JPH01313943A - Insulating thin film and formation thereof - Google Patents
Insulating thin film and formation thereofInfo
- Publication number
- JPH01313943A JPH01313943A JP14651188A JP14651188A JPH01313943A JP H01313943 A JPH01313943 A JP H01313943A JP 14651188 A JP14651188 A JP 14651188A JP 14651188 A JP14651188 A JP 14651188A JP H01313943 A JPH01313943 A JP H01313943A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- oxygen
- nitrogen
- thin film
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 32
- 230000015572 biosynthetic process Effects 0.000 title description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 41
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 29
- 239000010703 silicon Substances 0.000 claims abstract description 27
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 24
- 239000001301 oxygen Substances 0.000 claims abstract description 24
- 229910052796 boron Inorganic materials 0.000 claims abstract description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 22
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 11
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 7
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 6
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 4
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 3
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010277 boron hydride Inorganic materials 0.000 claims description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 claims description 2
- 229910052990 silicon hydride Inorganic materials 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 37
- 239000011229 interlayer Substances 0.000 abstract description 4
- 239000010410 layer Substances 0.000 abstract description 3
- 230000003071 parasitic effect Effects 0.000 abstract description 3
- 238000009413 insulation Methods 0.000 abstract description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 239000001272 nitrous oxide Substances 0.000 description 6
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 210000004709 eyebrow Anatomy 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- -1 boron halide Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、低誘電率な絶縁薄膜およびその形成方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low dielectric constant insulating thin film and a method for forming the same.
超高速半導体集積回路の配線用金属材料に低抵抗率なア
ルミニウムを用いる多層配線技術が必要不可欠である。Multilayer wiring technology that uses low-resistivity aluminum as the wiring metal material for ultra-high-speed semiconductor integrated circuits is essential.
このため層間絶縁膜の形成は450℃以下で行われる必
要がある。Therefore, the interlayer insulating film must be formed at a temperature of 450° C. or lower.
従来かかる眉間絶縁膜としては、常圧あるいはプラズマ
CVD法によるシリコン酸化膜やリンをドープしたシリ
コン酸化膜(以下PSG膜という)、あるいはポリイミ
ドに代表される有機塗布膜あるいはプラズマCVD法に
より形成されたシリコン窒化膜(以下PCVD窒化膜と
いう)が用いられてきた。また、シリコン、ボロンおよ
び窒素よりなる絶縁材料(特開昭62−156822号
公報)が提案されている。Conventionally, the glabella insulating film has been formed by a silicon oxide film or a phosphorous-doped silicon oxide film (hereinafter referred to as a PSG film) by normal pressure or plasma CVD, an organic coating film typified by polyimide, or a plasma CVD method. A silicon nitride film (hereinafter referred to as PCVD nitride film) has been used. Furthermore, an insulating material made of silicon, boron, and nitrogen (Japanese Patent Laid-Open No. 156822/1982) has been proposed.
シリコン酸化膜は、比誘電率は3.9と比較的小さいも
のの、耐湿性、耐アルカリイオン性とも低く、デバイス
に応用する場合、18′11性上の問題がある。また、
PSG膜は、耐アルカリオン性は大幅に改善されるもの
の、耐湿性は改善されず、吸湿によりリン酸が形成され
ることにより、配線金属のアルミニウムを腐食するとい
う問題がある。Although the silicon oxide film has a relatively small dielectric constant of 3.9, it has low moisture resistance and alkali ion resistance, and when applied to devices, there is a problem with 18'11 properties. Also,
Although the alkali ion resistance of the PSG film is greatly improved, the moisture resistance is not improved, and there is a problem in that phosphoric acid is formed due to moisture absorption and corrodes the aluminum wiring metal.
有機塗布膜は比誘電率が約3.5と小さく、平坦化、厚
膜化が可能であるが、塗布後溶剤を蒸発させるために数
百℃でのアニールが必要であること、膜の付着力は下地
の材料および表面形状に非常に敏感であること、さらに
リーク電流が他の無機絶縁膜に比べて大きい。PCVD
窒化膜は低温形成が可能で、段差部での被覆特性も良好
であり、また圧縮応力を有するため厚膜化が可能である
など優れた絶縁材料であるが、比誘電率が約7と大きい
のが欠点である。Organic coating films have a low dielectric constant of about 3.5, and can be made flat and thick, but they require annealing at several hundred degrees Celsius to evaporate the solvent after coating, and are difficult to adhere to. Adhesion strength is very sensitive to the underlying material and surface shape, and leakage current is larger than other inorganic insulating films. PCVD
Nitride film is an excellent insulating material as it can be formed at low temperatures, has good covering properties at stepped areas, and can be made thicker due to its compressive stress, but it has a high dielectric constant of about 7. This is a drawback.
またシリコン、ボロンおよび窒素を主成分とする絶縁材
料は、比誘電率がシリコン酸化膜よりも低く、段差被覆
特性に優れ、厚膜化が可能であり、さらに微細加工性に
優れる絶縁材料ではあるが眉間絶縁膜としての応用を考
えた場合には、さらに低い比誘電率が望まれていた。In addition, insulating materials whose main components are silicon, boron, and nitrogen have lower dielectric constants than silicon oxide films, have excellent step coverage characteristics, can be made thicker, and are also excellent in microfabrication properties. When considering its application as an insulating film between the eyebrows, an even lower dielectric constant was desired.
本発明は低誘電率な絶縁膜と、その形成方法に関するも
のであり、その目的は超高速半導体集積回路の多層配線
に用いる低容量層間絶縁膜を提供することにある。The present invention relates to a low dielectric constant insulating film and a method for forming the same, and its purpose is to provide a low capacitance interlayer insulating film for use in multilayer wiring of ultra-high speed semiconductor integrated circuits.
シリコン、ボロン、窒素および酸素からなり、酸素の原
子濃度とシリコンの原子濃度との比が2以下とし、シリ
コン原子を含むガスとして、シリコンの水素化物、ボロ
ン原子を含むガスとして、ボロンの水素化物、窒素原子
を含むガスとして、窒素ガスあるいは窒素の水素化物、
および酸素原子を含むガスとして酸素ガスあるいは窒素
の酸化物の混合ガスのプラズマ放電を用いるwA縁縁膜
膜形成方法により実現した。Consisting of silicon, boron, nitrogen, and oxygen, the ratio of the atomic concentration of oxygen to the atomic concentration of silicon is 2 or less, a silicon hydride is used as a gas containing silicon atoms, and a boron hydride is used as a gas containing boron atoms. , nitrogen gas or nitrogen hydride as a gas containing nitrogen atoms,
This was realized by a wA edge film forming method using plasma discharge of a mixed gas of oxygen gas or nitrogen oxide as a gas containing oxygen atoms.
配線材料にアルミニウムあるいはアルミニウム系合金を
用いる多層配線の眉間絶縁膜として用いるシリコン、ボ
ロン、窒素および酸素からなる絶縁薄膜の形成は、45
0℃以下の低温で形成する必要から、本実施例では周波
数として13.56MHzの高周波を用いる容量結合型
プラズマCVD装置により、シリコン原子を含むガスと
してモノシラン、ボロン原子を含むガスとしてジボラン
、窒素原子を含むガスとしてアンモノニア、および酸素
を含むガスとして亜酸化窒素の混合ガスのプラズマ放電
を用いて薄膜の形成を行った。この時、5%モノシラン
(アルゴンベース)の流量、5%ジボラン(アルゴンベ
ース)の流量、およびアンモノニアと亜酸化窒素の流量
の和として、それぞれ300,300.50secm、
および100゜600.60secmの2水準をとり、
ツレツレの水準で亜酸化窒素の流量の、アンモノニアお
よび亜酸化窒素の流量の和に対する割合を変化させるこ
とにより、形成されるwAI! ’784膜の組成を変
化させた。また、反応時の全ガス圧力は1.3T。Formation of an insulating thin film made of silicon, boron, nitrogen, and oxygen to be used as an insulating film between the eyebrows of multilayer wiring using aluminum or an aluminum-based alloy as a wiring material is described in 45
Because it is necessary to form at a low temperature of 0° C. or lower, in this example, monosilane is used as the gas containing silicon atoms, diborane and nitrogen atoms are used as the gas containing boron atoms, using a capacitively coupled plasma CVD apparatus using a high frequency of 13.56 MHz. A thin film was formed using plasma discharge of a mixed gas of ammonia as a gas containing nitrous oxide and nitrous oxide as a gas containing oxygen. At this time, the flow rate of 5% monosilane (argon base), the flow rate of 5% diborane (argon base), and the sum of the flow rates of ammonia and nitrous oxide are 300 and 300.50 seconds, respectively.
and 100°600.60sec,
wAI! formed by varying the ratio of the flow rate of nitrous oxide to the sum of the flow rates of ammonia and nitrous oxide at the level of treble! The composition of the '784 film was varied. Furthermore, the total gas pressure during the reaction was 1.3T.
rrである。さらに、基板温度および高周波電力密度は
それぞれ350℃およびIW/cm”である。It is rr. Further, the substrate temperature and high frequency power density are 350° C. and IW/cm”, respectively.
第1図は薄膜の比誘電率と酸素原子濃度/シリコン原子
濃度との関係図で、シリコン、ボロン、窒素および酸素
からなる絶縁薄膜の周波数IMH2における比誘電率と
、酸素原子濃度のシリコン原子濃度に対する比との関係
を示したものである。Figure 1 is a diagram showing the relationship between the dielectric constant of a thin film and the oxygen atom concentration/silicon atomic concentration. This shows the relationship between the ratio of
薄膜中の酸素原子濃度が増加するにともない、膜の比誘
電率の値は対応するシリコン、ボロンおよび窒素を主成
分とする絶縁薄膜の比誘電率の値よりも低くなり、酸素
原子濃度がシリコン原子濃度の2倍になったところで最
も低い値になり、それよりも酸素原子濃度が高い領域で
は逆に膜の比誘電率の値は大きくなる。本実施例で形成
された、シリコン、ボロン、窒素および酸素からなるw
A縁縁膜膜ボロンおよび窒素の原子濃度は、ともに酸素
原子濃度の増加とともに単調に減少し、その範囲は、シ
リコン原子濃度が0.07の絶縁薄膜の場合、ボロン原
子濃度は0.5から0.4、窒素原子濃度は0.045
から0.18、また、シリコン原子濃度が0.20の絶
縁薄膜の場合、ボロン原子濃度は0.32から0.18
、窒素原子濃度は0.48から0.10の範囲である。As the oxygen atom concentration in the thin film increases, the dielectric constant value of the film becomes lower than that of the corresponding insulating thin film mainly composed of silicon, boron, and nitrogen; The lowest value is reached when the atomic concentration is twice as high as the atomic concentration, and the relative dielectric constant of the film becomes larger in a region where the oxygen atomic concentration is higher than that. w made of silicon, boron, nitrogen and oxygen formed in this example
Both boron and nitrogen atomic concentrations decrease monotonically as the oxygen atomic concentration increases, and the range is from 0.5 to 0.5 for an insulating thin film with a silicon atomic concentration of 0.07. 0.4, nitrogen atom concentration is 0.045
In the case of an insulating thin film with a silicon atomic concentration of 0.20, the boron atomic concentration is 0.32 to 0.18.
, the nitrogen atom concentration ranges from 0.48 to 0.10.
このように、シリコン、ボロン、窒素および酸素からな
る絶縁薄膜においては、対応するシリコン、ボロンおよ
び窒素を主成分とする絶縁薄膜に対して、最大約20%
比誘電率を低減することができる。In this way, an insulating thin film made of silicon, boron, nitrogen, and oxygen has a maximum resistance of about 20% compared to a corresponding insulating thin film whose main components are silicon, boron, and nitrogen.
The dielectric constant can be reduced.
以上のように、本実施例においてはシリコン、ボロン、
窒素および酸素の原子濃度がそれぞれ0゜0?、0.4
5.0.34および0.14の組成の絶縁薄膜において
、比誘電率が3.2という低い値が実現できる。As mentioned above, in this example, silicon, boron,
Are the atomic concentrations of nitrogen and oxygen each 0°0? , 0.4
In insulating thin films with compositions of 5.0.34 and 0.14, a dielectric constant as low as 3.2 can be achieved.
第2図は薄膜の絶縁耐圧と、酸素原子濃度/シリコン原
子濃度との関係図である。ここで、薄膜の絶縁耐圧はl
μA/cm”のリーク電流が流れる場合の電界強度の値
をもって定義している。膜中の酸素原子濃度が増加する
にともない、膜の絶縁耐圧の値は増加していき、酸素原
子濃度がシリコン原子濃度の2倍になったところで最も
高い値になり、それよりも酸素原子濃度が増加した領域
では、膜の絶縁耐圧は急激に低下することが分かる。こ
のように、シリコン、ボロン、窒素および酸素からなる
絶縁薄膜において、低い比誘電率が実現できる領域では
膜の絶縁耐圧の値も6MV/cm以上であり、眉間絶縁
膜としての応用上問題はない。FIG. 2 is a diagram showing the relationship between the dielectric strength voltage of a thin film and the oxygen atom concentration/silicon atom concentration. Here, the dielectric strength voltage of the thin film is l
It is defined as the value of the electric field strength when a leakage current of "μA/cm" flows.As the oxygen atom concentration in the film increases, the dielectric breakdown voltage value of the film increases, and the oxygen atom concentration increases It can be seen that the dielectric breakdown voltage of the film reaches its highest value when it is twice the atomic concentration, and then rapidly decreases in regions where the oxygen atomic concentration increases beyond that point. In an insulating thin film made of oxygen, in a region where a low dielectric constant can be achieved, the dielectric strength of the film is 6 MV/cm or more, and there is no problem in its application as an insulating film between the eyebrows.
ところで、第1図および第2図から分かるように、酸素
原子濃度のシリコン原子濃度に対する比が2以上の場合
にも比誘電率が低くかつ絶縁耐圧も比較的高い絶縁薄膜
を得ることができるが、このような条件の絶縁薄膜は不
安定性が大きく、たとえば比誘電率の測定時にドリフト
が観測される等、応用上問題がある。By the way, as can be seen from FIGS. 1 and 2, it is possible to obtain an insulating thin film with a low dielectric constant and a relatively high dielectric strength voltage even when the ratio of the oxygen atom concentration to the silicon atom concentration is 2 or more. An insulating thin film under such conditions is highly unstable, and there are problems in its application, such as drift observed when measuring relative permittivity.
また、シリコン、ボロン、窒素および酸素からなる絶縁
薄膜を熱酸化膜で形成した高さ1μmの垂直段差上に形
成した場合の段差被覆特性に関しては、CVD酸化膜や
PSG膜でみられるようなオーバーハングな形状は観察
されず、PCVD窒化膜におけると同等な段差形状に忠
実な被覆特性が得られる。さらに、シリコン、ボロン、
窒素および酸素からなる絶縁薄膜をシリコン基板あるい
はアルミニウム基板上に2.0μm形成しても、剥離や
クラックの発生はみられず、CVDシリコン酸化膜やP
SG膜に比べて厚膜化が可能であり、付着力についても
問題はない。In addition, regarding the step coverage characteristics when an insulating thin film made of silicon, boron, nitrogen, and oxygen is formed on a vertical step with a height of 1 μm formed by a thermal oxide film, there is no overlapping as seen with CVD oxide films or PSG films. No hanging shape was observed, and coating characteristics faithful to the step shape equivalent to those of the PCVD nitride film were obtained. In addition, silicon, boron,
Even when an insulating thin film consisting of nitrogen and oxygen was formed to a thickness of 2.0 μm on a silicon substrate or an aluminum substrate, no peeling or cracking was observed, and no peeling or cracking was observed.
It can be made thicker than the SG film, and there is no problem with adhesion.
以上述べたことにより明らかなように、シリコン、ボロ
ン、窒素および酸素からなる絶縁薄膜を層間絶縁膜とし
て用いれば、従来の眉間絶縁膜に比べて、配線間および
配′a層間の寄生容量を小さくすることができ、したが
って素子の高速化を図ることが可能である。As is clear from the above, if an insulating thin film made of silicon, boron, nitrogen, and oxygen is used as an interlayer insulating film, the parasitic capacitance between wirings and between wiring layers can be reduced compared to the conventional glabella insulating film. Therefore, it is possible to increase the speed of the device.
以上述べた本発明のシリコン、ボロン、窒素および酸素
からなる絶縁薄膜は、ガスの種類、たとえばシリコン原
子を含むガスとしてモノシランのかわりに多重シランや
ハロゲン化シラン、あるいは有機シラン等を、またボロ
ン原子を含むガスとしてジボランのかわりに三フッ化ボ
ロン、ハロゲン化ボロンあるいは有機ボロン等を、窒素
原子を含むガスとしてアンモノニアのかわりに窒素ガス
、ヒドラジン、あるいは三フッ化窒素等を、酸素を含む
ガスとして亜酸化窒素のかわりに酸素、オゾン、−酸化
窒素、あるいは二酸化窒素等を用いた場合や、それらの
混合ガスを用いても形成できる。The insulating thin film made of silicon, boron, nitrogen, and oxygen of the present invention described above can be prepared by using a gas containing silicon atoms such as multi-silane, halogenated silane, or organic silane instead of monosilane, and using boron atoms. In place of diborane, boron trifluoride, boron halide, organic boron, etc. can be used instead of diborane, and in place of ammonia, nitrogen gas, hydrazine, or nitrogen trifluoride can be used as a gas containing nitrogen atoms. It can also be formed by using oxygen, ozone, -nitrogen oxide, nitrogen dioxide, etc. instead of nitrous oxide, or by using a mixed gas thereof.
さらに、他の低温薄膜形成方法、たとえば13゜56M
Hz以外の周波数を用いる容量結合型、あるいは誘電結
合型装置を用いたプラズマCVD法、マクロ波を用いる
プラズマCVD法、あるいはECRプラズマCVD法、
あるいは光CVD法、あるいはシリコン原子、ボロン原
子、窒素原子および酸素原子をターゲット材料あるいは
反応ガスの部分として含むスパッタリング法によっても
同等の膜が形成できることは明らかである。Furthermore, other low-temperature thin film formation methods, such as 13°56M
A plasma CVD method using a capacitively coupled or inductively coupled device using a frequency other than Hz, a plasma CVD method using macro waves, or an ECR plasma CVD method,
It is clear that an equivalent film can also be formed by a photo-CVD method or a sputtering method that includes silicon atoms, boron atoms, nitrogen atoms, and oxygen atoms as target materials or reactive gases.
また本発明の絶縁薄膜の加工はフッ素を含むガスのプラ
ズマ放電によって容易に行え、微細加工性にも優れてい
る。Further, the insulating thin film of the present invention can be easily processed by plasma discharge of a fluorine-containing gas, and has excellent micro-processability.
以上説明したように、シリコン、ボロン、窒素および酸
素からなる絶縁薄膜は、比誘電率が低く、また低温形成
が可能で、段差被覆特性、絶縁特性に優れ、厚膜化も可
能であり、さらにドライ加工性にも優れているため、本
絶縁薄膜を眉間絶縁膜として応用した場合、配線間およ
び配線層間の寄生容量を小さくすることができ、素子の
高速動作化が図れる利点がある。As explained above, insulating thin films made of silicon, boron, nitrogen, and oxygen have a low dielectric constant, can be formed at low temperatures, have excellent step coverage and insulation properties, and can be made thicker. It also has excellent dry processability, so when this insulating thin film is applied as a glabellar insulating film, parasitic capacitance between wirings and between wiring layers can be reduced, which has the advantage of increasing the speed of device operation.
第1図は薄膜の比誘電率と酸素原子濃度/シリコン原子
濃度の関係図、第2図は薄膜の絶縁耐圧と酸素原子濃度
/シリコン原子濃度の関係図である。
特許出願人 日本電信電話株式会社
代理人 弁理士 玉 蟲 久五部
CIA?り)FIG. 1 is a diagram showing the relationship between the dielectric constant of the thin film and the oxygen atom concentration/silicon atomic concentration, and FIG. 2 is a diagram showing the relationship between the dielectric strength voltage and the oxygen atom concentration/silicon atomic concentration of the thin film. Patent applicant Nippon Telegraph and Telephone Corporation agent Patent attorney Tama Mushi Kugobe CIA? the law of nature)
Claims (2)
素の原子濃度とシリコンの原子濃度との比が2以下であ
ることを特徴とする絶縁薄膜。(1) An insulating thin film consisting of silicon, boron, nitrogen and oxygen, characterized in that the ratio of the atomic concentration of oxygen to the atomic concentration of silicon is 2 or less.
化物、ボロン原子を含むガスとして、ボロンの水素化物
、窒素原子を含むガスとして、窒素ガスあるいは窒素の
水素化物、および酸素原子を含むガスとして酸素ガスあ
るいは窒素の酸化の混合ガスのプラズマ放電を用いるこ
とを特徴とする特許請求の範囲第1項記載の絶縁薄膜の
形成方法。(2) Silicon hydride as a gas containing silicon atoms, boron hydride as a gas containing boron atoms, nitrogen gas or nitrogen hydride as a gas containing nitrogen atoms, and oxygen as a gas containing oxygen atoms The method for forming an insulating thin film according to claim 1, characterized in that plasma discharge of a gas or a mixed gas of nitrogen oxidation is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14651188A JPH01313943A (en) | 1988-06-13 | 1988-06-13 | Insulating thin film and formation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14651188A JPH01313943A (en) | 1988-06-13 | 1988-06-13 | Insulating thin film and formation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01313943A true JPH01313943A (en) | 1989-12-19 |
Family
ID=15409291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14651188A Pending JPH01313943A (en) | 1988-06-13 | 1988-06-13 | Insulating thin film and formation thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01313943A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08264527A (en) * | 1996-04-05 | 1996-10-11 | Semiconductor Energy Lab Co Ltd | Fabricaiton of semiconductor device |
US6607947B1 (en) | 1990-05-29 | 2003-08-19 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device with fluorinated layer for blocking alkali ions |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61267328A (en) * | 1985-05-22 | 1986-11-26 | Tdk Corp | Wear-resisting protective film |
JPS62156822A (en) * | 1985-12-27 | 1987-07-11 | Nippon Telegr & Teleph Corp <Ntt> | Insulating thin film, and formation and forming device thereof |
JPS62273737A (en) * | 1986-05-21 | 1987-11-27 | Toshiba Corp | Formation of low stress passivation |
-
1988
- 1988-06-13 JP JP14651188A patent/JPH01313943A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61267328A (en) * | 1985-05-22 | 1986-11-26 | Tdk Corp | Wear-resisting protective film |
JPS62156822A (en) * | 1985-12-27 | 1987-07-11 | Nippon Telegr & Teleph Corp <Ntt> | Insulating thin film, and formation and forming device thereof |
JPS62273737A (en) * | 1986-05-21 | 1987-11-27 | Toshiba Corp | Formation of low stress passivation |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6607947B1 (en) | 1990-05-29 | 2003-08-19 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device with fluorinated layer for blocking alkali ions |
US7355202B2 (en) | 1990-05-29 | 2008-04-08 | Semiconductor Energy Co., Ltd. | Thin-film transistor |
JPH08264527A (en) * | 1996-04-05 | 1996-10-11 | Semiconductor Energy Lab Co Ltd | Fabricaiton of semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4090740B2 (en) | Integrated circuit manufacturing method and integrated circuit | |
US6150258A (en) | Plasma deposited fluorinated amorphous carbon films | |
JP3201967B2 (en) | Insulator and interconnect structure including low dielectric constant amorphous fluorinated carbon layer | |
US5068124A (en) | Method for depositing high quality silicon dioxide by pecvd | |
US6346747B1 (en) | Method for fabricating a thermally stable diamond-like carbon film as an intralevel or interlevel dielectric in a semiconductor device and device made | |
US6724086B1 (en) | Hydrogenated oxidized silicon carbon material | |
US20020094388A1 (en) | Low temperature, high quality silicon dioxide thin films deposited using tetramethylsilane (TMS) for stress control and coverage applications | |
US20070284698A1 (en) | DUV LASER ANNEALING AND STABILIZATION OF SiCOH FILMS | |
KR20050010867A (en) | An ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device | |
EP0522799A2 (en) | Dielectric deposition | |
US3809574A (en) | Aluminum oxide films for electronic devices | |
Endo et al. | Nitrogen doped fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics | |
Nguyen et al. | Plasma-assisted chemical vapor deposition and characterization of high quality silicon oxide films | |
Bayraktaroglu et al. | Silicon‐nitride–gallium‐arsenide MIS structures produced by plasma enhanced deposition | |
JPH1197533A (en) | Semiconductor integrated circuit and manufacturing method thereof | |
Lanckmans et al. | A comparative study of copper drift diffusion in plasma deposited a-SiC: H and silicon nitride | |
US4960656A (en) | Devices and process for producing devices containing silicon nitride films | |
JPH01313943A (en) | Insulating thin film and formation thereof | |
JP3485425B2 (en) | Method for forming low dielectric constant insulating film and semiconductor device using this film | |
Gray et al. | Process optimization and integration of trimethylsilane-deposited α-SiC: H and α-SiCO: H dielectric thin films for damascene processing | |
Loboda et al. | Deposition of low-K dielectric films using trimethylsilane | |
JP2723051B2 (en) | Semiconductor device | |
JP3033376B2 (en) | Method for manufacturing semiconductor device | |
JP2002009070A (en) | Method for depositing dielectric film having low dielectric constant | |
Lin et al. | Using anodization to oxidize ultrathin aluminum film for high-k gate dielectric application |