたサブル
ーチンに従い電動機21およびスイッチ回路40等の駆
動系の故障診断を行い、再度、ステップP2からの一連
の処理を繰り返す。
0, 1 for h, i, j, respectively. Set D and O. Then, in step P43, PWM signals g1h, i, and j are output. Therefore, the electric m21 has rear wheels 18RL, 18
A current of duty factor D is applied in accordance with the steering direction of RR, and a steering force corresponding to the current is applied to the rear wheels 18RL and 18R.
R is steered to the target steering angle, and when the power is not energized, the winding is short-circuited to perform electric braking to maintain the rear wheel steering angle at the target steering angle.
Do it. Thereafter, in step P44, failure diagnosis of the drive system such as the electric motor 21 and the switch circuit 40 is performed according to a subroutine defined elsewhere, and the series of processes from step P2 is repeated again.

上述のように、この実施例の操舵制御装置にあフては、
後輪18RL、18RHの実舵角θRと車速等に応じ決
定される目標舵角θRTとの偏差ΔθRに応じた電流を
電動機21に通電し、後輪18RL、18RRを電動機
21によって偏差を減少すべく転舵する。そして、検出
された後輪舵角θRと目標舵角θRTとの偏差ΔθRは
操舵速度δFが大きい場合すなわち走行路面の摩擦係数
が小さい場合に減少補正されて後輪の操舵力りが小さく
なるため、後輪の転舵角速度すなわち過渡的な転舵角に
走行路面の摩擦係数に依存した特性を付与でき、走行路
面の摩擦係数の如何にかかわら、ず良好な旋回性能を得
られる。
As mentioned above, regarding the steering control device of this embodiment,
A current corresponding to the deviation ΔθR between the actual steering angle θR of the rear wheels 18RL and 18RH and a target steering angle θRT determined according to vehicle speed etc. is applied to the electric motor 21, and the deviation is reduced by the electric motor 21 between the rear wheels 18RL and 18RR. Turn the wheel as much as possible. The deviation ΔθR between the detected rear wheel steering angle θR and the target steering angle θRT is corrected to decrease when the steering speed δF is large, that is, when the friction coefficient of the road surface is small, and the rear wheel steering force becomes smaller. The steering angular velocity of the rear wheels, that is, the transient steering angle, can be given characteristics dependent on the friction coefficient of the road surface, and excellent turning performance can be obtained regardless of the friction coefficient of the road surface.

第8図には、この発明の他の実施例にかかる前後輪操舵
車両の操舵制御装置を示す。なお、同図中、ステップP
1からステップP33、ステップP34、ステップP3
5、ステップP38からステップP44は、それぞれ前
述の第4図中のステップP1からステップP33、ステ
ップP37、ステップP34、ステップP38からステ
ップP44と同一であり説明を省略する。
FIG. 8 shows a steering control device for a front and rear wheel steered vehicle according to another embodiment of the present invention. In addition, in the same figure, step P
1 to step P33, step P34, step P3
5. Steps P38 to P44 are respectively the same as steps P1 to P33, step P37, step P34, and steps P38 to P44 in FIG. 4 described above, and their explanations will be omitted.

この実施例では、ステップP36において、第9図に示
すデータテーブル4から操舵速度bFをアドレスとして
補正操舵力Dsをマツプ検索し、続くステップP37で
操舵力りから補正操舵力Dsを減算して操舵力DSを補
正する。補正操舵力Dsは、第9図に明らかなように、
操舵速度δFが高い領域て0から漸増して所定値になる
特性を有するため、この補正操舵力Dsを減算された操
舵力りは操舵速度δFが高い領域で小さくなる。したが
って、この実施例においても、後輪の操舵速度に走行路
面の摩擦係数に依存した特性を付与でき、走行路面の摩
擦係数の如何にかかわらず良好な旋回特性を得られる。
In this embodiment, in step P36, a map search is performed for the corrected steering force Ds using the steering speed bF as an address from the data table 4 shown in FIG. Correct the force DS. As is clear from FIG. 9, the corrected steering force Ds is
Since it has a characteristic that it gradually increases from 0 to a predetermined value in the region where the steering speed δF is high, the steering force after subtracting this corrected steering force Ds becomes smaller in the region where the steering speed δF is high. Therefore, in this embodiment as well, characteristics depending on the coefficient of friction of the road surface can be imparted to the steering speed of the rear wheels, and good turning characteristics can be obtained regardless of the coefficient of friction of the road surface.

なお、上述した各実施例では、電動機21により後輪1
8RL、18RRを転舵するか、油圧アクヂュエータ等
によっても本発明が達成されることは言うまでもない。
In each of the embodiments described above, the electric motor 21 drives the rear wheel 1.
It goes without saying that the present invention can also be achieved by steering 8RL and 18RR, or by using a hydraulic actuator.

(発明の効果) 以上説明したように、この発明にかかる前後輪操舵車両
の操舵制御装置によれは、後輪の操舵力を前輪の転舵角
の時間的変化に応じ調整するため、後輪の転舵角に走行
路面の摩擦係数に依存した特性を付与でき、後輪の転舵
角が走行路面の摩擦係数によって受ける影響を排除して
走行路面の摩擦係数の如何にかかわらず良好な旋回性能
が得られる。
(Effects of the Invention) As explained above, the steering control device for a front and rear wheel steered vehicle according to the present invention adjusts the steering force of the rear wheels according to the temporal change in the steering angle of the front wheels. The steering angle of the rear wheels can be given characteristics that depend on the coefficient of friction of the road surface, eliminating the influence of the coefficient of friction of the road surface on the steering angle of the rear wheels, allowing for good turning regardless of the coefficient of friction of the road surface. Performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の操舵制御装置の概念図である。第2
図から第7図はこの発明の一実施例にかかる操舵制御装
置を示し、第2図か全体概略図、第3図かブロック図、
第4図かフローチャート、第5図、第6図および第7図
か制御処理に用いるデータテーブルである。第8図およ
び第9図はこの発明の他の実施例にかかる操舵制御装置
を示し、第8図がフローチャート、第9図か制御処理の
データテーブルである。 11・・・操向ハンドル 14・・・舵角センサ(前輪舵角検知手段)15・・・
操舵速度センサ(前輪操舵速度検知手段)16・・・コ
ントローラ 18FL、18FR・・・前輪 +8RL、18RR・・・後輪 20・・・車速センサ(車速検知手段)21・・・電動
81!(駆動手段〕 24・・・後輪舵角センサ 25・・・制御回路 26・・・駆動回路 31・・・マイクロコンピュータ回路 (後輪目標舵角決定手段、後輪操舵力決定手段、操舵力
補正手段) 特 許 出 願 人  本田技研工業株式会社代理人 
 弁理士   下  1) 容一部間    弁理士 
   大  橋  邦  部同    弁理士    
小  山      有第4 図 デ゛−クテーブラレ] 0            イjな フL    Ae
pテークテーブシレ2 01呻遠度6゜ 0   攪舵速度 6゜ 第8図 F2六F3       F26 F2;F3 r2−t”3 QRTモ○RF27        P28△eR≦○
     F29 ΔOR2○ へΔθR−ΔθR4頴ゝ○
FIG. 1 is a conceptual diagram of a steering control device according to the present invention. Second
7 to 7 show a steering control device according to an embodiment of the present invention, FIG. 2 is an overall schematic diagram, FIG. 3 is a block diagram,
FIG. 4 is a flowchart, and FIGS. 5, 6, and 7 are data tables used for control processing. 8 and 9 show a steering control device according to another embodiment of the present invention, with FIG. 8 being a flowchart and FIG. 9 being a data table of control processing. 11... Steering handle 14... Rudder angle sensor (front wheel steering angle detection means) 15...
Steering speed sensor (front wheel steering speed detection means) 16...Controller 18FL, 18FR...Front wheel +8RL, 18RR...Rear wheel 20...Vehicle speed sensor (vehicle speed detection means) 21...Electric 81! (Drive means) 24... Rear wheel steering angle sensor 25... Control circuit 26... Drive circuit 31... Microcomputer circuit (rear wheel target steering angle determining means, rear wheel steering force determining means, steering force Amendment Means) Patent Applicant Agent: Honda Motor Co., Ltd.
Patent Attorney Part 2 1) Part 1 Patent Attorney
Kuni Ohashi Patent Attorney
Koyama Yu 4th figure table layout] 0
P take table sill 2 01 Distance 6゜0 Stirring speed 6゜Fig. 8F26F3 F26 F2;F3 r2-t”3 QRTMo○RF27 P28△eR≦○
F29 ΔOR2○ to ΔθR−ΔθR4ゝ○

Claims (1)

【特許請求の範囲】 操向ハンドルの操舵に応じ前輪とともに後輪を転舵する
前後輪操舵車両において、 前輪の転舵角度を検出する前輪舵角検知手段と、 後輪の転舵角度を検出する後輪舵角検知手段と、 車速を検出する車速検知手段と、 該車速検知手段により検出された車速および前記前輪舵
角検知手段により検出された前輪の転舵角度に応じて後
輪の目標転舵角度を決定する後輪目標舵角決定手段と、 該後輪目標舵角決定手段により決定された後輪の目標転
舵角度と前記後輪舵角検知手段により検出された後輪の
転舵角度との偏差に応じて後輪の目標操舵力を決定する
後輪操舵力決定手段と、前輪の転舵角度の時間的変化を
検出する前輪操舵速度検知手段と、 該操舵速度検知手段により検出された時間的変化に応じ
て前記後輪操舵力決定手段により決定された目標操舵力
を前記時間的変化が大きい場合に小さくなるように補正
する操舵力補正手段と、該操舵力補正手段により補正さ
れた目標操舵力で後輪を目標転舵角度に転舵する駆動手
段と、を備えることを特徴とする前後輪操舵車両の操舵
制御装置。
[Scope of Claims] In a front and rear wheel steered vehicle that steers both the front wheels and the rear wheels in accordance with the steering of a steering wheel, there is provided a front wheel steering angle detection means for detecting the steering angle of the front wheels; and a front wheel steering angle detection means for detecting the steering angle of the rear wheels. a rear wheel steering angle detection means for detecting a vehicle speed; a vehicle speed detection means for detecting a vehicle speed; Rear wheel target steering angle determining means for determining a steering angle, and a rear wheel target steering angle determined by the rear wheel target steering angle determining means and a rear wheel turning angle detected by the rear wheel steering angle detecting means. Rear wheel steering force determining means for determining a target steering force for the rear wheels according to the deviation from the steering angle; front wheel steering speed detecting means for detecting temporal changes in the steering angle of the front wheels; Steering force correction means for correcting the target steering force determined by the rear wheel steering force determination means in accordance with the detected temporal change so that it becomes smaller when the temporal change is large; and the steering force correction means. A steering control device for a front and rear wheel steered vehicle, comprising: a drive means for steering rear wheels to a target steering angle using a corrected target steering force.
JP14536288A 1987-07-29 1988-06-13 Steering control device for front and rear wheel steering vehicles Expired - Fee Related JP2577436B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14536288A JP2577436B2 (en) 1988-06-13 1988-06-13 Steering control device for front and rear wheel steering vehicles
FR8810305A FR2620674B1 (en) 1987-07-29 1988-07-29 METHOD AND APPARATUS FOR CONTROLLING THE STEERING OPERATION OF A MOTOR VEHICLE WITH STEERING FRONT AND REAR WHEELS
US07/226,070 US4939653A (en) 1987-07-29 1988-07-29 Method of and apparatus for controlling steering operation of a motor vehicle with steerable front and rear wheels
GB8818071A GB2208375B (en) 1987-07-29 1988-07-29 Method of and apparatus for controlling steering operation of a motor vehicle with steerable front and rear wheels
DE3825885A DE3825885A1 (en) 1987-07-29 1988-07-29 METHOD AND DEVICE FOR CONTROLLING THE STEERING PROCESS OF A MOTOR VEHICLE WITH STEERING FRONT AND REAR WHEELS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14536288A JP2577436B2 (en) 1988-06-13 1988-06-13 Steering control device for front and rear wheel steering vehicles

Publications (2)

Publication Number Publication Date
JPH01314670A true JPH01314670A (en) 1989-12-19
JP2577436B2 JP2577436B2 (en) 1997-01-29

Family

ID=15383451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14536288A Expired - Fee Related JP2577436B2 (en) 1987-07-29 1988-06-13 Steering control device for front and rear wheel steering vehicles

Country Status (1)

Country Link
JP (1) JP2577436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219035A (en) * 1990-11-30 1993-06-15 Honda Giken Kogyo Kabushiki Kaisha Front and rear wheel steering system for motor vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219035A (en) * 1990-11-30 1993-06-15 Honda Giken Kogyo Kabushiki Kaisha Front and rear wheel steering system for motor vehicles

Also Published As

Publication number Publication date
JP2577436B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
JP2532105B2 (en) Steering control device for front and rear wheel steering vehicles
US4939653A (en) Method of and apparatus for controlling steering operation of a motor vehicle with steerable front and rear wheels
JPH05105100A (en) Vehicle steering system
US8290658B2 (en) Vehicle control system and method for judging abnormality in vehicle control system
CN101704382B (en) Controller of electric power steering device of vehicle in which steered wheels are driven
CN112623019B (en) Steering device for vehicles
JPH04201784A (en) Four-wheel steering device
JP2603289B2 (en) Steering control device for front and rear wheel steering vehicles
JP2938806B2 (en) Vehicle steering angle control device
JPH01314670A (en) Steering controller of front and rear wheel steering vehicle
JP2766305B2 (en) 4-wheel steering system
JPH03164379A (en) Four-wheel steering device
JP2000033879A (en) Steering unit for vehicle
JP2527194B2 (en) Front and rear wheel steering system
JP2726306B2 (en) Vehicle front and rear wheel steering system
JP2532113B2 (en) Steering control device for front and rear wheel steering vehicles
JPS62137275A (en) Rear wheel steering control device for front and rear wheel steering vehicle
JPH02274667A (en) Steering control device for front-rear wheel steering vehicle
JP2988170B2 (en) Four-wheel steering system
JP2738784B2 (en) Front and rear wheel steering system
JPH06273443A (en) Correction apparatus of detected yaw rate
JPH04242111A (en) Steering-angle detecting apparatus for vehicle
JP3038930B2 (en) Motor control device for four-wheel steering vehicle
JPH065950Y2 (en) Rear wheel steering angle control device
JP3013586B2 (en) Rear wheel steering system for four-wheel steering vehicles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees